Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8963
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Gélvez Rodríguez, Edinson Leonardo. | - |
dc.date.accessioned | 2024-07-03T15:41:16Z | - |
dc.date.available | 2022-09-01 | - |
dc.date.available | 2024-07-03T15:41:16Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Gélvez Rodríguez, E. L. (2022). Resonancia de plasmones de superficie en sistemas films metálicos [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8963 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8963 | - |
dc.description | La medida de la reflectividad óptica permite caracterizar la resonancia de plasmones superficiales en sistemas metálicos planos o nanoestructurados. En este trabajo se realizó un estudio de la resonancia de plasmones superficiales propagantes en sistemas films metálicos de Au y Ag, usando la configuración óptica de Kretschmann. Se usan metales nobles (Au o Ag), debido a que la resonancia de estos plasmones está en la región visible del espectro electromagnético, lo cual facilita dichos procesos de resonancia. Se analizaron expresiones analíticas de los modelos teóricos planteados en la literatura, entre ellos el modelo de Lorentz y Drude. De estos modelos, se abordó la solución clásica para el movimiento del electrón en un material, de donde se obtiene La función dieléctrica la cual permite inferir el comportamiento óptico del metal en términos de la dispersión normal y anómala (resonancia). Igualmente, se demostraron las ecuaciones de Fresnel para la reflectividad óptica y se simularon implementando los códigos en programa Matlab. De estas simulaciones fue posible verificar que la resonancia de plasmones superficiales propagantes depende de varios parámetros como son: la longitud de onda y polarización de la luz incidente, el Angulo de incidencia, el índice de refracción del medio dieléctrico que interactúa con el metal y del espesor de film metálico. Se estudió la sensibilidad de la configuración óptica de Kretschmann ante variaciones del índice de refracción del medio dieléctrico en contacto con el metal, develando que mínimas variaciones del índice de refracción es suficiente para generar corrimiento angular del pico de resonancia plasmónica. Este corrimiento angular permitió, establecer el principio de funcionamiento de un sensor óptico considerando variaciones del índice de refracción de soluciones acuosas y gaseosas. | es_CO |
dc.description.abstract | The measurement of optical reflectivity allows to me characterizing surface plasmon resonances in flat or nanostructured metallic systems. In this work I have done a study of the resonance of propagating surface plasmons in metallic film systems wascarried out. Au y Ag, in which I have used the optical configuration of Kretschmann. Where noble metals are used for convenience (Au or Ag), due to the resonance of these plasmons is in the visible region of the electromagnetic spectrum, which facilitates these resonance processes. Analytical expressions of the theoretical models proposed in the literature were analyzed, including the Lorentz y Drude models. Therefore, from these models, the classical solution for the movement of the electron in a material was approached, from which the dielectric function is obtained, which allows inferring the optical behavior of the metal in terms of normal and anomalous dispersion (resonance). It is good to say that it has also been demonstrated in the Fresnel equations for optical reflectivity and they were simulated by implementing the codes in the Matlab program. It is very important to consider that from these simulations it has been possible to verify that the resonance of propagating surface plasmons depends on several parameters such as: the wavelength and polarization of the incident light, the angle of incidence, the refractive index of the dielectric medium that interacts with metal and the thickness of metal film. The sensitivity of the Kretschmann optical configuration to variations in the refractive index of the dielectric medium in contact with the metal was studied, denoting that the minimum variations in the refractive index are sufficient to generate angular shift of the plasmonic resonance peak. This angular shift made it possible to establish the operating principle of an optical sensor considering variations in the refractive index of aqueous solutions and gaseous. | es_CO |
dc.format.extent | 74 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Sensor óptico. | es_CO |
dc.subject | Reflectividad. | es_CO |
dc.subject | Resonancia plasmonica. | es_CO |
dc.subject | Plasmón. | es_CO |
dc.title | Resonancia de plasmones de superficie en sistemas films metálicos. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2022-06-01 | - |
dc.relation.references | Rojas Bejarano, Carlos Javier and others. Resonancia de plasmones superficiales localizados en nanopart´ıculas de oro y plata. Universidad Distrital Francisco Jos´e de Caldas, 2020. | es_CO |
dc.relation.references | Cardenas, M., Castiblanco, R. E., Vargas, J. H., Morales, J. Estudio de las funciones reflectancia y transmitancia de los plasmones de superficies en la configuraci´on de Kretschmann. Momento, (40), 30–55, 2010. | es_CO |
dc.relation.references | Rodriguez Rodrıguez, Anyi Ximena and others. Sensibilidad al entorno diel´ectrico de las propiedades plasm´onicas del oro. Universidad Distrital de Colombia, 2018. | es_CO |
dc.relation.references | Maharana, P. K., Jha, R. Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors and Actuators B: Chemical, 169, 161–166, 2012. | es_CO |
dc.relation.references | Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift f¨ur Physik A Hadrons and nuclei, 216 (4), 398–410, 1968. | es_CO |
dc.relation.references | E. Kretschmann and H. Raether. Notizen: Radiative decay of non radiative surface plasmons excited by light. Zeitschrift f¨ur Naturforschung A, 23 (12), 2135–2136, 1968. | es_CO |
dc.relation.references | Nylander, C., Liedberg, B., Lind, T. Gas detection by means of surface plasmon resonance. Sensors and Actuators, 3, 79–88, 1982. | es_CO |
dc.relation.references | Liedberg, B., Nylander, C., Lunstr¨om, I. Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 4, 299–304, 1983. | es_CO |
dc.relation.references | BBC News Mundo. Las empresas que ganan millones vendiendo pesticidas peligrosos al mundo en desarrollo (y qu´e pa´ıs de am´erica latina es l´ıder mundial en su uso), 2020. URL https://www.bbc.com/mundo/noticias-51575375. | es_CO |
dc.relation.references | BBC News Mundo. Organizaci´on de las naciones unidas para la alimentaci´on y la agricultura (2011). agronoticias: Actualidad agropecuaria de am´erica latina y el caribe, 2011. URL https://www.bbc.com/mundo/noticias-51575375. | es_CO |
dc.relation.references | Schasfoort, R. B., Lokate, A. M., Beusink, J. B., Pruijn, G. J., Engbers, G. H. Measurement of the analysis cycle: Scanning spr microarray imaging of autoimmune diseases. En: Handbook of Surface Plasmon Resonance, p´ags. 221–245. Royal Society of Chemistry, 2008. | es_CO |
dc.relation.references | Knoll,Wolfgang. Interfaces and thin films as seen by bound electromagnetic waves. Annual review of physical chemistry, 1998. | es_CO |
dc.relation.references | Sepulveda, Borja and Regatos, David and Armelles Reig, Gaspar and Lechuga, Laura M and Fari˜na, David. M´etodo para el an´alisis del ´ındice de refracci´on de un medio diel´ectrico adyacente a un medio plasm´onico, y dispositivo correspondiente. Oficina espa˜nola de patentes y marcas, 2011. | es_CO |
dc.relation.references | Cesar Aurelio Herre˜no Fierro. Magneto-plasm´onica de estructuras multicapa Au—Co—Au. Universidad de los Andes, 2015. | es_CO |
dc.relation.references | Le Ru, E., Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier, 2009. | es_CO |
dc.relation.references | Maier, S. A. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007. | es_CO |
dc.relation.references | Fox, Mark. Optical properties of solids. American Association of Physics Teachers, 2002. | es_CO |
dc.relation.references | Neil W. Ashcroft, N.David Mermin. Solid State Physics. Harcourt College Publishers, 1976. | es_CO |
dc.relation.references | Guerra Hernández, L. A. Antenas ópticas en la nano y microescala. Tesis Doctoral, Universidad Nacional de Cuyo, 2019. | es_CO |
dc.relation.references | Cubillos Morales, Fabi´an Camilo. Resonancia de plasm´on superficial en pel´ıculas delgadas de ZnO. Universidad Tecnol´ogica de Pereira, 2017. | es_CO |
dc.relation.references | Etchegoin, P. G., Le Ru, E., Meyer, M. An analytic model for the optical properties of gold. The Journal of chemical physics, 125 (16), 164705, 2006. | es_CO |
dc.relation.references | Guerra Hernandez, L. A., Daza Millone, M. A., Cort´es, E., Castez, M. F., Auguie´e, B., Vela, M. E., et al. Synergetic light-harvesting and near-field enhancement in multiscale patterned gold substrates. ACS Photonics, 2 (9), 1355–1365, 2015. | es_CO |
dc.relation.references | Pines, D. Collective energy losses in solids. Reviews of modern physics, 28 (3), 184, 1956. | es_CO |
dc.relation.references | Jackson, J. D. Classical Electrodynamics. ed. Wiley, New York,, 1999. | es_CO |
dc.relation.references | Barker Jr, A. Optical measurements of surface plasmons in gold. Physical Review B, 8 (12), 5418, 1973. | es_CO |
dc.relation.references | Raether, H. Surface plasmons on smooth surfaces. En: Surface plasmons on smooth and rough surfaces and on gratings, p´ags. 4–39. Springer, 1988. | es_CO |
dc.relation.references | Sambles, J., Bradbery, G., Yang, F. Optical excitation of surface plasmons: an introduction. Contemporary physics, 32 (3), 173–183, 1991. | es_CO |
dc.relation.references | Yannopapas, V., Stefanou, N. Optical excitation of coupled waveguide-particle plasmon modes: A theoretical analysis. Physical Review B, 69 (1), 012408, 2004. | es_CO |
dc.relation.references | Go˜ni Ol´oriz, Carlos. Camino de la resonancia de plasm´on superficial en fibra ´optica pulida lateralmente. Universidad P´ublica de Navarra, 2010. | es_CO |
dc.relation.references | Interaxn S.L. Informe de vigilancia tecnol´ogica sobre aplicaci´on de biosensores al diagn´ostico simult´aneo de enfermedades infecciosas. Tesis Doctoral, Fundaci´on para el conocimiento Madrid, 2004. | es_CO |
dc.relation.references | Sanchez, Y. M. E. Automatizaci´on de un sistema de resonancia de plasmones de superficie para medici´on de ´ındice de refracci´on. Tesis Doctoral, Centro de investigaci´on ´optica A. C., 2013. | es_CO |
dc.relation.references | Sharma, A. K., Jha, R., Gupta, B. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors Journal, 7 (8), 1118–1129, 2007. | es_CO |
dc.relation.references | Homola, J., Piliarik, M. Surface plasmon resonance (SPR) sensors. En: Surface plasmon resonance based sensors, p´ags. 45–67. Springer, 2006. | es_CO |
dc.relation.references | Cocco, Mauro Daniel. Detecci´on ultrasensible de mol´eculas por resonancia de plasmones de superficie. Instituto Balseiro, Centro At´omico Bariloche, 2015. | es_CO |
dc.relation.references | Stenzel, O., et al. The physics of thin film optical spectra. Springer, 2015. | es_CO |
dc.relation.references | Behrisch, Rainer and Eckstein, Wolfgang. Sputtering Process, Types and Uses. Nanografi Nano Technology, 2019. | es_CO |
dc.relation.references | Hanke, L. D. Handbook of analytical methods for materials. Materials Evaluation and Engineering Inc., Plymouth, p´ags. 35–38, 2001. 21, | es_CO |
dc.relation.references | Swapp, Susan. Scanning Electron Microscopy (SEM). University of Wyoming, 2019. | es_CO |
dc.relation.references | Horcas, I., Fern´andez, R., Gomez-Rodriguez, J., Colchero, J., G´omez-Herrero, J., Baro, A. Wsxm: a software for scanning probe microscopy and a tool for nanotechnology. Review of scientific instruments, 78 (1), 013705, 2007. | es_CO |
dc.relation.references | David Neˇcas and Petr Klapetek. Gwyddion: an open-source software for SPM data analysis, 2020. URL http://gwyddion.net/. | es_CO |
dc.relation.references | Yesudasu, V., Pradhan, H. S., Pandya, R. J. Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon, 7 (3), 2021. | es_CO |
dc.relation.references | Roh, S., Chung, T., Lee, B. Overview of the characteristics of micro-and nanostructured surface plasmon resonance sensors. Sensors, 11 (2), 1565–1588, 2011. | es_CO |
dc.relation.references | Homola, J., Yee, S. S., Gauglitz, G. Surface plasmon resonance sensors. Sensors and actuators B: Chemical, 54 (1-2), 3–15, 1999. | es_CO |
dc.relation.references | Jha, R., Sharma, A. K. High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared. Optics letters, 34 (6), 749–751, 2009. | es_CO |
dc.relation.references | Claes Nylander and Bo Liedberg and Tommy Lind. Gas detection by means of surface plasmon resonance. Sensors and Actuators, 3, 79–88, 1982. | es_CO |
dc.relation.references | El Kazzy, Marielle and Weerakkody, Jonathan S. and Hurot, Charlotte and Mathey, Rapha¨el and Buhot, Arnaud and Scaramozzino, Natale and Hou, Yanxia. An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds. Biosensors, 2021. | es_CO |
dc.relation.references | Hecht, E. Optics. Adelphi University, 2002. | es_CO |
dc.relation.references | Marder, A. The metallurgy of zinc-coated steel. Progress in materials science, 45 (3), 191–271, 2000. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Gélvez_2022_TG.pdf | Gélvez_2022_TG | 3 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.