Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8993
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Olivo Marcelo, Neider Yesith. | - |
dc.date.accessioned | 2024-07-03T21:00:55Z | - |
dc.date.available | 2022-09-01 | - |
dc.date.available | 2024-07-03T21:00:55Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Olivo Marcelo, N. Y. (2022). La dispersión elástica coherente neutrinonúcleo (CEVNS) como prueba del modelo estándar [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8993 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8993 | - |
dc.description | En el presente trabajo se realizó el estudio de la sección eficaz diferencial (CEvNS), proceso en el cual, un neutrino interacciona con un núcleo como un todo, es decir, que no ve su composición nuclear. En este análisis fueron utilizados antineutrinos de reactor, ya que su energía se encuentra en el régimen de bajas energías (2 − 8MeV ). Se realizó el cálculo de la sección eficaz diferencial de dicho proceso para posteriormente utilizarla en el diseño de un programa en lenguaje de programación Fortran, este programa permitió el cálculo del número de eventos que pueden ocurrir para la dispersión en un cierto rango de energías, estos datos fueron comparados con los datos que se esperan sean producidos por el experimento CONUS mediante un análisis estadístico χ2 que también fue calculado mediante la implementación de códigos numéricos. Finalmente se obtuvieron las restricciones a los valores del ángulo de mezcla débil sin2 θW a bajas energías. | es_CO |
dc.description.abstract | In the present work, the study of the differential effective section (CEvNS) was carried out, a process in which a neutrino interacts with a nucleus as a whole, that is, it does not see its nuclear composition. In this analysis reactor antineutrinos were used, since their energy is in the low energy regime (2 − 8MeV ). The calculation of the differential effective section of said process was carried out to later use it in the design of a program in the programming language Fortran, this program allowed the calculation of the number of events that can occur for dispersion in a certain range of energies, these data were compared with the data expected to be produced by the CONUS experiment through a statistical analysis χ2 that was also calculated through the implementation of numerical codes. Finally, the restrictions to the values of the weak mixing angle sin2 θW at low energies were obtained. | es_CO |
dc.format.extent | 110 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | CEvNS. | es_CO |
dc.subject | Neutrinos. | es_CO |
dc.subject | Ángulo de mezcla débil. | es_CO |
dc.subject | Dispersión. | es_CO |
dc.title | La dispersión elástica coherente neutrinonúcleo (CEVNS) como prueba del modelo estándar. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2022-06-01 | - |
dc.relation.references | M. Aker et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nature Phys., 18(2):160–166, 2022. | es_CO |
dc.relation.references | Clyde L Cowan Jr, Frederick Reines, FB Harrison, HW Kruse, and AD McGuire. Detection of the free neutrino: a confirmation. Science, 124(3212):103–104, 1956. | es_CO |
dc.relation.references | The nobel prize in physics 1995. https://www.nobelprize.org/prizes/physics/ 1995/summary/. | es_CO |
dc.relation.references | D Akimov, JB Albert, P An, C Awe, PS Barbeau, B Becker, V Belov, A Brown, A Bolozdynya, B Cabrera-Palmer, et al. Observation of coherent elastic neutrinonucleus scattering. Science, 357(6356):1123–1126, 2017. | es_CO |
dc.relation.references | Daniel Z Freedman. Coherent effects of a weak neutral current. Physical Review D, 9(5):1389, 1974. | es_CO |
dc.relation.references | Abdus Salam. Elementary particle theory. In Prog. Of the Nobel Symposium, 1968, Stockholm, Sweden, volume 367, 1968. | es_CO |
dc.relation.references | José Cobián. El modelo estándar de la física de partículas. Sociedad Nuclear Española, pages 1–13, 2018. | es_CO |
dc.relation.references | Fabsanhvasq. Modelo estándar. https://commons.wikimedia.org/wiki/File: Modelo_Est%C3%A1ndar.svg#/media/File:Modelo_Est%C3%A1ndar.sv. | es_CO |
dc.relation.references | Harald Fritzsch. Elementary particles: building blocks of matter. World Scientific, 2005. | es_CO |
dc.relation.references | José Bernabéu Alberola. La teoría unificada electro-débil. Revista Española de Física, 25(2):18–26, 2011. | es_CO |
dc.relation.references | Sheldon L Glashow. Partial-symmetries of weak interactions. Nuclear physics, 22(4):579–588, 1961. | es_CO |
dc.relation.references | Quentin Arnaud, D Asner, J-P Bard, A Brossard, B Cai, M Chapellier, M Clark, EC Corcoran, T Dandl, A Dastgheibi-Fard, et al. First results from the news-g direct dark matter search experiment at the lsm. Astroparticle Physics, 97:54–62, 2018. | es_CO |
dc.relation.references | Ioannis Katsioulas, NEWS-G collaboration, et al. Recent advancements of the news-g experiment. In Journal of Physics: Conference Series, volume 1468, page 012058. IOP Publishing, 2020. | es_CO |
dc.relation.references | G Giroux, P Gros, I Katsioulas, theNEWS G collaboration, et al. The search for light dark matter with the news-g spherical proportional counter. In Journal of Physics: Conference Series, volume 1312, page 012008. IOP Publishing, 2019. | es_CO |
dc.relation.references | Kate Scholberg. Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source. Physical Review D, 73(3):033005, 2006. | es_CO |
dc.relation.references | Kate Scholberg. Coherent elastic neutrino-nucleus scattering. In Journal of Physics: Conference Series, volume 1468, page 012126. IOP Publishing, 2020. | es_CO |
dc.relation.references | TS Kosmasa OG Mirandab DK Papouliasa and M Tórtolac JWF Vallec. Probing neutrino magnetic moments at spallation neutron source facilities. arXiv preprint arXiv:1505.03202, 2015. | es_CO |
dc.relation.references | Gerd Heusser, MarcWeber, Janina Hakenmüller, Matthias Laubenstein, Manfred Lindner, Werner Maneschg, Hardy Simgen, Dominik Stolzenburg, and Herbert Strecker. Bibliografía 95 Giove: a new detector setup for high sensitivity germanium spectroscopy at shallow depth. The European Physical Journal C, 75(11):1–16, 2015. | es_CO |
dc.relation.references | C Buck, K Fülber, J Hakenmüller, G Heusser, M Lindner, W Maneschg, T Rink, H Strecker, T Schierhuber, V Wagner, et al. A novel experiment for coherent elastic neutrino nucleus scattering: Conus. In Journal of Physics: Conference Series, volume 1342, page 012094. IOP Publishing, 2020. | es_CO |
dc.relation.references | David Griffiths. Introduction to elementary particles. 2008. | es_CO |
dc.relation.references | Walter Greiner, Berndt Müller, et al. Gauge theory of weak interactions, volume 5. Springer, 1996. | es_CO |
dc.relation.references | Steven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967. | es_CO |
dc.relation.references | H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, G. Heusser, T. Hugle, J. B. Legras, M. Lindner, W. Maneschg, V. Marian, T. Rink, T. Schröder, H. Strecker, and R. Wink. Large-size sub-keV sensitive germanium detectors for the CONUS experiment. The European Physical Journal C, 81(3), mar 2021. | es_CO |
dc.relation.references | H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, and R. Wink. Full background decomposition of the conus experiment, 2021. | es_CO |
dc.relation.references | H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, and R. Wink and. Constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment. Physical Review Letters, 126(4), jan 2021. | es_CO |
dc.relation.references | CONUS Collaboration, H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, and R. Wink. Novel constraints on neutrino physics beyond the standard model from the conus experiment, 2021. | es_CO |
dc.relation.references | H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, and R. Wink. First limits on neutrino electromagnetic properties from the conus experiment, 2022. | es_CO |
dc.relation.references | A. Bonhomme, H. Bonet, C. Buck, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, R. Nolte, T. Rink, E. Pirovano, and H. Strecker. Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the kev energy range, 2022. | es_CO |
dc.relation.references | Yasaman Farzan, Manfred Lindner, Werner Rodejohann, and Xun-Jie Xu. Probing neutrino coupling to a light scalar with coherent neutrino scattering. JHEP, 05:066, 2018. | es_CO |
dc.relation.references | Th A Mueller, D Lhuillier, Muriel Fallot, A Letourneau, S Cormon, M Fechner, Lydie 96 Bibliografía Giot, Th Lasserre, J Martino, G Mention, et al. Improved predictions of reactor antineutrino spectra. Physical Review C, 83(5):054615, 2011. | es_CO |
dc.relation.references | P. A. Zyla and et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020. | es_CO |
dc.relation.references | J. Engel. Nuclear form-factors for the scattering of weakly interacting massive particles. Phys. Lett. B, 264:114–119, 1991. | es_CO |
dc.relation.references | Carlo Giunti and Chung W Kim. Fundamentals of neutrino physics and astrophysics. Oxford university press, 2007. | es_CO |
dc.relation.references | BC Canas, EA Garces, OG Miranda, A Parada, and G Sanchez Garcia. Interplay between nonstandard and nuclear constraints in coherent elastic neutrino-nucleus scattering experiments. Physical Review D, 101(3):035012, 2020. | es_CO |
dc.relation.references | Jheroen Dorenbosch, F Udo, JV Allaby, U Amaldi, Guido Barbiellini, M Baubillier, F Bergsma, A Capone, W Flegel, F Grancagnolo, et al. Experimental results on neutrino-electron scattering. Zeitschrift für Physik C Particles and Fields, 41(4):567– 589, 1989. | es_CO |
dc.relation.references | LA Ahrens, SH Aronson, PL Connolly, BG Gibbard, MJ Murtagh, SJ Murtagh, S Terada, DH White, JL Callas, D Cutts, et al. Determination of electroweak parameters from the elastic scattering of muon neutrinos and antineutrinos on electrons. Physical Review D, 41(11):3297, 1990. | es_CO |
dc.relation.references | Pierre Vilain, Gaston Wilquet, R Beyer, W Flegel, H Grote, T Mouthuy, H Øveras, J Panman, A Rozanov, K Winter, et al. Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons. Physics Letters B, 335(2):246–252, 1994. | es_CO |
dc.relation.references | Feng Peng An et al. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Phys. Rev. Lett., 116(6):061801, 2016. [Erratum: Phys.Rev.Lett. 118, 099902 (2017)]. | es_CO |
dc.relation.references | W Pauli. Pauli’s letter-dear radioactive ladies and gentlemen. Tübingen, December, 4, 1930. | es_CO |
dc.relation.references | James Chadwick. The existence of a neutron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 136(830):692–708, 1932. | es_CO |
dc.relation.references | Carl D Anderson. The positive electron. Physical Review, 43(6):491, 1933. | es_CO |
dc.relation.references | Enrico Fermi. Tentativo di una teoria dei raggi β. Il Nuovo Cimento (1924-1942), 11(1):1–19, 1934. | es_CO |
dc.relation.references | Frederick Reines et al. The neutrino. Nature, 178(4531):446–449, 1956. | es_CO |
dc.relation.references | Juan Antonio Caballero Carretero. Los neutrinos: las partículas elementales que todo lo atraviesan. RBA, 2015. | es_CO |
dc.relation.references | John N Bahcall and Raymond Davis Jr. Solar neutrinos: a scientific puzzle. Science, 191(4224):264–267, 1976. | es_CO |
dc.relation.references | Kai Zuber. Neutrino physics. Taylor & Francis, 2012. | es_CO |
dc.relation.references | Frederick Reines and Clyde L Cowan Jr. Free antineutrino absorption cross section. i. measurement of the free antineutrino absorption cross section by protons. Physical Review, 113(1):273, 1959. | es_CO |
dc.relation.references | Luis G Cabral-Rosetti. Introducción a las oscilaciones de neutrinos. Rev. mex. fis, pages 366–383, 2002. | es_CO |
dc.relation.references | Takaaki Kajita. Nobel lecture: Discovery of atmospheric neutrino oscillations. Reviews of Modern Physics, 88(3):030501, 2016. | es_CO |
dc.relation.references | Arthur B McDonald. Nobel lecture: the sudbury neutrino observatory: observation of flavor change for solar neutrinos. Reviews of Modern Physics, 88(3):030502, 2016. | es_CO |
dc.relation.references | Christian Spiering. Towards high-energy neutrino astronomy. In From Ultra Rays to Astroparticles, pages 231–263. Springer, 2012. | es_CO |
dc.relation.references | Y Ashie, J Hosaka, K Ishihara, Y Itow, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, et al. Evidence for an oscillatory signature in atmospheric neutrino oscillations. Physical review letters, 93(10):101801, 2004. | es_CO |
dc.relation.references | Graciela B Gelmini, Volodymyr Takhistov, and Samuel J Witte. Geoneutrinos in large direct detection experiments. Physical Review D, 99(9):093009, 2019. | es_CO |
dc.relation.references | Antonio Ereditato. State of the art of neutrino physics, the: A tutorial for graduate students and young researchers. 2018. | es_CO |
dc.relation.references | M.M. Block, H. Burmeister, D.C. Cundy, B. Eiben, C. Franzinetti, J. Keren, R. Møllerud, G. Myatt, M. Nikolic, A. Orkin-Lecourtois, M. Paty, D.H. Perkins, C.A. Ramm, K. Schultze, H. Sletten, K. Soop, R. Stump, W. Venus, and H. Yoshiki. Neutrino interactions in the cern heavy liquid bubble chamber. Physics Letters, 12(3):281–285, 1964. | es_CO |
dc.relation.references | FJ Hasert, S Kabe, W Krenz, J Von Krogh, D Lanske, J Morfin, K Schultze, H Weerts, G Bertrand-Coremans, Jean Sacton, et al. Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment. Nuclear Physics B, 73(1):1–22, 1974. | es_CO |
dc.relation.references | FW Bullock. Some results from neutrino experiments at cern. Journal of Physics G: Nuclear Physics, 2(12):881, 1976. | es_CO |
dc.relation.references | The nobel prize in physics 2002. https://www.nobelprize.org/prizes/physics/ 2002/summary/. | es_CO |
dc.relation.references | The nobel prize in physics 2015.https://www.nobelprize.org/prizes/physics/ 2015/summary/. | es_CO |
dc.relation.references | BJ Scholz, AE Chavarria, JI Collar, P Privitera, and AE Robinson. Measurement of the low-energy quenching factor in germanium using an 88y/be photoneutron source. Physical Review D, 94(12):122003, 2016. | es_CO |
dc.relation.references | M Buizza Avanzini. The 8b solar neutrino analysis in borexino and simulations of muon interaction products in borexino and double chooz. 2012. | es_CO |
dc.relation.references | J Billard, Rachel Carr, J Dawson, E Figueroa-Feliciano, Joseph A Formaggio, J Gascon, ST Heine, M De Jesus, J Johnston, T Lasserre, et al. Coherent neutrino scattering with low temperature bolometers at chooz reactor complex. Journal of Physics G: Nuclear and Particle Physics, 44(10):105101, 2017. | es_CO |
dc.relation.references | A Aguilar-Arevalo, X Bertou, C Bonifazi, M Butner, G Cancelo, A Castaneda Vazquez, B Cervantes Vergara, CR Chavez, H Da Motta, JC D’Olivo, et al. The connie experiment. In Journal of Physics: Conference Series, volume 761, page 012057. IOP Publishing, 2016. | es_CO |
dc.relation.references | G Agnolet, W Baker, D Barker, R Beck, TJ Carroll, J Cesar, P Cushman, JB Dent, S De Rijck, B Dutta, et al. Background studies for the miner coherent neutrino scattering reactor experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 853:53–60, 2017. | es_CO |
dc.relation.references | R Strauss, J Rothe, G Angloher, A Bento, A Gütlein, D Hauff, H Kluck, M Mancuso, L Oberauer, F Petricca, et al. The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino–nucleus scattering. The European Physical Journal C, 77(8):1–14, 2017. | es_CO |
dc.relation.references | JI Collar, NE Fields, M Hai, TW Hossbach, JL Orrell, CT Overman, G Perumpilly, and B Scholz. Coherent neutrino-nucleus scattering detection with a csi [na] scintillator at the sns spallation source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 773:56– 65, 2015. | es_CO |
dc.relation.references | Samuel Thierry WAUTHIER. Description of coherent elastic neutrino-nucleus scattering cross sections. PhD thesis, UGent, 2017. | es_CO |
dc.relation.references | S Fukuda, Y Fukuda, T Hayakawa, E Ichihara, M Ishitsuka, Y Itow, T Kajita, J Kameda, K Kaneyuki, S Kasuga, et al. The super-kamiokande detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 501(2-3):418–462, 2003. | es_CO |
dc.relation.references | D Akimov, P An, C Awe, PS Barbeau, P Barton, B Becker, V Belov, A Bolozdynya, A Burenkov, B Cabrera-Palmer, et al. The coherent experiment at the spallation neutron source. arXiv preprint arXiv:1509.08702, 2015. | es_CO |
dc.relation.references | D Baxter, JI Collar, Pilar Coloma, CE Dahl, I Esteban, Paola Ferrario, Juan José Gomez-Cadenas, MC Gonzalez-Garcia, ARL Kavner, CM Lewis, et al. Coherent elastic neutrino-nucleus scattering at the european spallation source. Journal of High Energy Physics, 2020(2):1–38, 2020. | es_CO |
dc.relation.references | Joseph Cugnon. Cascade models and particle production: A comparison. Particle Production in Highly Excited Matter, pages 271–293, 1993. | es_CO |
dc.relation.references | Antonın Krása. Spallation reaction physics. Czech Republic: Czech Technical University Lecture, 2010. | es_CO |
dc.relation.references | Chou Weiren. Spallation neutron source and other high intensity froton sources. Technical report, Fermi National Accelerator Lab., 2003. | es_CO |
dc.relation.references | COHERENT. How do you look for cevns? – coherent: Ornl. https://coherent.ornl. gov/how-do-you-look-for-cevns. | es_CO |
dc.relation.references | Patrick Huber. Determination of antineutrino spectra from nuclear reactors. Physical Review C, 84(2):024617, 2011. | es_CO |
dc.relation.references | D Akimov, JB Albert, P An, C Awe, PS Barbeau, B Becker, V Belov, MA Blackston, A Bolozdynya, A Brown, et al. Coherent 2018 at the spallation neutron source. arXiv preprint arXiv:1803.09183, 2018. | es_CO |
dc.relation.references | Jiajun Liao and Danny Marfatia. Coherent constraints on nonstandard neutrino interactions. Physics Letters B, 775:54–57, 2017. | es_CO |
dc.relation.references | D Akimov, JB Albert, P An, C Awe, PS Barbeau, B Becker, V Belov, I Bernardi, MA Blackston, L Blokland, et al. First measurement of coherent elastic neutrinonucleus scattering on argon. Physical Review Letters, 126(1):012002, 2021. | es_CO |
dc.relation.references | Carla Bonifazi. Coherent elastic neutrino-nucleus scattering. In Journal of Physics: Conference Series, volume 2156, page 012004. IOP Publishing, 2021. | es_CO |
dc.relation.references | S Ajimura, MK Cheoun, JH Choi, H Furuta, M Harada, S Hasegawa, Y Hino, T Hiraiwa, E Iwai, S Iwata, et al. Technical design report (tdr): Searching for a sterile neutrino at j-parc mlf (e56, jsns2). arXiv preprint arXiv:1705.08629, 2017. | es_CO |
dc.relation.references | S Ajimura, M Botran, JH Choi, JW Choi, MK Cheoun, T Dodo, H Furuta, J Goh, K Haga, M Harada, et al. Proposal: Jsns2-ii. arXiv preprint arXiv:2012.10807, 2020. | es_CO |
dc.relation.references | S Kerman, V Sharma, MUHAMMED Deniz, HT Wong, J-W Chen, HB Li, ST Lin, C-P Liu, Q Yue, Texono Collaboration, et al. Coherency in neutrino-nucleus elastic scattering. Physical Review D, 93(11):113006, 2016. | es_CO |
dc.relation.references | A Aguilar-Arevalo, X Bertou, C Bonifazi, M Butner, G Cancelo, A Castañeda Vázquez, B Cervantes Vergara, CR Chavez, H Da Motta, JC D’Olivo, et al. Results of the engineering run of the coherent neutrino nucleus interaction experiment (connie). Journal of Instrumentation, 11(07):P07024, 2016. | es_CO |
dc.relation.references | Alexis Aguilar-Arevalo, Xavier Bertou, Carla Bonifazi, Gustavo Cancelo, Alejandro Castañeda, Brenda Cervantes Vergara, Claudio Chavez, Juan C D’Olivo, João C Dos Anjos, Juan Estrada, et al. Exploring low-energy neutrino physics with the coherent neutrino nucleus interaction experiment. Physical Review D, 100(9):092005, 2019. | es_CO |
dc.relation.references | Alexis Aguilar-Arevalo, Javier Bernal, Xavier Bertou, Carla Bonifazi, Gustavo Cancelo, Victor GPB de Carvalho, Brenda A Cervantes-Vergara, Claudio Chavez, Gustavo Coelho Corrêa, Juan C D’Olivo, et al. Search for coherent elastic neutrino-nucleus scattering at a nuclear reactor with connie 2019 data. arXiv preprint arXiv:2110.13033, 2021. | es_CO |
dc.relation.references | Irina Nasteva. Low-energy reactor neutrino physics with the connie experiment. arXiv preprint arXiv:2110.13620, 2021. | es_CO |
dc.relation.references | Orr Abramoff, Liron Barak, Itay M Bloch, Luke Chaplinsky, Michael Crisler, Alex Drlica-Wagner, Rouven Essig, Juan Estrada, Erez Etzion, Guillermo Fernandez, et al. Sensei: direct-detection constraints on sub-gev dark matter from a shallow underground run using a prototype skipper ccd. Physical review letters, 122(16):161801, 2019. | es_CO |
dc.relation.references | Liron Barak, Itay M Bloch, Mariano Cababie, Gustavo Cancelo, Luke Chaplinsky, Bibliografía 91 Fernando Chierchie, Michael Crisler, Alex Drlica-Wagner, Rouven Essig, Juan Estrada, et al. Sensei: Direct-detection results on sub-gev dark matter from a new skipper ccd. Physical Review Letters, 125(17):171802, 2020. | es_CO |
dc.relation.references | Javier Tiffenberg, Miguel Sofo-Haro, Alex Drlica-Wagner, Rouven Essig, Yann Guardincerri, Steve Holland, Tomer Volansky, and Tien-Tien Yu. Single-electron and singlephoton sensitivity with a silicon skipper ccd. Physical review letters, 119(13):131802, 2017. | es_CO |
dc.relation.references | Violeta. https://www.violetaexperiment.com/. | es_CO |
dc.relation.references | J. Colaresi, J. I. Collar, T. W. Hossbach, A. R. L. Kavner, C. M. Lewis, A. E. Robinson, and K. M. Yocum. First results from a search for coherent elastic neutrino-nucleus scattering at a reactor site. Physical Review D, 104(7), oct 2021. | es_CO |
dc.relation.references | J. Colaresi, J. I. Collar, T. W. Hossbach, C. M. Lewis, and K. M. Yocum. Suggestive evidence for coherent elastic neutrino-nucleus scattering from reactor antineutrinos, 2022. | es_CO |
dc.relation.references | MINER Collaboration, G. Agnolet, W. Baker, D. Barker, R. Beck, T. J. Carroll, J. Cesar, P. Cushman, J. B. Dent, S. De Rijck, B. Dutta, W Flanagan, and others. Background studies for the miner coherent neutrino scattering reactor experiment, 2016. | es_CO |
dc.relation.references | Y. J. Ko, B. R. Kim, J. Y. Kim, B. Y. Han, C. H. Jang, E. J. Jeon, et al. Sterile neutrino search at the NEOS experiment. Physical Review Letters, 118(12), mar 2017. | es_CO |
dc.relation.references | Govinda Adhikari, Pushparaj Adhikari, Estella Barbosa de Souza, Nelson Carlin, Seonho Choi, Mitra Djamal, Anthony C Ezeribe, Chang Hyon Ha, Insik Hahn, Antonia JF Hubbard, et al. An experiment to search for dark matter interactions using sodium iodide detectors. arXiv preprint arXiv:1906.01791, 2019. | es_CO |
dc.relation.references | G. Adhikar et al. Search for a dark matter-induced annual modulation signal in NaI(tl) with the COSINE-100 experiment. Physical Review Letters, 123(3), jul 2019. | es_CO |
dc.relation.references | G. Adhikari et al. Initial performance of the COSINE-100 experiment. The European Physical Journal C, 78(2), feb 2018. | es_CO |
dc.relation.references | G. Adhikari et al. Lowering the energy threshold in cosine-100 dark matter searches. Astroparticle Physics, 130:102581, 2021. | es_CO |
dc.relation.references | J. J. Choi, B. J. Park, C. Ha, K. W. Kim, S. K. Kim, Y. D. Kim, Y. J. Ko, H. S. Lee, S. H. Lee, and S. L. Olsen. Improving the light collection using a new nai(tl)crystal encapsulation, 2020. | es_CO |
dc.relation.references | B. J. Park, J. J. Choi, J. S. Choe, O. Gileva, C. Ha, A. Iltis, E. J. Jeon, D. Y. Kim, K. W. Kim, S. K. Kim, Y. D. Kim, Y. J. Ko, C. H. Lee, H. S. Lee, I. S. Lee, M. H. 92 Bibliografía Lee, S. H. Lee, S. J. Ra, J. K. Son, and K. A. Shin. Development of ultra-pure NaI(tl) detectors for the COSINE-200 experiment. The European Physical Journal C, 80(9), sep 2020. | es_CO |
dc.relation.references | G. Adhikari et al. The COSINE-100 data acquisition system. Journal of Instrumentation, 13(09):P09006–P09006, sep 2018. | es_CO |
dc.relation.references | R. Strauss, J. Rothe, G. Angloher, A. Bento, A. Gütlein, D. Hauff, H. Kluck, M. Mancuso, L. Oberauer, F. Petricca, F. Pröbst, J. Schieck, S. Schönert, W. Seidel, and L. Stodolsky. The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino–nucleus scattering. The European Physical Journal C, 77(8), jul 2017. | es_CO |
dc.relation.references | R. Strauss, J. Rothe, G. Angloher, A. Bento, A. Gütlein, D. Hauff, H. Kluck, M. Mancuso, L. Oberauer, F. Petricca, F. Pröbst, J. Schieck, S. Schönert, W. Seidel, and L. Stodolsky. Gram-scale cryogenic calorimeters for rare-event searches. Physical Review D, 96(2), jul 2017. | es_CO |
dc.relation.references | G Angloher, P Bauer, A Bento, C Bucci, L Canonica, X Defay, A Erb, F v Feilitzsch, N Ferreiro Iachellini, P Gorla, et al. Results on mev-scale dark matter from a gramscale cryogenic calorimeter operated above ground. The European Physical Journal C, 77(9):1–6, 2017. | es_CO |
dc.relation.references | J Rothe, G Angloher, F Ardellier-Desages, A Bento, L Canonica, A Erhart, N Ferreiro, M Friedl, VM Ghete, D Hauff, et al. Nucleus: Exploring coherent neutrino-nucleus scattering with cryogenic detectors. Journal of Low Temperature Physics, 199(1):433– 440, 2020. | es_CO |
dc.relation.references | G. Angloher, F. Ardellier-Desages, A. Bento, L. Canonica, A. Erhart, N. Ferreiro, M. Friedl, V. M. Ghete, D. Hauff, H. Kluck, A Langenkämper, et al. Exploring cevns with nucleus at the chooz nuclear power plant, 2019. | es_CO |
dc.relation.references | V Wagner, R Rogly, A Erhart, V Savu, C Goupy, D Lhuillier, M Vivier, L Klinkenberg, G Angloher, A Bento, et al. Development of a compact muon veto for the nucleus experiment. arXiv preprint arXiv:2202.03991, 2022. | es_CO |
dc.relation.references | A. Lubashevskiy’s and ν GeN collaboration. First results of the νgen experiment. https://indico.cern.ch/event/1075677/contributions/4556660/. | es_CO |
dc.relation.references | Kaixuan Ni, Jianyang Qi, Evan Shockley, and Yuehuan Wei. Sensitivity of a liquid xenon detector to neutrino–nucleus coherent scattering and neutrino magnetic moment from reactor neutrinos. Universe, 7(3):54, 2021. | es_CO |
dc.relation.references | Brian Lenardo, Jingke Xu, Sergey Pereverzev, Oluwatomi A Akindele, Daniel Naim, James Kingston, Adam Bernstein, Kareem Kazkaz, Mani Tripathi, Connor Awe, et al. Measurement of the ionization yield from nuclear recoils in liquid xenon between 0.3–6 kev with single-ionization-electron sensitivity. arXiv preprint arXiv:1908.00518, 2019. | es_CO |
dc.relation.references | G Beaulieu, V Belov, L Berge, J Billard, G Bres, J Bret, A Broniatowski, M Calvo, A Cazes, D Chaize, et al. Ricochet progress and status. arXiv preprint ar- Xiv:2111.06745, 2021. | es_CO |
dc.relation.references | N Allemandou, Helena Almazán, P del Amo Sanchez, L Bernard, C Bernard, A Blanchet, Aurélie Bonhomme, G Bosson, O Bourrion, J Bouvier, et al. The stereo experiment. Journal of Instrumentation, 13(07):P07009, 2018. | es_CO |
dc.relation.references | T Salagnac, J Billard, J Colas, D Chaize, M De Jesus, L Dumoulin, J-B Filippini, J Gascon, A Juillard, H Lattaud, et al. Optimization and performance of the cryocube detector for the future ricochet low-energy neutrino experiment. arXiv preprint arXiv:2111.12438, 2021. | es_CO |
dc.relation.references | R. Chen, E. Figueroa-Feliciano, and B. Schmidt. Transition edge sensor chip design of modular cevns detector for the ricochet experiment, 2021. | es_CO |
dc.relation.references | D Yu Akimov, AK Berdnikova, VA Belov, AI Bolozdynya, AA Burenkov, AG Dolgolenko, Yu V Efremenko, Yu V Gusakov, AV Etenko, VA Kaplin, et al. Status of the red-100 experiment. Journal of Instrumentation, 12(06):C06018, 2017. | es_CO |
dc.relation.references | D Yu Akimov, VA Belov, AI Bolozdynya, AG Dolgolenko, YV Efremenko, AV Etenko, AV Galavanov, DV Gouss, YV Gusakov, DE Kdib, et al. First ground-level laboratory test of the two-phase xenon emission detector red-100. Journal of Instrumentation, 15(02):P02020, 2020. | es_CO |
dc.relation.references | LJ Flores, Eduardo Peinado, E Alfonso-Pita, K Allen, M Baker, E Behnke, M Bressler, K Clark, R Coppejans, C Cripe, et al. Physics reach of a low threshold scintillating argon bubble chamber in coherent elastic neutrino-nucleus scattering reactor experiments. Physical Review D, 103(9):L091301, 2021. | es_CO |
dc.relation.references | Henry Tsz-King Wong. Taiwan experiment on neutrino–history, status and prospects. arXiv preprint arXiv:1608.00306, 2016. | es_CO |
dc.relation.references | HT aWong, HB Li, ST Lin, FS Lee, V Singh, SCWu, CY Chang, HM Chang, CP Chen, MH Chou, et al. Search of neutrino magnetic moments with a high-purity germanium detector at the kuo-sheng nuclear power station. Physical Review D, 75(1):012001, 2007. | es_CO |
dc.relation.references | Jiunn-Wei Chen, Hsin-Chang Chi, Hau-Bin Li, C-P Liu, Lakhwinder Singh, Henry T Wong, Chih-Liang Wu, and Chih-Pan Wu. Constraints on millicharged neutrinos via analysis of data from atomic ionizations with germanium detectors at sub-kev sensitivities. Physical Review D, 90(1):011301, 2014. | es_CO |
dc.relation.references | Ioannis Giomataris, I Irastorza, I Savvidis, S Andriamonje, S Aune, M Chapellier, Ph Charvin, P Colas, J Derre, E Ferrer, et al. A novel large-volume spherical detector with proportional amplification read-out. Journal of Instrumentation, 3(09):P09007, 2008. | es_CO |
dc.relation.references | I Katsioulas, I Giomataris, P Knights, M Gros, XF Navick, K Nikolopoulos, and I Savvidis. A sparkless resistive glass correction electrode for the spherical proportional counter. Journal of Instrumentation, 13(11):P11006, 2018. | es_CO |
dc.relation.references | I Giomataris, M Gros, I Katsioulas, P Knights, J-P Mols, T Neep, K Nikolopoulos, G Savvidis, I Savvidis, L Shang, et al. A resistive achinos multi-anode structure with dlc coating for spherical proportional counters. Journal of Instrumentation, 15(11):P11023, 2020. | es_CO |
dc.relation.references | A Giganon, I Giomataris, M Gros, I Katsioulas, XF Navick, G Tsiledakis, I Savvidis, A Dastgheibi-Fard, and A Brossard. A multiball read-out for the spherical proportional counter. Journal of Instrumentation, 12(12):P12031, 2017. | es_CO |
dc.relation.references | E Bougamont, P Colas, J Derre, I Giomataris, G Gerbier, M Gros, P Magnier, XF Navick, P Salin, I Savvidis, et al. Ultra low energy results and their impact to dark matter and low energy neutrino physics. arXiv preprint arXiv:1010.4132, 2010. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Olivo_2022_TG.pdf | Olivo_2022_TG | 11,11 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.