• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Física
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8993
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorOlivo Marcelo, Neider Yesith.-
    dc.date.accessioned2024-07-03T21:00:55Z-
    dc.date.available2022-09-01-
    dc.date.available2024-07-03T21:00:55Z-
    dc.date.issued2022-
    dc.identifier.citationOlivo Marcelo, N. Y. (2022). La dispersión elástica coherente neutrinonúcleo (CEVNS) como prueba del modelo estándar [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8993es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8993-
    dc.descriptionEn el presente trabajo se realizó el estudio de la sección eficaz diferencial (CEvNS), proceso en el cual, un neutrino interacciona con un núcleo como un todo, es decir, que no ve su composición nuclear. En este análisis fueron utilizados antineutrinos de reactor, ya que su energía se encuentra en el régimen de bajas energías (2 − 8MeV ). Se realizó el cálculo de la sección eficaz diferencial de dicho proceso para posteriormente utilizarla en el diseño de un programa en lenguaje de programación Fortran, este programa permitió el cálculo del número de eventos que pueden ocurrir para la dispersión en un cierto rango de energías, estos datos fueron comparados con los datos que se esperan sean producidos por el experimento CONUS mediante un análisis estadístico χ2 que también fue calculado mediante la implementación de códigos numéricos. Finalmente se obtuvieron las restricciones a los valores del ángulo de mezcla débil sin2 θW a bajas energías.es_CO
    dc.description.abstractIn the present work, the study of the differential effective section (CEvNS) was carried out, a process in which a neutrino interacts with a nucleus as a whole, that is, it does not see its nuclear composition. In this analysis reactor antineutrinos were used, since their energy is in the low energy regime (2 − 8MeV ). The calculation of the differential effective section of said process was carried out to later use it in the design of a program in the programming language Fortran, this program allowed the calculation of the number of events that can occur for dispersion in a certain range of energies, these data were compared with the data expected to be produced by the CONUS experiment through a statistical analysis χ2 that was also calculated through the implementation of numerical codes. Finally, the restrictions to the values of the weak mixing angle sin2 θW at low energies were obtained.es_CO
    dc.format.extent110es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectCEvNS.es_CO
    dc.subjectNeutrinos.es_CO
    dc.subjectÁngulo de mezcla débil.es_CO
    dc.subjectDispersión.es_CO
    dc.titleLa dispersión elástica coherente neutrinonúcleo (CEVNS) como prueba del modelo estándar.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2022-06-01-
    dc.relation.referencesM. Aker et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nature Phys., 18(2):160–166, 2022.es_CO
    dc.relation.referencesClyde L Cowan Jr, Frederick Reines, FB Harrison, HW Kruse, and AD McGuire. Detection of the free neutrino: a confirmation. Science, 124(3212):103–104, 1956.es_CO
    dc.relation.referencesThe nobel prize in physics 1995. https://www.nobelprize.org/prizes/physics/ 1995/summary/.es_CO
    dc.relation.referencesD Akimov, JB Albert, P An, C Awe, PS Barbeau, B Becker, V Belov, A Brown, A Bolozdynya, B Cabrera-Palmer, et al. Observation of coherent elastic neutrinonucleus scattering. Science, 357(6356):1123–1126, 2017.es_CO
    dc.relation.referencesDaniel Z Freedman. Coherent effects of a weak neutral current. Physical Review D, 9(5):1389, 1974.es_CO
    dc.relation.referencesAbdus Salam. Elementary particle theory. In Prog. Of the Nobel Symposium, 1968, Stockholm, Sweden, volume 367, 1968.es_CO
    dc.relation.referencesJosé Cobián. El modelo estándar de la física de partículas. Sociedad Nuclear Española, pages 1–13, 2018.es_CO
    dc.relation.referencesFabsanhvasq. Modelo estándar. https://commons.wikimedia.org/wiki/File: Modelo_Est%C3%A1ndar.svg#/media/File:Modelo_Est%C3%A1ndar.sv.es_CO
    dc.relation.referencesHarald Fritzsch. Elementary particles: building blocks of matter. World Scientific, 2005.es_CO
    dc.relation.referencesJosé Bernabéu Alberola. La teoría unificada electro-débil. Revista Española de Física, 25(2):18–26, 2011.es_CO
    dc.relation.referencesSheldon L Glashow. Partial-symmetries of weak interactions. Nuclear physics, 22(4):579–588, 1961.es_CO
    dc.relation.referencesQuentin Arnaud, D Asner, J-P Bard, A Brossard, B Cai, M Chapellier, M Clark, EC Corcoran, T Dandl, A Dastgheibi-Fard, et al. First results from the news-g direct dark matter search experiment at the lsm. Astroparticle Physics, 97:54–62, 2018.es_CO
    dc.relation.referencesIoannis Katsioulas, NEWS-G collaboration, et al. Recent advancements of the news-g experiment. In Journal of Physics: Conference Series, volume 1468, page 012058. IOP Publishing, 2020.es_CO
    dc.relation.referencesG Giroux, P Gros, I Katsioulas, theNEWS G collaboration, et al. The search for light dark matter with the news-g spherical proportional counter. In Journal of Physics: Conference Series, volume 1312, page 012008. IOP Publishing, 2019.es_CO
    dc.relation.referencesKate Scholberg. Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source. Physical Review D, 73(3):033005, 2006.es_CO
    dc.relation.referencesKate Scholberg. Coherent elastic neutrino-nucleus scattering. In Journal of Physics: Conference Series, volume 1468, page 012126. IOP Publishing, 2020.es_CO
    dc.relation.referencesTS Kosmasa OG Mirandab DK Papouliasa and M Tórtolac JWF Vallec. Probing neutrino magnetic moments at spallation neutron source facilities. arXiv preprint arXiv:1505.03202, 2015.es_CO
    dc.relation.referencesGerd Heusser, MarcWeber, Janina Hakenmüller, Matthias Laubenstein, Manfred Lindner, Werner Maneschg, Hardy Simgen, Dominik Stolzenburg, and Herbert Strecker. Bibliografía 95 Giove: a new detector setup for high sensitivity germanium spectroscopy at shallow depth. The European Physical Journal C, 75(11):1–16, 2015.es_CO
    dc.relation.referencesC Buck, K Fülber, J Hakenmüller, G Heusser, M Lindner, W Maneschg, T Rink, H Strecker, T Schierhuber, V Wagner, et al. A novel experiment for coherent elastic neutrino nucleus scattering: Conus. In Journal of Physics: Conference Series, volume 1342, page 012094. IOP Publishing, 2020.es_CO
    dc.relation.referencesDavid Griffiths. Introduction to elementary particles. 2008.es_CO
    dc.relation.referencesWalter Greiner, Berndt Müller, et al. Gauge theory of weak interactions, volume 5. Springer, 1996.es_CO
    dc.relation.referencesSteven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967.es_CO
    dc.relation.referencesH. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, G. Heusser, T. Hugle, J. B. Legras, M. Lindner, W. Maneschg, V. Marian, T. Rink, T. Schröder, H. Strecker, and R. Wink. Large-size sub-keV sensitive germanium detectors for the CONUS experiment. The European Physical Journal C, 81(3), mar 2021.es_CO
    dc.relation.referencesH. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, and R. Wink. Full background decomposition of the conus experiment, 2021.es_CO
    dc.relation.referencesH. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, and R. Wink and. Constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment. Physical Review Letters, 126(4), jan 2021.es_CO
    dc.relation.referencesCONUS Collaboration, H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, and R. Wink. Novel constraints on neutrino physics beyond the standard model from the conus experiment, 2021.es_CO
    dc.relation.referencesH. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, and R. Wink. First limits on neutrino electromagnetic properties from the conus experiment, 2022.es_CO
    dc.relation.referencesA. Bonhomme, H. Bonet, C. Buck, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, R. Nolte, T. Rink, E. Pirovano, and H. Strecker. Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the kev energy range, 2022.es_CO
    dc.relation.referencesYasaman Farzan, Manfred Lindner, Werner Rodejohann, and Xun-Jie Xu. Probing neutrino coupling to a light scalar with coherent neutrino scattering. JHEP, 05:066, 2018.es_CO
    dc.relation.referencesTh A Mueller, D Lhuillier, Muriel Fallot, A Letourneau, S Cormon, M Fechner, Lydie 96 Bibliografía Giot, Th Lasserre, J Martino, G Mention, et al. Improved predictions of reactor antineutrino spectra. Physical Review C, 83(5):054615, 2011.es_CO
    dc.relation.referencesP. A. Zyla and et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.es_CO
    dc.relation.referencesJ. Engel. Nuclear form-factors for the scattering of weakly interacting massive particles. Phys. Lett. B, 264:114–119, 1991.es_CO
    dc.relation.referencesCarlo Giunti and Chung W Kim. Fundamentals of neutrino physics and astrophysics. Oxford university press, 2007.es_CO
    dc.relation.referencesBC Canas, EA Garces, OG Miranda, A Parada, and G Sanchez Garcia. Interplay between nonstandard and nuclear constraints in coherent elastic neutrino-nucleus scattering experiments. Physical Review D, 101(3):035012, 2020.es_CO
    dc.relation.referencesJheroen Dorenbosch, F Udo, JV Allaby, U Amaldi, Guido Barbiellini, M Baubillier, F Bergsma, A Capone, W Flegel, F Grancagnolo, et al. Experimental results on neutrino-electron scattering. Zeitschrift für Physik C Particles and Fields, 41(4):567– 589, 1989.es_CO
    dc.relation.referencesLA Ahrens, SH Aronson, PL Connolly, BG Gibbard, MJ Murtagh, SJ Murtagh, S Terada, DH White, JL Callas, D Cutts, et al. Determination of electroweak parameters from the elastic scattering of muon neutrinos and antineutrinos on electrons. Physical Review D, 41(11):3297, 1990.es_CO
    dc.relation.referencesPierre Vilain, Gaston Wilquet, R Beyer, W Flegel, H Grote, T Mouthuy, H Øveras, J Panman, A Rozanov, K Winter, et al. Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons. Physics Letters B, 335(2):246–252, 1994.es_CO
    dc.relation.referencesFeng Peng An et al. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Phys. Rev. Lett., 116(6):061801, 2016. [Erratum: Phys.Rev.Lett. 118, 099902 (2017)].es_CO
    dc.relation.referencesW Pauli. Pauli’s letter-dear radioactive ladies and gentlemen. Tübingen, December, 4, 1930.es_CO
    dc.relation.referencesJames Chadwick. The existence of a neutron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 136(830):692–708, 1932.es_CO
    dc.relation.referencesCarl D Anderson. The positive electron. Physical Review, 43(6):491, 1933.es_CO
    dc.relation.referencesEnrico Fermi. Tentativo di una teoria dei raggi β. Il Nuovo Cimento (1924-1942), 11(1):1–19, 1934.es_CO
    dc.relation.referencesFrederick Reines et al. The neutrino. Nature, 178(4531):446–449, 1956.es_CO
    dc.relation.referencesJuan Antonio Caballero Carretero. Los neutrinos: las partículas elementales que todo lo atraviesan. RBA, 2015.es_CO
    dc.relation.referencesJohn N Bahcall and Raymond Davis Jr. Solar neutrinos: a scientific puzzle. Science, 191(4224):264–267, 1976.es_CO
    dc.relation.referencesKai Zuber. Neutrino physics. Taylor & Francis, 2012.es_CO
    dc.relation.referencesFrederick Reines and Clyde L Cowan Jr. Free antineutrino absorption cross section. i. measurement of the free antineutrino absorption cross section by protons. Physical Review, 113(1):273, 1959.es_CO
    dc.relation.referencesLuis G Cabral-Rosetti. Introducción a las oscilaciones de neutrinos. Rev. mex. fis, pages 366–383, 2002.es_CO
    dc.relation.referencesTakaaki Kajita. Nobel lecture: Discovery of atmospheric neutrino oscillations. Reviews of Modern Physics, 88(3):030501, 2016.es_CO
    dc.relation.referencesArthur B McDonald. Nobel lecture: the sudbury neutrino observatory: observation of flavor change for solar neutrinos. Reviews of Modern Physics, 88(3):030502, 2016.es_CO
    dc.relation.referencesChristian Spiering. Towards high-energy neutrino astronomy. In From Ultra Rays to Astroparticles, pages 231–263. Springer, 2012.es_CO
    dc.relation.referencesY Ashie, J Hosaka, K Ishihara, Y Itow, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, et al. Evidence for an oscillatory signature in atmospheric neutrino oscillations. Physical review letters, 93(10):101801, 2004.es_CO
    dc.relation.referencesGraciela B Gelmini, Volodymyr Takhistov, and Samuel J Witte. Geoneutrinos in large direct detection experiments. Physical Review D, 99(9):093009, 2019.es_CO
    dc.relation.referencesAntonio Ereditato. State of the art of neutrino physics, the: A tutorial for graduate students and young researchers. 2018.es_CO
    dc.relation.referencesM.M. Block, H. Burmeister, D.C. Cundy, B. Eiben, C. Franzinetti, J. Keren, R. Møllerud, G. Myatt, M. Nikolic, A. Orkin-Lecourtois, M. Paty, D.H. Perkins, C.A. Ramm, K. Schultze, H. Sletten, K. Soop, R. Stump, W. Venus, and H. Yoshiki. Neutrino interactions in the cern heavy liquid bubble chamber. Physics Letters, 12(3):281–285, 1964.es_CO
    dc.relation.referencesFJ Hasert, S Kabe, W Krenz, J Von Krogh, D Lanske, J Morfin, K Schultze, H Weerts, G Bertrand-Coremans, Jean Sacton, et al. Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment. Nuclear Physics B, 73(1):1–22, 1974.es_CO
    dc.relation.referencesFW Bullock. Some results from neutrino experiments at cern. Journal of Physics G: Nuclear Physics, 2(12):881, 1976.es_CO
    dc.relation.referencesThe nobel prize in physics 2002. https://www.nobelprize.org/prizes/physics/ 2002/summary/.es_CO
    dc.relation.referencesThe nobel prize in physics 2015.https://www.nobelprize.org/prizes/physics/ 2015/summary/.es_CO
    dc.relation.referencesBJ Scholz, AE Chavarria, JI Collar, P Privitera, and AE Robinson. Measurement of the low-energy quenching factor in germanium using an 88y/be photoneutron source. Physical Review D, 94(12):122003, 2016.es_CO
    dc.relation.referencesM Buizza Avanzini. The 8b solar neutrino analysis in borexino and simulations of muon interaction products in borexino and double chooz. 2012.es_CO
    dc.relation.referencesJ Billard, Rachel Carr, J Dawson, E Figueroa-Feliciano, Joseph A Formaggio, J Gascon, ST Heine, M De Jesus, J Johnston, T Lasserre, et al. Coherent neutrino scattering with low temperature bolometers at chooz reactor complex. Journal of Physics G: Nuclear and Particle Physics, 44(10):105101, 2017.es_CO
    dc.relation.referencesA Aguilar-Arevalo, X Bertou, C Bonifazi, M Butner, G Cancelo, A Castaneda Vazquez, B Cervantes Vergara, CR Chavez, H Da Motta, JC D’Olivo, et al. The connie experiment. In Journal of Physics: Conference Series, volume 761, page 012057. IOP Publishing, 2016.es_CO
    dc.relation.referencesG Agnolet, W Baker, D Barker, R Beck, TJ Carroll, J Cesar, P Cushman, JB Dent, S De Rijck, B Dutta, et al. Background studies for the miner coherent neutrino scattering reactor experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 853:53–60, 2017.es_CO
    dc.relation.referencesR Strauss, J Rothe, G Angloher, A Bento, A Gütlein, D Hauff, H Kluck, M Mancuso, L Oberauer, F Petricca, et al. The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino–nucleus scattering. The European Physical Journal C, 77(8):1–14, 2017.es_CO
    dc.relation.referencesJI Collar, NE Fields, M Hai, TW Hossbach, JL Orrell, CT Overman, G Perumpilly, and B Scholz. Coherent neutrino-nucleus scattering detection with a csi [na] scintillator at the sns spallation source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 773:56– 65, 2015.es_CO
    dc.relation.referencesSamuel Thierry WAUTHIER. Description of coherent elastic neutrino-nucleus scattering cross sections. PhD thesis, UGent, 2017.es_CO
    dc.relation.referencesS Fukuda, Y Fukuda, T Hayakawa, E Ichihara, M Ishitsuka, Y Itow, T Kajita, J Kameda, K Kaneyuki, S Kasuga, et al. The super-kamiokande detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 501(2-3):418–462, 2003.es_CO
    dc.relation.referencesD Akimov, P An, C Awe, PS Barbeau, P Barton, B Becker, V Belov, A Bolozdynya, A Burenkov, B Cabrera-Palmer, et al. The coherent experiment at the spallation neutron source. arXiv preprint arXiv:1509.08702, 2015.es_CO
    dc.relation.referencesD Baxter, JI Collar, Pilar Coloma, CE Dahl, I Esteban, Paola Ferrario, Juan José Gomez-Cadenas, MC Gonzalez-Garcia, ARL Kavner, CM Lewis, et al. Coherent elastic neutrino-nucleus scattering at the european spallation source. Journal of High Energy Physics, 2020(2):1–38, 2020.es_CO
    dc.relation.referencesJoseph Cugnon. Cascade models and particle production: A comparison. Particle Production in Highly Excited Matter, pages 271–293, 1993.es_CO
    dc.relation.referencesAntonın Krása. Spallation reaction physics. Czech Republic: Czech Technical University Lecture, 2010.es_CO
    dc.relation.referencesChou Weiren. Spallation neutron source and other high intensity froton sources. Technical report, Fermi National Accelerator Lab., 2003.es_CO
    dc.relation.referencesCOHERENT. How do you look for cevns? – coherent: Ornl. https://coherent.ornl. gov/how-do-you-look-for-cevns.es_CO
    dc.relation.referencesPatrick Huber. Determination of antineutrino spectra from nuclear reactors. Physical Review C, 84(2):024617, 2011.es_CO
    dc.relation.referencesD Akimov, JB Albert, P An, C Awe, PS Barbeau, B Becker, V Belov, MA Blackston, A Bolozdynya, A Brown, et al. Coherent 2018 at the spallation neutron source. arXiv preprint arXiv:1803.09183, 2018.es_CO
    dc.relation.referencesJiajun Liao and Danny Marfatia. Coherent constraints on nonstandard neutrino interactions. Physics Letters B, 775:54–57, 2017.es_CO
    dc.relation.referencesD Akimov, JB Albert, P An, C Awe, PS Barbeau, B Becker, V Belov, I Bernardi, MA Blackston, L Blokland, et al. First measurement of coherent elastic neutrinonucleus scattering on argon. Physical Review Letters, 126(1):012002, 2021.es_CO
    dc.relation.referencesCarla Bonifazi. Coherent elastic neutrino-nucleus scattering. In Journal of Physics: Conference Series, volume 2156, page 012004. IOP Publishing, 2021.es_CO
    dc.relation.referencesS Ajimura, MK Cheoun, JH Choi, H Furuta, M Harada, S Hasegawa, Y Hino, T Hiraiwa, E Iwai, S Iwata, et al. Technical design report (tdr): Searching for a sterile neutrino at j-parc mlf (e56, jsns2). arXiv preprint arXiv:1705.08629, 2017.es_CO
    dc.relation.referencesS Ajimura, M Botran, JH Choi, JW Choi, MK Cheoun, T Dodo, H Furuta, J Goh, K Haga, M Harada, et al. Proposal: Jsns2-ii. arXiv preprint arXiv:2012.10807, 2020.es_CO
    dc.relation.referencesS Kerman, V Sharma, MUHAMMED Deniz, HT Wong, J-W Chen, HB Li, ST Lin, C-P Liu, Q Yue, Texono Collaboration, et al. Coherency in neutrino-nucleus elastic scattering. Physical Review D, 93(11):113006, 2016.es_CO
    dc.relation.referencesA Aguilar-Arevalo, X Bertou, C Bonifazi, M Butner, G Cancelo, A Castañeda Vázquez, B Cervantes Vergara, CR Chavez, H Da Motta, JC D’Olivo, et al. Results of the engineering run of the coherent neutrino nucleus interaction experiment (connie). Journal of Instrumentation, 11(07):P07024, 2016.es_CO
    dc.relation.referencesAlexis Aguilar-Arevalo, Xavier Bertou, Carla Bonifazi, Gustavo Cancelo, Alejandro Castañeda, Brenda Cervantes Vergara, Claudio Chavez, Juan C D’Olivo, João C Dos Anjos, Juan Estrada, et al. Exploring low-energy neutrino physics with the coherent neutrino nucleus interaction experiment. Physical Review D, 100(9):092005, 2019.es_CO
    dc.relation.referencesAlexis Aguilar-Arevalo, Javier Bernal, Xavier Bertou, Carla Bonifazi, Gustavo Cancelo, Victor GPB de Carvalho, Brenda A Cervantes-Vergara, Claudio Chavez, Gustavo Coelho Corrêa, Juan C D’Olivo, et al. Search for coherent elastic neutrino-nucleus scattering at a nuclear reactor with connie 2019 data. arXiv preprint arXiv:2110.13033, 2021.es_CO
    dc.relation.referencesIrina Nasteva. Low-energy reactor neutrino physics with the connie experiment. arXiv preprint arXiv:2110.13620, 2021.es_CO
    dc.relation.referencesOrr Abramoff, Liron Barak, Itay M Bloch, Luke Chaplinsky, Michael Crisler, Alex Drlica-Wagner, Rouven Essig, Juan Estrada, Erez Etzion, Guillermo Fernandez, et al. Sensei: direct-detection constraints on sub-gev dark matter from a shallow underground run using a prototype skipper ccd. Physical review letters, 122(16):161801, 2019.es_CO
    dc.relation.referencesLiron Barak, Itay M Bloch, Mariano Cababie, Gustavo Cancelo, Luke Chaplinsky, Bibliografía 91 Fernando Chierchie, Michael Crisler, Alex Drlica-Wagner, Rouven Essig, Juan Estrada, et al. Sensei: Direct-detection results on sub-gev dark matter from a new skipper ccd. Physical Review Letters, 125(17):171802, 2020.es_CO
    dc.relation.referencesJavier Tiffenberg, Miguel Sofo-Haro, Alex Drlica-Wagner, Rouven Essig, Yann Guardincerri, Steve Holland, Tomer Volansky, and Tien-Tien Yu. Single-electron and singlephoton sensitivity with a silicon skipper ccd. Physical review letters, 119(13):131802, 2017.es_CO
    dc.relation.referencesVioleta. https://www.violetaexperiment.com/.es_CO
    dc.relation.referencesJ. Colaresi, J. I. Collar, T. W. Hossbach, A. R. L. Kavner, C. M. Lewis, A. E. Robinson, and K. M. Yocum. First results from a search for coherent elastic neutrino-nucleus scattering at a reactor site. Physical Review D, 104(7), oct 2021.es_CO
    dc.relation.referencesJ. Colaresi, J. I. Collar, T. W. Hossbach, C. M. Lewis, and K. M. Yocum. Suggestive evidence for coherent elastic neutrino-nucleus scattering from reactor antineutrinos, 2022.es_CO
    dc.relation.referencesMINER Collaboration, G. Agnolet, W. Baker, D. Barker, R. Beck, T. J. Carroll, J. Cesar, P. Cushman, J. B. Dent, S. De Rijck, B. Dutta, W Flanagan, and others. Background studies for the miner coherent neutrino scattering reactor experiment, 2016.es_CO
    dc.relation.referencesY. J. Ko, B. R. Kim, J. Y. Kim, B. Y. Han, C. H. Jang, E. J. Jeon, et al. Sterile neutrino search at the NEOS experiment. Physical Review Letters, 118(12), mar 2017.es_CO
    dc.relation.referencesGovinda Adhikari, Pushparaj Adhikari, Estella Barbosa de Souza, Nelson Carlin, Seonho Choi, Mitra Djamal, Anthony C Ezeribe, Chang Hyon Ha, Insik Hahn, Antonia JF Hubbard, et al. An experiment to search for dark matter interactions using sodium iodide detectors. arXiv preprint arXiv:1906.01791, 2019.es_CO
    dc.relation.referencesG. Adhikar et al. Search for a dark matter-induced annual modulation signal in NaI(tl) with the COSINE-100 experiment. Physical Review Letters, 123(3), jul 2019.es_CO
    dc.relation.referencesG. Adhikari et al. Initial performance of the COSINE-100 experiment. The European Physical Journal C, 78(2), feb 2018.es_CO
    dc.relation.referencesG. Adhikari et al. Lowering the energy threshold in cosine-100 dark matter searches. Astroparticle Physics, 130:102581, 2021.es_CO
    dc.relation.referencesJ. J. Choi, B. J. Park, C. Ha, K. W. Kim, S. K. Kim, Y. D. Kim, Y. J. Ko, H. S. Lee, S. H. Lee, and S. L. Olsen. Improving the light collection using a new nai(tl)crystal encapsulation, 2020.es_CO
    dc.relation.referencesB. J. Park, J. J. Choi, J. S. Choe, O. Gileva, C. Ha, A. Iltis, E. J. Jeon, D. Y. Kim, K. W. Kim, S. K. Kim, Y. D. Kim, Y. J. Ko, C. H. Lee, H. S. Lee, I. S. Lee, M. H. 92 Bibliografía Lee, S. H. Lee, S. J. Ra, J. K. Son, and K. A. Shin. Development of ultra-pure NaI(tl) detectors for the COSINE-200 experiment. The European Physical Journal C, 80(9), sep 2020.es_CO
    dc.relation.referencesG. Adhikari et al. The COSINE-100 data acquisition system. Journal of Instrumentation, 13(09):P09006–P09006, sep 2018.es_CO
    dc.relation.referencesR. Strauss, J. Rothe, G. Angloher, A. Bento, A. Gütlein, D. Hauff, H. Kluck, M. Mancuso, L. Oberauer, F. Petricca, F. Pröbst, J. Schieck, S. Schönert, W. Seidel, and L. Stodolsky. The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino–nucleus scattering. The European Physical Journal C, 77(8), jul 2017.es_CO
    dc.relation.referencesR. Strauss, J. Rothe, G. Angloher, A. Bento, A. Gütlein, D. Hauff, H. Kluck, M. Mancuso, L. Oberauer, F. Petricca, F. Pröbst, J. Schieck, S. Schönert, W. Seidel, and L. Stodolsky. Gram-scale cryogenic calorimeters for rare-event searches. Physical Review D, 96(2), jul 2017.es_CO
    dc.relation.referencesG Angloher, P Bauer, A Bento, C Bucci, L Canonica, X Defay, A Erb, F v Feilitzsch, N Ferreiro Iachellini, P Gorla, et al. Results on mev-scale dark matter from a gramscale cryogenic calorimeter operated above ground. The European Physical Journal C, 77(9):1–6, 2017.es_CO
    dc.relation.referencesJ Rothe, G Angloher, F Ardellier-Desages, A Bento, L Canonica, A Erhart, N Ferreiro, M Friedl, VM Ghete, D Hauff, et al. Nucleus: Exploring coherent neutrino-nucleus scattering with cryogenic detectors. Journal of Low Temperature Physics, 199(1):433– 440, 2020.es_CO
    dc.relation.referencesG. Angloher, F. Ardellier-Desages, A. Bento, L. Canonica, A. Erhart, N. Ferreiro, M. Friedl, V. M. Ghete, D. Hauff, H. Kluck, A Langenkämper, et al. Exploring cevns with nucleus at the chooz nuclear power plant, 2019.es_CO
    dc.relation.referencesV Wagner, R Rogly, A Erhart, V Savu, C Goupy, D Lhuillier, M Vivier, L Klinkenberg, G Angloher, A Bento, et al. Development of a compact muon veto for the nucleus experiment. arXiv preprint arXiv:2202.03991, 2022.es_CO
    dc.relation.referencesA. Lubashevskiy’s and ν GeN collaboration. First results of the νgen experiment. https://indico.cern.ch/event/1075677/contributions/4556660/.es_CO
    dc.relation.referencesKaixuan Ni, Jianyang Qi, Evan Shockley, and Yuehuan Wei. Sensitivity of a liquid xenon detector to neutrino–nucleus coherent scattering and neutrino magnetic moment from reactor neutrinos. Universe, 7(3):54, 2021.es_CO
    dc.relation.referencesBrian Lenardo, Jingke Xu, Sergey Pereverzev, Oluwatomi A Akindele, Daniel Naim, James Kingston, Adam Bernstein, Kareem Kazkaz, Mani Tripathi, Connor Awe, et al. Measurement of the ionization yield from nuclear recoils in liquid xenon between 0.3–6 kev with single-ionization-electron sensitivity. arXiv preprint arXiv:1908.00518, 2019.es_CO
    dc.relation.referencesG Beaulieu, V Belov, L Berge, J Billard, G Bres, J Bret, A Broniatowski, M Calvo, A Cazes, D Chaize, et al. Ricochet progress and status. arXiv preprint ar- Xiv:2111.06745, 2021.es_CO
    dc.relation.referencesN Allemandou, Helena Almazán, P del Amo Sanchez, L Bernard, C Bernard, A Blanchet, Aurélie Bonhomme, G Bosson, O Bourrion, J Bouvier, et al. The stereo experiment. Journal of Instrumentation, 13(07):P07009, 2018.es_CO
    dc.relation.referencesT Salagnac, J Billard, J Colas, D Chaize, M De Jesus, L Dumoulin, J-B Filippini, J Gascon, A Juillard, H Lattaud, et al. Optimization and performance of the cryocube detector for the future ricochet low-energy neutrino experiment. arXiv preprint arXiv:2111.12438, 2021.es_CO
    dc.relation.referencesR. Chen, E. Figueroa-Feliciano, and B. Schmidt. Transition edge sensor chip design of modular cevns detector for the ricochet experiment, 2021.es_CO
    dc.relation.referencesD Yu Akimov, AK Berdnikova, VA Belov, AI Bolozdynya, AA Burenkov, AG Dolgolenko, Yu V Efremenko, Yu V Gusakov, AV Etenko, VA Kaplin, et al. Status of the red-100 experiment. Journal of Instrumentation, 12(06):C06018, 2017.es_CO
    dc.relation.referencesD Yu Akimov, VA Belov, AI Bolozdynya, AG Dolgolenko, YV Efremenko, AV Etenko, AV Galavanov, DV Gouss, YV Gusakov, DE Kdib, et al. First ground-level laboratory test of the two-phase xenon emission detector red-100. Journal of Instrumentation, 15(02):P02020, 2020.es_CO
    dc.relation.referencesLJ Flores, Eduardo Peinado, E Alfonso-Pita, K Allen, M Baker, E Behnke, M Bressler, K Clark, R Coppejans, C Cripe, et al. Physics reach of a low threshold scintillating argon bubble chamber in coherent elastic neutrino-nucleus scattering reactor experiments. Physical Review D, 103(9):L091301, 2021.es_CO
    dc.relation.referencesHenry Tsz-King Wong. Taiwan experiment on neutrino–history, status and prospects. arXiv preprint arXiv:1608.00306, 2016.es_CO
    dc.relation.referencesHT aWong, HB Li, ST Lin, FS Lee, V Singh, SCWu, CY Chang, HM Chang, CP Chen, MH Chou, et al. Search of neutrino magnetic moments with a high-purity germanium detector at the kuo-sheng nuclear power station. Physical Review D, 75(1):012001, 2007.es_CO
    dc.relation.referencesJiunn-Wei Chen, Hsin-Chang Chi, Hau-Bin Li, C-P Liu, Lakhwinder Singh, Henry T Wong, Chih-Liang Wu, and Chih-Pan Wu. Constraints on millicharged neutrinos via analysis of data from atomic ionizations with germanium detectors at sub-kev sensitivities. Physical Review D, 90(1):011301, 2014.es_CO
    dc.relation.referencesIoannis Giomataris, I Irastorza, I Savvidis, S Andriamonje, S Aune, M Chapellier, Ph Charvin, P Colas, J Derre, E Ferrer, et al. A novel large-volume spherical detector with proportional amplification read-out. Journal of Instrumentation, 3(09):P09007, 2008.es_CO
    dc.relation.referencesI Katsioulas, I Giomataris, P Knights, M Gros, XF Navick, K Nikolopoulos, and I Savvidis. A sparkless resistive glass correction electrode for the spherical proportional counter. Journal of Instrumentation, 13(11):P11006, 2018.es_CO
    dc.relation.referencesI Giomataris, M Gros, I Katsioulas, P Knights, J-P Mols, T Neep, K Nikolopoulos, G Savvidis, I Savvidis, L Shang, et al. A resistive achinos multi-anode structure with dlc coating for spherical proportional counters. Journal of Instrumentation, 15(11):P11023, 2020.es_CO
    dc.relation.referencesA Giganon, I Giomataris, M Gros, I Katsioulas, XF Navick, G Tsiledakis, I Savvidis, A Dastgheibi-Fard, and A Brossard. A multiball read-out for the spherical proportional counter. Journal of Instrumentation, 12(12):P12031, 2017.es_CO
    dc.relation.referencesE Bougamont, P Colas, J Derre, I Giomataris, G Gerbier, M Gros, P Magnier, XF Navick, P Salin, I Savvidis, et al. Ultra low energy results and their impact to dark matter and low energy neutrino physics. arXiv preprint arXiv:1010.4132, 2010.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Física

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Olivo_2022_TG.pdfOlivo_2022_TG11,11 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.