• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Ambiental
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8445
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorHernández Leal, Javier Andrés.-
    dc.date.accessioned2024-06-06T21:27:31Z-
    dc.date.available2019-11-12-
    dc.date.available2024-06-06T21:27:31Z-
    dc.date.issued2020-
    dc.identifier.citationHernández Leal, J. A. (2019). Potencial de biosorcion de materiales enteramente biológicos, y la aplicación de la biomasa saccharomyces cerevisae como una alternativa para remover metales pesados en aguas residuales industriales [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8445es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/8445-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent68es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titlePotencial de biosorcion de materiales enteramente biológicos, y la aplicación de la biomasa saccharomyces cerevisae como una alternativa para remover metales pesados en aguas residuales industriales.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-08-12-
    dc.relation.referencesA. Abdolali, W. G. (2014). Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Elsevier-Bioresource Technology, 57-66.es_CO
    dc.relation.referencesA. Christoforidis, S. O. (2015). Study of Cu (II) removal by Cystoseira crinitophylla biomass in batch and continuous flow biosorption. Elsevier-Chemical Engineering Journal, 334-340.es_CO
    dc.relation.referencesA. Lerebours, V. T. (2016). Danio rerio ABC transporter genes abcb3 and abcb7 play a protecting role against metal contamination. Journal of Applied Toxicology, 1551-1557.es_CO
    dc.relation.referencesA. Özer, D. Ö. (2003). Comparative study of the biosorption of Pb (II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. Elsevier-Journal of Hazardous Materials, 219-229.es_CO
    dc.relation.referencesA.C.A. da Costa, L. d. (1996). Batch and continuous heavy metals biosorption by a brown seaweed from a zinc-producing plant. Minerals Engineering, 811-824.es_CO
    dc.relation.referencesA.H. Sulaymon, S. Y.-F. (2014). Competitive biosorption of lead mercury chromium and arsenic ions onto activated sludge in fixed bed adsorber. Journal of the Taiwan Institute of Chemical Engineers, 325-337.es_CO
    dc.relation.referencesA.V. Pethkar, K. P. (1998). Recovery of gold from solutions using Cladosporium cladosporioides biomass beads. Elsevier-Journal of Biotechnology, 121-136.es_CO
    dc.relation.referencesAA Bhojiya, H. J. (2016). Estudio de posibles actividades que promueven el crecimiento de las plantas y tolerancia a metales pesados de Pseudomonas aeruginosa HMR16 aislado de Zawar Udaipur, India. current trends in biotechnology and pharmacy, 161-168.es_CO
    dc.relation.referencesAdriano, D. (2001). Trace Elements in Terrestrial Environments. New York: Springer SBM, New York.es_CO
    dc.relation.referencesAG El Samrani, B. L. (2008). AG El Samrani , BS Lartiges , F. Villiéras. Coagulación química del desbordamiento de alcantarillado combinado: eliminación de metales pesados y optimización del tratamiento, 951-960.es_CO
    dc.relation.referencesAhemad, M. (2014). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian Journal of Chemistry.es_CO
    dc.relation.referencesMohammad Rasoul Hadiani , K.-D. N. (2018). Assessment of Mercury biosorption by Saccharomyces cerevisiae: Response surface methodology for optimization of low Hg (II) concentrations. Elsevier-Journal of Environmental Chemical Engineering, 4980-4987es_CO
    dc.relation.referencesMORALES, C. J. (2007). ESTUDIO PARA LA REMOCIÓN DE METALES PESADOS EN LOS LIXIVIADOS. Manizales: Universidad Nacional de Colombia.es_CO
    dc.relation.referencesN. Das, D. C. (2007). Effect of pretreatment on Cd2+ biosorption by mycelial biomass of Pleurotus florida. African Journal of Biotechnology, 15-22.es_CO
    dc.relation.referencesN.Akhtara, J. M. (2004). Removal and recovery of nickel(II) from aqueous solution by loofa sponge –immobilized biomass of Chlorella sorokiniana: characterization studies. Elsevier-Journal of Hazardous Materials, 85-94.es_CO
    dc.relation.referencesNasserSahmoune, M. (2018). Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Elsevier-Microchemical Journal, 87-95.es_CO
    dc.relation.referencesNoura El-Ahmady El-Naggar, R. A.-H. (2018). Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Scientific Reportsvolume 8.es_CO
    dc.relation.referencesOnwubuya K., C. A. (2009). Developing decision support tools for the selection of gentle remediation approaches. ElsevierScience of the Total Environment, 6132-6142.es_CO
    dc.relation.referencesP. Giovanella, L. C. (2016). Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A. Elsevier-New Biotechnology, 216-223.es_CO
    dc.relation.referencesP. Mane, A. B. (2011). Bioadsorption of selenium by pretreated algal biomass. Adv. Appl. Sci. Res., 202-207.es_CO
    dc.relation.referencesP. Miretzky, A. C. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Elsevier-Journal of Hazardous Materials, 1-19.es_CO
    dc.relation.referencesAL Ahmad, B. O. (2010). Un estudio sobre recuperación de ácido y recuperación de cobre utilizando una membrana de nanofiltración de baja presión. Elsevier-Chemical Engineering Journal, 257-263.es_CO
    dc.relation.referencesP. Patel, S. S. (2018). Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environ Sustainability, 1-7.es_CO
    dc.relation.referencesPaola S. Boeris, A. S. (2018). Biosorción de aluminio utilizando biomasa no viable de Pseudomonas putida inmovilizada en agaragar: Rendimiento en lote y en columna de lecho fijo. Elsevier-Tecnologia ambiental e inovacion , 105-115.es_CO
    dc.relation.referencesPaulina A.Kobielska, A. J. (2018). Metal–organic frameworks for heavy metal removal from water-Estructuras metal-orgánicas para la eliminación de metales pesados del agua. Elsevier-Coordination Chemistry Reviews volume 358, 92-107.es_CO
    dc.relation.referencesR. Kumar, N. B. (2008). Biosorption of chromium(VI) from aqueous solution and electroplating wastewater using fungal biomass. Elsevier-Chemical Engineering Journal, 202-208.es_CO
    dc.relation.referencesR. Nadeem, M. H. (2008). Physical and chemical modification of distillery sludge for Pb(II) biosorption. Elsevier-Journal of Hazardous Materials, 335-342.es_CO
    dc.relation.referencesR. Rehman, J. A. (2013). Sorptive removal of lead (II) from water using chemically modified mulch of Madhuca longifolia and Polyalthia longifolia as novel biosorbents. Desalination-Water Treatment, 2624-2634.es_CO
    dc.relation.referencesR. Vimala, D. C. (2011). Packed bed column studies on Cd(II) removal from industrial wastewater by. Elsevier-Desalination, 291- 296.es_CO
    dc.relation.referencesR.Siegel, F. (1990). Exploration for Mississippi-Valley type stratabound Zn ores with stream suspensates and stream sediments, Virginia, U.S.A. journal of geochemical exploration-volume 38, 265-283.es_CO
    dc.relation.referencesRaffino, M. E. (15 de enero de 2019. ). AGUA. Obtenido de https://concepto.de/agua/es_CO
    dc.relation.referencesRichard Enrique Marshall Sánchez, J. F. (Diciembre de 2016). Evaluación del poder biosorbente de las cáscaras de cítricos (Limón y Toronja) para eliminación de metales pesados; Plomo (Pb) y Mercurio (Hg) en aguas residuales sintéticas . Guayaquil, Ecuador.es_CO
    dc.relation.referencesAlvarez A., S. J. (2017). Actinobacteria: investigación actual y perspectivas para la biorremediación de pesticidas y metales pesados. Elsevier-Chemosphere, 41-62.es_CO
    dc.relation.referencesRM Hlihor, H. F. (2017). Potencial de biosorción de biomasa viva y viva de Arthrobacter viscosus en la eliminación de Cr (VI): estudios de lotes y columnas. Process Safety and Environmental Protection, 44-56.es_CO
    dc.relation.referencesS. Amirnia, M. R. (2015). Eliminación de metales pesados de soluciones acuosas utilizando Saccharomyces cerevisiae en un nuevo sistema de biorreactor-biosorción continuo. Elsevier-Chemical Engineering Journal, 863-872.es_CO
    dc.relation.referencesS. Chakravarty, A. M. (2010). Removal of Pb(II) ions from aqueous solution by adsorption using bael leaves (Aegle marmelos). Elsevier-Journal of Hazardous Materials, 502-509.es_CO
    dc.relation.referencesS. Iram, S. A. (2015). Biosorción de cobre y plomo por aislados de hongos resistentes a metales pesados. Elsevier-Journal of Hazardous Materials, 1-5.es_CO
    dc.relation.referencesS.-H. Liu, G.-M. Z.-Y.-H.-F. (2017). Mecanismos de biorremediación de la contaminación combinada de HAP y metales pesados por bacterias y hongos. Bioresource Technology, 25-33.es_CO
    dc.relation.referencesS.W. Won, I. K.-S. (2014). The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Elsevier-Bioresource Technology, 93-97.es_CO
    dc.relation.referencesSiegel, F. (2002). Environmental Geochemistry of Potentially Toxic Metals. Springer, Berlin, Heidelberg, 15-44.es_CO
    dc.relation.referencesT. Bahadir, G. B. (2007). The investigation of the lead removal by biosorption: an application at storage battery industry wastewaters. Elsevier-Enzyme and Microbial Technology, 98-102.es_CO
    dc.relation.referencesT. Pradeep, A. (2009). Noble metal nanoparticles for water purification. Elsevier-Thin Solid Films, 6441–6478.es_CO
    dc.relation.referencesT.A. Davis, B. V. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Pergamon-Water Research, 4311-4330.es_CO
    dc.relation.referencesAM Shahalam, A. A.-H.-Z. (2002). Pretratamiento de agua de alimentación en sistemas de RO en el Medio Oriente. ElsevierDesalination, 235-245.es_CO
    dc.relation.referencesT.G. Chuah, A. J. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 305-316.es_CO
    dc.relation.referencesTalos K., P. C. (2009). Cadmium biosorption on native saccharomyces cerevisiae cells in aqueous suspension. Acta University. Sapientiae Agric. Environment., 20-30.es_CO
    dc.relation.referencesTigini V., P. V. (2010). Fungal biosorption, an innovative treatment for the decolourisation and detoxification of textile effluents. Water (Switzerland), 550-565es_CO
    dc.relation.referencesV. Baker, D. G. (2012). Aspectos biotecnológicos de un polisacárido de Saccharomyces cerevisiae (mannan) en medicina veterinaria . Revista Eletrônica da Faculdade Evangélica do Paraná, 51-62.es_CO
    dc.relation.referencesWang, J. (2002). Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Scopus-Process Biochemical, 847-850.es_CO
    dc.relation.referencesY. Ku, I. J. (2001). Reducción fotocatalítica de Cr (VI) en soluciones acuosas por irradiación UV con la presencia de dióxido de titanio. Pergamon-Water Research, 131-142.es_CO
    dc.relation.referencesY. Zhang, W. L. (2010). Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass. Journal of Hazardous Materials, 1085-1093.es_CO
    dc.relation.referencesY.-C. Lee, S.-P. C. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Elsevier-Bioresource Technology, 5297-5304.es_CO
    dc.relation.referencesY.M. Zhu, D. Z. (2004). Biosorption of Hg2 + by Saccharomyces cerevisiae. Scopus-IEEE Electron Device Letters, 89-91.es_CO
    dc.relation.referencesZ.-B. Yue, Q. L.-C.-H. (2015). Análisis de componentes y capacidad de adsorción de metales pesados de sustancias poliméricas extracelulares (EPS) de bacterias reductoras de sulfato. Elsevier-Bioresource Technology, 399-402.es_CO
    dc.relation.referencesB Volesky, G. N. (2014). Biosorption Process Fundamentals and a Pilot Design. Elsevier Inc. All rights reserved., 1-16.es_CO
    dc.relation.referencesB. Alyüz, S. V. (2009). Estudios de cinética y equilibrio para la eliminación de níquel y zinc de soluciones acuosas mediante resinas de intercambio iónico. Elsevier-Journal of Hazardous Materials, 482-488.es_CO
    dc.relation.referencesB. Kavita, H. K. (2012). Potencial de biosorción de la biomasa de Trichoderma gamsii para la eliminación de Cr (VI) de electrochapado de efluentes industriales. International Journal of Chemical Engineering, Article ID 305462, 7 pages.es_CO
    dc.relation.referencesBarakat, M. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 361-377.es_CO
    dc.relation.referencesBeltrán-Pineda, M. E. (2016). BIORREMEDIACIÓN DE METALES PESADOS CADMIO (Cd), CROMO (Cr) Y MERCURIO (Hg) MECANISMOS BIOQUÍMICOS E INGENIERÍA GENETICA. FACULTAD DE CIENCIAS BASICAS, 172-196.es_CO
    dc.relation.referencesBolan N1, K. A. (2014). Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize. Elsevier-Diario de materiales peligrosos, 141-166.es_CO
    dc.relation.referencesBradl, H. (2005). Heavy Metals in the Environment: Origin, Interaction and Remediation. Londres-Inglaterra: Elsevier Academic Press.es_CO
    dc.relation.referencesC. Barquilha, E. C. (2017). Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Elsevier-Journal of Cleaner Production, 58-64.es_CO
    dc.relation.referencesC. Blindauer, M. H. (2008). Isostructural replacement of zinc by cadmium in bacterial metallothionein. 10th International Symposium on Metal Ions in Biology and Medicine, 167-173.es_CO
    dc.relation.referencesC. Reyes, I. V. (2016). CONTAMINACIÓN POR METALES PESADOS: IMPLICACIONES EN. Revista Ingeniería, Investigación y Desarrollo, Vol. 16 Nº 2, Julio-Diciembre 2016,, pp. 66-77.es_CO
    dc.relation.referencesC. Tejada-Tovar, A. V.-O.-J. (2015). “Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. Tecno-Logicas , 109-123.es_CO
    dc.relation.referencesC.A. Blindauer, M. H. (2008). Isostructural replacement of zinc by cadmium in bacterial metallothionein. Chemistry.es_CO
    dc.relation.referencesC.M. Zammit, F. W. (2016). Proteomic responses to gold (III)-toxicity in the bacterium Cupriavidus metallidurans CH34. Metallomics, 1204-1216.es_CO
    dc.relation.referencesC.R.T. Tarley, M. A. (2004). Biosorption of heavy metals using rice milling by-products. Characterization and application for removal of metals from aqueous effluents. Scopus-Chemosphere, 987-995.es_CO
    dc.relation.referencesCaroline Bertagnolli, A. J.-C. (2014). Biosorption of chromium by alginate extraction products from Sargassum filipendula: Investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis. Elsevier-Bioresource Technology, 264-269.es_CO
    dc.relation.referencesCartagena, R. C. (1 de octubre de 2008). Metales Pesados en Zonas Mineras de la Cuenca del Río Grande de San Miguel. Obtenido de ADESSantamarta.sv: http://www.adessantamarta.sv/docs/investigaciones/articulo%20metales%20pesados.pdfes_CO
    dc.relation.referencesD. Li, X. X. (2017). Caracterización de la biosorción de Pb 2+ por la cepa psicrotrófica Pseudomonas sp. I3 aislado del suelo permafrost del humedal Mohe en el noreste de China. Elsevier-Journal of Environmental Management, 8-15.es_CO
    dc.relation.referencesD.F. Soto, A. R.-V. (2018). Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: a proteomic approach. Journal proteomics.es_CO
    dc.relation.referencesDas N., V. R. (2008). Biosorption of heavy metals—an overview. Indian Journal of Biotechnology vol 7, 159-169.es_CO
    dc.relation.referencesDescripción de los equilibrios de biosorción de dos metales mediante modelos de tipo Langmuir. (1995). bIOTECHNOLOGY BIOENGINEERING, 451-460.es_CO
    dc.relation.referencesDesta, M. (2013). Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) Agricultural waste. Hindawi-Journal of Thermodynamics.es_CO
    dc.relation.referencesDF Soto, A. R.-V. (2018). Efecto global de la falta de polifosfato inorgánico en el archaeon extremófilo Sulfolobus solfataricus: un enfoque proteómico. Journal of Proteomics, 143-152.es_CO
    dc.relation.referencesDixit R., M. D. (2015). Biorremediación de metales pesados del suelo y medio ambiente acuático: una visión general de los principios y criterios de los procesos fundamentales. Sostenibilidad, 2189 - 2212.es_CO
    dc.relation.referencesE Garcia, M. y. (1985). Aguas Residuales, Composicion. Aspectos sanitarios del agua.es_CO
    dc.relation.referencesE. Bazrafshan, A. Z. (2016). Biosorcion de cadmio a partir de soluciones acuosas por el hongo Trichoderma: estudio cinético, termodinámico y de equilibrio. Desalinización Tratamiento de agua., 14.598 - 14608.es_CO
    dc.relation.referencesE. Cséfalvay, V. P. (2009). Recuperación de cobre de aguas de proceso por nanofiltración y ósmosis inversa. ElsevierDesalination, 132-142.es_CO
    dc.relation.referencesE. Khadivinia, H. S. (2014). biosorción de cadmio por una bacteria degradadora del glifosato, un biosorbente nuevo aislado de productos agrícolas contaminados con pesticidas suelos. Elsevier-Journal of Industrial and Engineering Chemistry, 4304 - 4310.es_CO
    dc.relation.referencesE. Romera, F. G. (2006). Biosorption with algae: a statistical review. Biotechnology, 223-235.es_CO
    dc.relation.referencesEV Soares, G. C. (2002). Use of Saccharomyces cerevisiae for Cu2+ removal from solution: the advantages of using a flocculent strain. Elsevier-Biotechnology, 663-666.es_CO
    dc.relation.referencesF. Li, W. W. (2018). Cambios de pH auto mediados en el medio de cultivo que afectan la biosorción y biomineralización de Cd 2+ por Bacillus cereus Cd01. Elsevier-Journal of Hazardous Materials, 178-186.es_CO
    dc.relation.referencesF. Masood, A. M. (2011). Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1667-1674.es_CO
    dc.relation.referencesF. Remonsellez, A. O. (2006). Tolerancia al cobre del archaeon termoacidofílico Sulfolobus metallicus: posible papel del metabolismo del polifosfato. Microbiology, 59-66.es_CO
    dc.relation.referencesFang L., W. X. (2011). Role of extracellular polymeric substances in Cu(II) adsorption on bacillus subtilis and pseudomonas putida. Elsevier-Bioresource Technology, 1137-1141.es_CO
    dc.relation.referencesFang L.C., H. Q. (2010). Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS) minerals and their composites. Elsevier-Bioresource Technology, 5774-5779es_CO
    dc.relation.referencesFernando Londoño, T. L. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnología en el Sector Agropecuario y Agroindustrial, 145-153.es_CO
    dc.relation.referencesG. Maynaud, B. B.-C.-M. (2014). CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a PIB-2-type ATPase involved in cadmium and zinc resistance. Institut Pasteur-Research in Microbiology, 175-189.es_CO
    dc.relation.referencesG. Yan, T. V. (2000). Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA, 119-124.es_CO
    dc.relation.referencesG.M. Teitzel, M. P. (2003). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2313-2320.es_CO
    dc.relation.referencesGomez-Jimenez T.R., M. E. (2011). Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes. Environment science, 54-59.es_CO
    dc.relation.referencesGreenpeace. (2012). nuevas evidencias de contaminacion por curtiembres en la cuenca Matanza-Riachuelo. En U. Greenpeace Research Laboratories. Universidad de Exeter, Cueros Toxicos. Buenos Aires.es_CO
    dc.relation.referencesGuine V., S. L. (2006). Absorción de zinc a tres bacterias gramnegativas: titulación combinada, modelos y estudio EXAFS. Elsevier-Bioresource Technology, 1806-1813.es_CO
    dc.relation.referencesH. Ali, E. K. (2013). Phytoremediation of heavy metals-concepts and applications. Elsevier-Chemosphere, 869-881.es_CO
    dc.relation.referencesH. Demey, T. V. (2018). A novel algal-based sorbent for heavy metal removal. Chemical Engineering Journal, 582-595.es_CO
    dc.relation.referencesHarmin Sulistiyaning Titah , Fitri Purwanti Bieby, Voijant Tangahu , Budi Kurniawan , S., Fauzul Imron , M., Jeque Abdullah , S. R., & 'Izzati Ismail , N. (2019). Cinética de la eliminación de aluminio por Brochothrix thermosphacta y Vibrio alginolyticus localmente aislados. Elsevier-revista de gestion ambiental, 194-200.es_CO
    dc.relation.referencesJ. Febrianto, A. K. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Elsevier-Journal of Hazardous Materials, 616-645.es_CO
    dc.relation.referencesJ. Mao, S. W.-S. (2013). Desarrollo de biomasa bacteriana modificada con poli (ácido acrílico) como un biosorbente de alto rendimiento para la eliminación de Cd (II) de una solución acuosa. Industrial and Engineering Chemistry Research, 6446-6452.es_CO
    dc.relation.referencesJ. ock Joo, J.-H. C.-K.-K. (2015). Biorremediación efectiva de cadmio (II), níquel (II) y cromo (VI) en un entorno marino mediante el uso de Desulfovibrio desulfuricans. Biotechnology Bioprocess engineering, 937-941.es_CO
    dc.relation.referencesJ. Taniguchi, H. H. (2000). Biosorción de zinc por una bacteria resistente al zinc, Brevibacterium sp. cepa HZM-1. Applied Microbiology and Biotechnology, 581-588.es_CO
    dc.relation.referencesJ.-P. Magnin, N. G. (2014). Biosorción de zinc por la bacteria púrpura sin azufre Rhodobacter capsulatus. Canadian Journal of Microbiology, 829-837.es_CO
    dc.relation.referencesJ.P. Navarro-Aviñó, I. A.-M. (2007). Aspectos bioquímicos y genéticos de la tolerancia y acumulacion de metales pesados en plantas. Ecosistemas, Revista cientifica y tecnica de medio ambiente , 10-25.es_CO
    dc.relation.referencesJ.R. Evans, W. D. (2002). Kinetics of cadmium uptake by chitosan-based crab shells. Pergamon-Water Research, 3219-3226.es_CO
    dc.relation.referencesJéssica M. do Nascimento , J. D. (2019). Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Elsevier-reportes de biotecnologia.es_CO
    dc.relation.referencesK. Parvathi, R. N. (2007). Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Elsevier-electronic journal biotechnology, 92-105.es_CO
    dc.relation.referencesK. Parvathi, R. N. (2008). Functional groups on waste beer yeast involved in chromium biosorption from electroplating effluent. Elsevier-World J. Microbiology Technology, 2865-2870.es_CO
    dc.relation.referencesK. Tsekova, M. I. (2007). Biosorción de mezclas binarias de cobre y cobalto por Penicillium brevicompactum. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 261-264.es_CO
    dc.relation.referencesK. Vijayaraghavan, A. M. (2009). Un examen de la captación de lantano de una solución acuosa por partículas de cáscara de cangrejo. Elsevier-Chemical Engineering Journal, 116-121.es_CO
    dc.relation.referencesK. Vijayaraghavan, K. P. (2005). Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents. Elsevier-Journal of Hazardous Materials, 251-254.es_CO
    dc.relation.referencesK. Vijayaraghavan, K. P. (2006). Treatment of nickel containing electroplating effluents with Sargassum wightii biomass. Elsevier-Proces Biochemistry, 853-859.es_CO
    dc.relation.referencesK. Vijayaraghavan, M. S. (2010). Interaction of rare earth elements with a brown marine alga in multi-component solutions. Elsevier-Journal of Environmental Management, 54-59.es_CO
    dc.relation.referencesK. Vijayaraghavan, U. J. (2013). Hybrid Sargassum-sand sorbent: a novel adsorbent in packed column to treat metal-bearing wastewaters from inductively coupled plasma-optical emission spectrometry. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1685-1693es_CO
    dc.relation.referencesK. Vijayaraghavan, Y.-S. Y. (2008). Biosorbentes bacterianos y biosorción. Elsevier-Avances en biotecnología, 266-291.es_CO
    dc.relation.referencesK. Yin, B. L. (2015). Ultrasensitive colorimetric detection of Cu2+ ion based on catalytic oxidation of l-cysteine. ElsevierBiosensors and Bioelectronics, 81-87.es_CO
    dc.relation.referencesK. Yin, M. L. (2016). Biorremediación y biodetección simultáneas del ión mercurio a través de la visualización de la superficie de la carboxilesterasa E2 de Pseudomonas aeruginosa PA1. Elsevier-Water Research, 383-390.es_CO
    dc.relation.referencesK.H. Chu, M. H. (2007). Copper biosorption on immobilized seaweed biomass: column breakthrough characteristics. Journal of Environmental Sciences, 928-932.es_CO
    dc.relation.referencesKarna R.R., L. T. (2017). State of the science review: Potential for beneficial use of waste by-products for in situ remediation of metal-contaminated soil and sediment. Critical Reviews in Environmental Science and Technology, 65-129.es_CO
    dc.relation.referencesKatarzynaChojnacka. (2010). Biosorption and bioaccumulation – the prospects for practical applications. Environment international, 299-307.es_CO
    dc.relation.referencesKeyhani, S. (1996). Intracellular polyphosphate content and cadmium tolerance in Anecystis nidulans R2. Microbios, 105-114.es_CO
    dc.relation.referencesKH Chong, B. V. (1995). Descripción de los equilibrios de biosorción de dos metales mediante modelos de tipo Langmuir. SCOPUS BIOTECHNOLOGY, 451-460.es_CO
    dc.relation.referencesKun Yin, Q. W. (2019). Microorganism remediation strategies towards heavy metals. Elsevier-Chemical Engineering Journal, 1553-1563.es_CO
    dc.relation.referencesL. Deng, Y. S. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. ElsevierJournal of Hazardous Materials, 220-225.es_CO
    dc.relation.referencesL. Wei, Y. L. (2017). Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: effect of EPS fractional polarity on binding mechanism. Elsevier-Journal of Hazardous Materials, 473-483.es_CO
    dc.relation.referencesLissette Vizcaíno M., N. F. (2014). BIOSORPTION OF Cd, Pb AND Zn BY PRETREATED BIOMASS RED ALGAE, ORANGE PEEL AND TUNA. Ciencia e Ingeniería Neogranadina, 43-60.es_CO
    dc.relation.referencesM. Al-Saraj, M. A.-L.-N. (1999). Bioaccumulation of some hazardous metals by sol–gel entrapped microorganisms. ElsevierJournal of Non-Crystalline Solids, 137-140.es_CO
    dc.relation.referencesM. Benavente, L. M. (2011). Sorption of heavy metals from gold mining wastewater using chitosan. Elsevier-Journal of the Taiwan Institute of Chemical Engineers, 976-988.es_CO
    dc.relation.referencesM. Loaëc, R. O. (1997). Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. water research, 1171-1179.es_CO
    dc.relation.referencesM. Lu, Z. L. (2016). Zinc resistance mechanisms of P1B-type ATPases in Sinorhizobium meliloti CCNWSX0020. Science Reports, 29355.es_CO
    dc.relation.referencesM. Noroozi, M. A. (2017). Aislamiento y caracterización de la reductasa mercúrica por una bacteria halófila recién aislada, Bacillus firmus MN8. Global Journal of Environmental Science and Management, 427-436.es_CO
    dc.relation.referencesM. Oves, M. K. (2017). Ensifer adhaerens para la bioacumulación de metales pesados, biosorción y solubilización de fosfato en condiciones de estrés metálico. journal of the taiwan institute of chemical engineers, 540-552.es_CO
    dc.relation.referencesM. Sadrzadeha, T. M. (2009). modelado red de la eliminación de Pb 2+ de las aguas residuales mediante electrodiálisis. chemistry engineerin process, 1371.-1381.es_CO
    dc.relation.referencesM.E.R. Carmona, M. d.-L. (2012). Packed bed redistribution system for Cr(III) and Cr(VI) by Saccharomyces cerevisiae. Taiwa institute chemistry, 428-432.es_CO
    dc.relation.referencesM.-H. Song, S. W.-S. (2013). Decarboxylated polyethylenimine-modified bacterial biosorbent for Ru biosorption from Rubearing acetic acid wastewater. Elsevier-Chemical Engineering Journal, 303-307.es_CO
    dc.relation.referencesM.L. Paul, J. S. (2012). Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Elsevier-Chemical Engineering Journal, 104-113.es_CO
    dc.relation.referencesM.M. Khalil, R. A.-S. (2016). Biosorption of trivalent chromium using Ca-alginate immobilized and alkali-treated biomass. Journal of Chemical Science and Technology, 1-6.es_CO
    dc.relation.referencesMa Y., O. R. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. frontiers in plant science.es_CO
    dc.relation.referencesMM Naik, S. D. (2013). Bacterias resistentes al plomo: mecanismos de resistencia al plomo, sus aplicaciones en biorremediación y biomonitoreo de plomo. Ecotoxicology and Environmental Safety, 1-7.es_CO
    dc.relation.referencesMohammad Rasoul Hadiani , K. K. (2018). Biosorption of low concentration levels of Lead (II) and Cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Elsevier-Biocatalysis and Agricultural Biotechnology, 25-34.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Ambiental

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Hernández_2019_TG.pdfHernández_2019_TG1,67 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.