• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Agrarias
  • Medicina Veterinaria
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/782
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorSalazar Perez, Carlos Andres.-
    dc.contributor.authorBuitrago Lloreda, Oscar Dario.-
    dc.date.accessioned2022-05-16T15:29:06Z-
    dc.date.available2020-09-12-
    dc.date.available2022-05-16T15:29:06Z-
    dc.date.issued2020-
    dc.identifier.citationSalazar Pérez, C. A.; Buitrago Lloreda, O. D. (2020). Efecto de la bursectomía sobre la repuesta inmune (humoral) frente a la enfermedad de Newcastle [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/782es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/782-
    dc.descriptionEn la producción de pollos de engorde, la salud de la parvada tiene un aspecto primordial, en la búsqueda de obtener carne en el menor tiempo posible; la bolsa de Fabricio (BF) es el órgano linfoide encargado de la diferenciación de los linfocitos B, la injuria sobre este órgano representa el desempeño óptimo o no del lote. Con el objeto de evaluar la respuesta inmune humoral frente a la vacuna de Newcastle (ND), se realizó bursectomía total de la bolsa de Fabricio (B) y se compararon los perfiles serológicos utilizando la técnica de inhibición de la hemaglutinación [HI] con pollos no bursectomizados. Así, pollos de la linea ROSS AP fueron distribuidos en 5 tratamientos: T0= pollos sin vacuna y BF; T1= pollos B al día 21 y vacunados el día 22; T2= pollos BF y vacunados el día 22; T3= pollos B al día 28 y vacunados el día 29; T4= pollos BF y vacunados el día 29. Los sueros fueron obtenidos por centrifugación en el laboratorio de Ciencias Biomedicas de la Universidad de Pamplona, y enviadas a un laboratorio comercial (SERVET S.A.S) para la prueba de HI (8 Unidades Hemoaglutinantes [AHU]). Al analizar los resultados obtenidos, los titulos de anticuerpos para la enfermedad de Newcastle, no existieron diferencias significativas entre los diferentes tratamientos, entre las aves bursectomizadas y los controles, tomando en cuenta que las aves Bursectomizadas a los días 21 y 28 (T1 y T3), generaron seroconversión por la prueba de HI en los 35, 42 y 49 días respectivamente. Se puede concluir, que extraer la bolsa de Fabricio a partir del día 21 no compromete la respuesta inmune humoral para la enfermedad de Newcastle. Este hallazgo se explica por la función de la bolsa de Fabricio como órgano de maduración de linfocitos B, los cuales ya maduros empiezan a migrar desde la bolsa de Fabricio a los órganos linfoides secundarios como el bazo y a todos los agregados linfoides distribuidos en el organismo.es_CO
    dc.description.abstractIn the production of broilers, the health of the flock has an essential aspect, in the search to obtain meat in the shortest possible time; bursa of Fabricius (BF) is the lymphoid organ responsible for the differentiation of B lymphocytes, the injury to this organ represents the optimal performance or not of the batch. In order to assess the humoral immune response against the Newcastle vaccine (ND), a total bursectomy of bursa of Fabricius (B) was performed and the serological profiles were compared using the hemagglutination [HI] inhibition technique with chickens. not bursectomized. Thus, chickens from the ROSS AP line were distributed in 5 treatments: T0 = chickens without vaccine and BF; T1 = chickens B on day 21 and vaccinated on day 22; T2 = chickens BF and vaccinated on day 22; T3 = chickens B on day 28 and vaccinated on day 29; T4 = chickens BF and vaccinated on day 29. The sera were obtained by centrifugation in the Biomedical Sciences laboratory of the University of Pamplona, and sent to a commercial laboratory (SERVET S.A.S) for the HI test (8 Hemagglutinating Units [AHU]). When analyzing the results obtained, the antibody titers for Newcastle disease, there were no significant differences between the different treatments, between the bursectomized birds and the controls, taking into account that the birds bursectomized on days 21 and 28 (T1 and T3), generated seroconversion by the HI test at 35, 42 and 49 days, respectively. We can conclude that removing bursa of Fabricius from day 21 does not compromise the humoral immune response for Newcastle disease. This finding is explained by the function of bursa of Fabricius as a maturing organ for B lymphocytes, which when mature begin to migrate from bursa of Fabricius to secondary lymphoid organs such as the spleen and to all lymphoid aggregates distributed in the body.es_CO
    dc.format.extent55es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Agrarias.es_CO
    dc.subjectBursectomía.es_CO
    dc.subjectAnticuerpos.es_CO
    dc.subjectSerología.es_CO
    dc.subjectPollos.es_CO
    dc.subjectVacuna.es_CO
    dc.titleEfecto de la bursectomía sobre la repuesta inmune (humoral) frente a la enfermedad de Newcastle.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-12-
    dc.relation.referencesAlexander, D. and Jones, R. (2003). Newcastle Disease, Other Avian Paramyxovirus, and Pneumovirus Infections. In: Y.M. Saif (Ed.) Diseases of Poultry, 11th Edition, p. 63-92. Iowa State Press.es_CO
    dc.relation.referencesAlexander, D. J., & Senne, D. A. (2008). Newcastle disease, other avian paramyxoviruses, and pneumovirus infections. Diseases of poultry, 11, 63-69.es_CO
    dc.relation.referencesAllan, W., Lancaster, J., and Toth, B. (1978), Newcastle disease vaccines—Their production and use. FAO Animal Production and Health Series No. 10. FAO, Rome, Italy.es_CO
    dc.relation.referencesBabaahmady, E.; Joa, R.; Noda, J. (2005) Enfermedad de Gumboro. Histopatología de la Bolsa de Fabricio en la enfermedad natural y experimental en pollos de engorde REDVET. Revista Electrónica de Veterinaria, vol. VI, núm. 4, pp. 1-9 Veterinaria Organización Málaga, España.es_CO
    dc.relation.referencesBalaguer, J. (2008) Inmunidad Pasiva. Recuperado de https://seleccionesavicolas.com/pdffiles/2008/8/4082-inmunidad-pasiva-i.pdfes_CO
    dc.relation.referencesBayliss, C., Peters, R., Cook, J., Reece, R., Howes, K., Binns, M., y Boursnell, M. (1991). A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus. Archives of Virology, 120(3), 193–205. https://doi.org/10.1007/BF01310475 Bennington, J. (1991). Diccionario enciclopédico del laboratorio clínico. Ed. Médica Panamericana, Argentina. Boot, H., ter Huurne, A., Hoekman, A., Pol, J., Gielkens, A., y Peeters, B. (2002). Exchange of the C-terminal part of VP3 from very virulent infectious bursal disease virus results in an attenuated virus with a unique antigenic structure. Journal of virology, 76(20), 10346– 10355.es_CO
    dc.relation.referencesBosha J, Nongo N. (2012). Common breaches in poultry vaccine handling and administration in Makurdi metropolis: A recurrent phenomenon in the tropics. Vom Journal of Veterinary Sciences. 2012a;9:11-16es_CO
    dc.relation.referencesBox, P., Furminger, I., Robertson, W., Warden, D. (1976). The effect of Marek’s Disease vaccination on immunity of day-old chicks against Newcastle Disease, using B1 and oil emulsion vaccine. Avian Pathology, v.5, p. 299-30 “Genotype effect on distribution pattern of maternally derived antibody against Newcastle disease in Nigerian local chickens”. Available from: https://www.researchgate.net/publication/270291405_Genotype_effect_on_distribution_pat tern_of_maternally_derived_antibody_against_Newcastle_disease_in_Nigerian_local_chic kens [accessed Jul 01 2019]. Burkhardt, E., Müller, H. (1987). Susceptibility of chicken blood lymphoblasts and monocytes to infectious bursal disease virus (IBDV). Arch. Virol. 94: 97-303. Camilotti, E., Moraes, L., Furian, T., Borges, K., Moraes, H., y Salle, C. (2016). Infectious Bursal Disease: Pathogenicity and Immunogenicity of Vaccines. Revista Brasileira de Ciência Avícola, 18(2), 303-308. https://doi.org/10.1590/1806-9061-2015-0148 Ciriaco, E., Píñera, P., Díaz-Esnal, B., y Laurà, R. (2003). Age-related changes in the avian primary lymphoid organs (thymus and bursa of Fabricius): Aging of Avian Primary Lymphoid Organs. Microscopy Research and Technique, 62(6), 482–487. https://doi.org/10.1002/jemt.10416 Cooper, M., Peterson, R., y Good, R. (1965). Delineation of the Thymic and Bursal Lymphoid Systems in the Chicken. Nature, 205(4967), 143–146. https://doi.org/10.1038/205143a0 Cruz, M. (1999). Bioseguridad en la industria avícola. Editorial Quebecor Impreandes. pp. 73-85.es_CO
    dc.relation.referencesCserep, T. (2002). Datafile: drinking water vaccination. Intervet Poultry Division. Recuperado de http://www.enfermedad-gumboro.com/control/vacunacion/programas-vacunacion.asp Cserep, T. (2008). Vaccines and vaccination. Poultry diseases, 66–81. Darteil, R., Bublot, M., Laplace, E., Bouquet, J., Audonnet, J., y Rivière, M. (1995). Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens. Virology, 211(2), 481–490. Davison, F. (2014). The importance of the avian immune system and its unique features. En Avian immunology (pp. 1–9). Elsevier.es_CO
    dc.relation.referencesDel Tordello, E., Rappuoli, R., and Delany, I. (2016), Reverse Vaccinology: Exploiting Genomes for Vaccine Design. Elsevier Inc. Dimitrov, K., Afonso, C., Yu, Q. and Miller, P. (2017). “Newcastle disease vaccines—A solved problem or a continuous challenge?,” Vet. Microbiol., vol. 206, pp. 126–136. Eterradossi, N., y Saif, Y. (2020). Infectious bursal disease. Diseases of poultry, 257–283.es_CO
    dc.relation.referencesFaragher, J., Allan, W., y Cullen, G. (1972). Immunosuppressive Effect of the Infectious Bursal Agent in the Chicken. Nature New Biology, 237(73), 118-119. https://doi.org/10.1038/newbio237118a0 Fellah, J., Jaffredo, T., Nagy, N., y Dunon, D. (2014). Development of the avian immune system. En Avian immunology (pp. 45–63). Elsevier. FENAVI, “ESTADÍSTICAS PÚBLICO EN GENERAL: Producción,” 2018. [Online]. Available: http://fenavi.org/estadisticas/informacion-estadistica-publica/#1538599468784- 33441e59-1807. [Accessed: 08-Jun-2019].es_CO
    dc.relation.referencesFrancois, A., Chevalier, C., Delmas, B., Eterradossi, N., Toquin, D., Rivallan, G., y Langlois, P. (2004). Avian adenovirus CELO recombinants expressing VP2 of infectious bursal disease virus induce protection against bursal disease in chickens. Vaccine, 22(17–18), 2351–2360.es_CO
    dc.relation.referencesGagic, M., Hill, C., y Sharma, J. (1999). In ovo Vaccination of Specific-Pathogen-Free Chickens with Vaccines Containing Multiple Agents. Avian Diseases, 43(2), 293. https://doi.org/10.2307/1592620 Ganar, K., Das, M., Sinha, S., and Kumar, S. (2014), “Newcastle disease virus: Current status and our understanding,” Virus Res., vol. 184, pp. 71–81. Ganguly S, Paul I, Mukhopadhayay S. (2010) Different types of vaccines and vaccination – The most accepted trend to control and eradicate infections. Indian Pet Journal. Pp 34-37es_CO
    dc.relation.referencesGiambrone, J., Clay, R. (1986). Evaluation of the immunogenicity, stability, pathogenicity and immunodepressive potential of four commercial live infectious bursal disease vaccines. Poultry Sci. Glick, B., Chang, T., y Jaap, R. (1956). The bursa of Fabricius and antibody production. Poultry Science, 35(1), 224–225. Glick, B., y Oláh, I. (1984). Methods of bursectomy. En Methods in Enzymology (Vol. 108, pp. 3–10). Elsevier. https://doi.org/10.1016/S0076-6879(84)08068-Xes_CO
    dc.relation.referencesGoutebroze, S., Curet, M., Jay, M., Roux, C., y Le, F. (2003). Efficacy of a recombinant vaccine HVT-VP2 against Gumboro disease in the presence of maternal antibodies. British poultry science, 44(5), 824–825. Guerrero, F. (2015). Funcionamiento del sistema inmune del ave. En LII Simposio Científico de Avicultura. Málaga. Asociación Española de Ciencia Avícola. P. pp. 55-58. Recuperado de https://www.wpsaaeca.es/aeca_imgs_docs/16751_sistema%20inmune%20del%20ave_farinas.pdfes_CO
    dc.relation.referencesHamal, K., Burgess, S., Pevzner I., Erf, G. (2006). Maternal antibody transfer from dams to their egg yolks, egg whites, and chicks in meat lines of chickens. Poult Sci. Aug;85(8):1364- 72. Houssaint, E., Belo, M., y Le Douarin, N. (1976). Investigations on cell lineage and tissue interactions in the developing bursa of Fabricius through interspecific chimeras. Developmental biology, 53(2), 250–264. Huang, Z., Elankumaran, S., Yunus, A., y Samal, S. (2004). A Recombinant Newcastle Disease Virus (NDV) Expressing VP2 Protein of Infectious Bursal Disease Virus (IBDV) Protects against NDV and IBDV. Journal of Virology, 78(18), 10054–10063. https://doi.org/10.1128/JVI.78.18.10054-10063.2004 Lasher, H., Shane, S. (1994) Infectious bursal disease. World’s Poult. Sci. J. 50:133-166. 65, 1.287-1.290.es_CO
    dc.relation.referencesLupetti, M., Dolfi, A., Giannessi, F., Bianchi, F., y Michelucci, S. (1990). Reappraisal of histogenesis in the bursal lymphoid follicle of the chicken. American Journal of Anatomy, 187(3), 287–302. https://doi.org/10.1002/aja.1001870308 Marino, O., y Hanson, R. (1987). Cellular and Humoral Response of in Ovo- Bursectomized Chickens to Experimental Challenge with Velogenic Newcastle Disease Virus. Avian Diseases, 31(2), 293. https://doi.org/10.2307/1590875 Miller, P., King, D., Afonso, C., and Suarez, D. (2007). “Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge,” Vaccine, vol. 25, no. 41, pp. 7238–7246. Moore, M. (1967). EXPERIMENTAL STUDIES ON THE DEVELOPMENT OF THE THYMUS. Journal of Experimental Medicine, 126(4), 715–726. https://doi.org/10.1084/jem.126.4.715es_CO
    dc.relation.referencesMoore, M., y Owen, J. (1965). Chromosome Marker Studies on the Development of the Haemopoietic System in the Chick Embryo. Nature, 208(5014), 956–956. https://doi.org/10.1038/208956a0 Moreno, O. (2000). Técnicas para realizar pruebas de laboratorio, HI y ELISA. ICA, regional Bucaramanga. p.30. Moticka, E. (2016). The Bursa of Fabricius in Lymphocyte Maturation. En A Historical Perspective on Evidence-Based Immunology (pp. 75-82). https://doi.org/10.1016/B978-0- 12-398381-7.00010-1 Müller, H., Mundt, E., Eterradossi, N., and Islam, M. (2012). Current status of vaccines against infectious bursal disease. Avian Pathology, 41(2), 133–139. https://doi.org/10.1080/03079457.2012.661403es_CO
    dc.relation.referencesMundt, E., Beyer, J., y Müller, H. (1995). Identification of a novel viral protein in infectious bursal disease virus-infected cells. Journal of General Virology, 76(2), 437–443. https://doi.org/10.1099/0022-1317-76-2-437 Nagy, N., y Olah, I. (2010). Experimental evidence for the ectodermal origin of the epithelial anlage of the chicken bursa of Fabricius. Development, 137(18), 3019–3023. https://doi.org/10.1242/dev.055194 Oláh, I., Nagy, N., & Vervelde, L. (2014). Structure of the avian lymphoid system. En Avian immunology (pp. 11–44). Elsevier. Palya, V., Kiss, I., Tatar-Kis, T., Mato, T., Felföldi, B., y Gardin, Y. (2012). Advancement in vaccination against Newcastle disease: Recombinant HVT NDV provides high clinical protection and reduces challenge virus shedding with the absence of vaccine reactions. Avian diseases, 56(2), 282–287.es_CO
    dc.relation.referencesRautenschlein, S., y Haase, C. (2005). Differences in the immunopathogenesis of infectious bursal disease virus (IBDV) following in ovo and post-hatch vaccination of chickens. Veterinary Immunology and Immunopathology, 106(1–2), 139–150. https://doi.org/10.1016/j.vetimm.2005.02.011es_CO
    dc.relation.referencesSwayne, D. (Ed.). (2020). Diseases of poultry (Fourteenth edition). Wiley-Blackwell. Tsukamoto, K., Kojima, C., Komori, Y., Tanimura, N., Mase, M., y Yamaguchi, S. (1999). Protection of chickens against very virulent infectious bursal disease virus (IBDV) and Marek’s disease virus (MDV) with a recombinant MDV expressing IBDV VP2. Virology, 257(2), 352–362. Villegas Narvaez, P., Brash, M., y American Association of Avian Pathologists (Eds.). (2013). Manual de enfermedades de las aves (Séptima edición). Jacksonville, Florida: AAAP, Inc.es_CO
    dc.relation.referencesWhitfill, C., Haddad, E., Ricks, C., Skeeles, J., Newberry, L., Beasley, J., Andrews, P., Thoma, J., y Wakenell, P. (1995). Determination of Optimum Formulation of a Novel Infectious Bursal Disease Virus (IBDV) Vaccine Constructed by Mixing Bursal Disease Antibody with IBDV. Avian Diseases, 39(4), 687. https://doi.org/10.2307/1592404es_CO
    dc.relation.referencesWood, G. Muskett, J., Thornton, D. (1981). The interaction of live vaccine and maternal antibody in protection against infectious bursal disease. Avian Pathol. 10 :365–373. https://doi.org/10.1080/03079458108418485es_CO
    dc.relation.referencesWyeth, P., Chettle, N., y Mohepat, A. (1992). Use of an inactivated infectious bursal disease oil emulsion vaccine in commercial layer chicks. Veterinary Record, 130(2), 30–32. https://doi.org/10.1136/vr.130.2.30es_CO
    dc.relation.referencesYeh, H., Rautenschlein, S., and Sharma, J. (2002). Protective immunity against infectious bursal disease virus in chickens in the absence of virus-specific antibodies. Vet. Immunol. Immunopathol. 89:159-167.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Medicina Veterinaria

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Salazar_Buitrago_2020_TG.pdfSalazar_Buitrago_2020_TG1,2 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.