• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Biología Molecular y Biotecnología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/680
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorArevalo Gonzalez, Martha Esperanza.-
    dc.date.accessioned2022-05-11T23:36:23Z-
    dc.date.available2016-03-26-
    dc.date.available2022-05-11T23:36:23Z-
    dc.date.issued2016-
    dc.identifier.citationArevalo Gonzalez, M. E. (2015). Inmunidad en plantas. Proteínas de resistencia, efectores y rutas de señalización [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/680es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/680-
    dc.descriptionLa autora no proporciona la información sobre este ítem.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent73es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicases_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleInmunidad en planta. Proteínas de resistencia, efectores y rutas de señalización.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2015-12-26-
    dc.relation.references1. Buscaill P, Rivas S. Transcriptional control of plant defense responses. Curr Opin Plant Biol 2014; 20(1):35-46.es_CO
    dc.relation.references2. Tsuda K, Somssch I. Transcriptional networks in Plant Inmunity. New Phytologist 2015; 206(3):932-947.es_CO
    dc.relation.references3. Li F, Cheng C, Cui F, de Oliveira M, Yu X, Meng X, et al. Modulation ot RNA Polymerase II Phosphorylation Dowstream of Pathogen Perception Orchestrates Plant Inmunity. Cell Host & Microbe 2014; 16(6):748-758.es_CO
    dc.relation.references4. Gao X, He, P. (2013). Nuclear dynamics of Arabidopsis calcium – dependent Protein Kinases in efector – triggered Inmunity. Plant Signaling & Behavior 2013; 8(4): e23868. doi: 10.4161/psb.23868.es_CO
    dc.relation.references5. Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, et al. Gene pyramiding enhances durable blast disease resistance in rice. Nature Scientific Reports 2015; 5(7773): doi:10.1038/srep07773.es_CO
    dc.relation.references6. Fukuoka S, Yamamoto S, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, et al. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Scientific Reports 2014; 4(4550):doi:10.038/srp04550.es_CO
    dc.relation.references7. Jo K, Visser R, Jacobsen E, Vossen J. Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 (2) homologs on chromosome IX. Theor Appl Genet 2015; 128(5):93 41.es_CO
    dc.relation.references8. Haitao Z, Wang S. Rice versus Xanthomonas oryzae pv. oryzae:a unique Pathosystem. Curr Opin Plant Biol 2013; 12885):188-195.es_CO
    dc.relation.references9. Haitao H, Jing W, Chan S, Can Y, Chunfang P, Junjie Y, et al. A receptor like kinase gene with expressional responsiveness on Xanthomonas oryzae pv. oryzae is essential for Xa21-mediated disease resistance. Rice a Springer Open Journal 2014; 8(1):doi:10.1186/s12284-014-0034-1es_CO
    dc.relation.references10. Wu Y, Xiao N, Yu L, Pan C, Li Y, Zhang X, et, al. Combination patterns of major r genes determine the level of resistance to the M. oryzae in Rice (Oryza sativa L.). PLoS.One 2015; 10(6):doi:10.1371/journal.pone.0126130.es_CO
    dc.relation.references11. Willmann R, Lajunen H, Erbs G, Newman M, Kolb D, Tsuda K, et al. Arabidopsis lysin-motif proteins LYM1 LYM3 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad.Sci U S A 2011; 108(49):19824-19829.es_CO
    dc.relation.references12. Singh S, Chand S, Singh N, Raj T. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species. Plos One 2015; 10(1):doi:10.1371/journal.pone.0125964es_CO
    dc.relation.references13. Brown J, Chartrain L, Lasserre P, Saintenac C. Genetics of resistance to Zymoseptoria tritici and applications to wheat breedring. Fungal Genet Biol 2015; 79(1):33-31.es_CO
    dc.relation.references14. Marone D, Russo M, Laidò G, De Leonardis A, Mastrangelo A. Plant Nucleotide Binding Site-Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses. Int J Mol Sci 2013; 14(4):7302-7326.es_CO
    dc.relation.references15. Yuan Q, Zhanji L, Suping F, Manish P, Xiaoping C, Albert K, et al Identification of expressed Resistance Gene Analogs (RGA) and development of RGA-SSR Markers in Tobacco. Arch Biol Belgrade 2015; 67(2):467-481es_CO
    dc.relation.references16. Zhang R, Murat F, Pont C, Langin T, Salse J, et al. Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genomics 2014; 15(5):14711485.es_CO
    dc.relation.references17. Zhong Y, Huan Y, Sargent D, Malnoy M, Cheng Z. Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species. BMC Genomics 2015; 16(77):doi: 10.1186/s128664-015-1291-0.es_CO
    dc.relation.references18. Lozano R, Ponce O, Ramirez M, Mostajo N, Orjeda G. Genome-Wide Identification and Mapping of NBS-Encoding Resistance Genes in Solanum tuberosum, Group Phureja. PLoS One 2012; 7(4):e34775.es_CO
    dc.relation.references19. Dehury B, Chandra M, Maharana J, Sahu J, Sen P, Kumar M, et al. StructureBased Computational Study of Two Disease Resistance Gene Homologues (Hm1 and Hm2) in Maize (Zea mays L.) with Implications in Plant-Pathogen Interactions. PLoS One 2014; PLodoi:10.1371/journal.pone.0097852.es_CO
    dc.relation.references20. Chen J, Huang J, Li N, Ma X, Wang J, Liu C, et al. Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC Plant Biology 2015; 15(1):148.es_CO
    dc.relation.references21. Kim J, Lim C, Lee B, Choi J, Oh S, Ahmad R, et al. A Genome-Wide Comparison of NB-LRR Type of Resistance Gene Analogs (RGA), in the Plant Kingdom. Mol Cells 2012; 33(4):385-392.es_CO
    dc.relation.references22. Lozano R, Hamblin M, Prochnik S, Jannink J, et al. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics 2015; 16(7):360.doi:10.1186/s12864-015-1554-9.es_CO
    dc.relation.references23. Guo Y, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D. Genome-wide comparison of nucleotide-binding site-leucine-rich-repeat-encoding genes in Arabidopsis. Plant Physiol 2011; 157(2):757–769.es_CO
    dc.relation.references24. Yue J, Meyers B, Chen J, Tian D, Yang S. Tracing the origin and evolutionary history of plant NBS-LRR genes. New Phytol 2012; 193(4):1049-1063.es_CO
    dc.relation.references25. Xue J, Wang Y, Wu P, Wang Q, Yang L, Pan X, et al. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes. PLoS One 2012;. doi: 10.1371/journal.pone.0036700.es_CO
    dc.relation.references26. Kang Y, Kim K, Shim S, Young M, Sun S, Young M, et al. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 2012; 12(139): doi:10.1186/1471-2229-12-139.es_CO
    dc.relation.references27. Jupe F, Pritchard L, Etherington G, MacKenzie K, Cock P, Wright F, et al. Identifition and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 2012; 13(75):doi:10.1186/147-2164-13-75.es_CO
    dc.relation.references28. Tan S, Wu S. Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium distachyon. Comparative and Functional Genomics 2012; 2012(1):1-12.es_CO
    dc.relation.references29. Li X, Cheng Y, Ma W, Zhao Y, Jiang H, Zhang M. Identification and characterization of NBS-encoding disease resistance genes in Lotus japonicus. Plant Syst 2010; 289(1):101-110.es_CO
    dc.relation.references30. Román V, López C. Análisis Genómico-Funcional de Proteínas con dominios TIR en yuca. Acta Biol Colomb 2012; 17(3):1-14.es_CO
    dc.relation.references31. Nepal M, Benson B. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence. Evol Bioinform Online 2015; 11(1):49-63.es_CO
    dc.relation.references32. Macho A, Zipfel, C. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 2015; 23(1):14-22.es_CO
    dc.relation.references33. Liu B, Li J, Ao Y, Qu J, Li Z, Su J, et al. Lysin Motif-Containing Proteins LYP4 and LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate Inmunity. The Plant Cell 2012; 24(8):3406-3419.es_CO
    dc.relation.references34. Lin W, Lia B, Lub D, Chend S, Zhud N, Heb P, et al. Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity. Proc Natl Acad Sci 2014; 111(9):3632-3637.es_CO
    dc.relation.references35. Holton N, Nekrasov V, Ronald P, Zipfel C. The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots. PLoS Pathogen 2015; 11(1):doi: 10.1371/journal.ppat.1004602.es_CO
    dc.relation.references36. Lannoo N, Van Dame E. Lectin domains at the frontiers of plant defense. Front Plant Sci 2014; 5(397):doi:10.3389/fpls.2014.00397.es_CO
    dc.relation.references37. Atalah A, Vanderschaeghe D, Bloch Y, Proost P, Plas K, Callewaert N, et al. Characterization of a type D1A EUL-related lectin from rice expressed in Pichia pastoris. Biol Chem 2014; 395(4):413-24.es_CO
    dc.relation.references38. Atalah A, De Vleesschauwer D, Xu J, Fouquaert E, Höfte M, Van Damme E. Transcriptional behavior of EUL-related rice lectins toward important abiotic and biotic stresses. Plant Physiol 2014; 171(12):986-992. doi:10.1016/j.jplph.2014.04.004.es_CO
    dc.relation.references39. Chen X, Zuo S, Schwessinger B, Chern M, Canlas P, Ruan D, et al. An XA21associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol Plant 2014; 7(5):874-92.doi10.1093/mp/ssu003.es_CO
    dc.relation.references40. Gilardoni P, Hettenhausen C, Baldwin I, Bonaventure G. Nicotiana attenuata Lectin Receptor Kinase 1 suppresses the Insect-Mediated Inhibition of Induced Defense Responses during Manduca sexta Herbivory. The Plant Cell 2011; 23(9):3512-3532.es_CO
    dc.relation.references41. Hove J, Fouquaert E, Smith D, Proost P, Van Damme E. Lectin activity of the nucleocytoplasmic EUL protein from Arabidopsis thaliana. Biochem Biophys Res Commun 2011; 414(1):101-105.es_CO
    dc.relation.references42. Lizasa E, Mitsutomi M, Nagano Y. Direct binding of a plant lysm receptor-like Kinase, LysM RLK1/CERK1, to Chitin in Vitro. J Biol Chem 2010; 285(5):29963004.es_CO
    dc.relation.references43. Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, Knirel Y, et al. A lectin S.domain receptor kinase mediates lipopolysaccharide sensing in Arabidopis thaliana. Nature Immunology 2015; 16(1):426–433.es_CO
    dc.relation.references44. Wan J. Diverse roles of Lysin-Motif (LysM) proteins in mediating plant-microbe interactions. Walailak J. Sci. & Tech 2015; 12(8):631-641.es_CO
    dc.relation.references45. Wang Y, Weide R, Govers F, Bouwmeester K. L-type lectin receptor kinases in Nicotiana benthamiana and tomato and their role in Phytophthora resistance. J Exp Bot 2015; 66(21):6731-6743.es_CO
    dc.relation.references46. Franck W, Gokce E, Randall S, Oh Y, Eyre A, Muddiman D, et al. Phosphoproteome Analysis Links Protein Phosphorylation to Cellular Remodeling and Metabolic Adaptation during Magnaporthe oryzae Appressorium Development. J Proteome Res 2014; 14(6):2408-2424.es_CO
    dc.relation.references47. Häweker H, Rips S, Koiwa H, Salomon S, Saijo Y, Chinchilla D, et al. Pattern recognition receptors require N-glycosylation to mediate plant immunity. J Biol Chem 2010; 285(7):4629-4636.es_CO
    dc.relation.references48. Park C, Roland P. (2012). Cleavage and nuclear localization of the rice XA21immune receptor. Nature Communications 2012; 3(920):doi: 10.1038/ncomms 1932.es_CO
    dc.relation.references49. Sing P, Kuo Y, Mishra S, Tsai C, Chien C, Chen C, et al. The Lectin Receptor Kinase-VI.2 Is Required for Priming and Positively Regulates Arabidopsis Pattern-Triggered Immunity. Plant Cell 2012; 24(3):1256-1270.es_CO
    dc.relation.references50. Vaid N, Pandey P, Tuteja N. Genome-wide analysis of lectin receptor-like kinase family from Arabidopsis and rice. Plant Mol Biol 2012; 80(4):365–388.es_CO
    dc.relation.references51. Schulze B, Mentzel T, Jehle A, Mueller K, Beeler S, Boller T, et al. Rapid heteromerization and phosphorylation of ligand-actived plant transmembrane receptors and their associated kinase BAK1. J Biol Chem 2010; 285 (13):94444-51.es_CO
    dc.relation.references52. Halter T, Imkampe J, Mazzotta S, Wierzba M, Postel S, Bücherl C, et al. The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity Curr Biol 2014; 24(2):134-143.es_CO
    dc.relation.references53. Block A, Alfano J. Plant targets for Psedomonas syringae type III effector: Virulence targets or guarded decoys? Curr Opin Microbiol 2011; 14(1):39-46.es_CO
    dc.relation.references54. Newman M, Sundelin T, Nielsen J, Erbs G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plnat Sci 2013; 4(139):doi:10.3389/fpls.2013.00139.es_CO
    dc.relation.references55. Poraty L, Zimmermann P, Haigis S, Bednarek P, Hazak O, Stelmakh O, et al. The Arabidopsis Rho of Plants GTPase AtROP6 Functions in Developmental and Pathogen Response Pathways. Plant Physiology 2013; 161(3):1172-1188.es_CO
    dc.relation.references56. Misas J, Kolodziejek I, Crabill E, Kaschani F, Niessen S, Shindo T, et al. Pseudomonas syringae Uses Proteasome Inhibitor Syringolin A to Colonize from Wound Infection Sites. PLoS Pathog 2013; doi: 10.1371/journal.ppat.1003281.es_CO
    dc.relation.references57. Slootweg E, Spiridon L, Roosien J, Butterbach P, Pomp R, Westerhof L, et al. Structural Determinants at the Interface of the ARC2 and Leucine-Rich Repeat Domains Control the Activation of the Plant Immune Receptors Rx1 and Gpa2. Plant Physiology 2013; 162(3):31510-1528.es_CO
    dc.relation.references58. Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, et al. Structural and functional analysis of a Plant Resistance Protein TIR, domain reveals interfaces for self- association, signaling, and autoregulation. Cell Host & Microbe 2011; 9(3):200-211.es_CO
    dc.relation.references59. Galan J, Lara M, Marlovits T, Wagner S. Bacterial type III Secretion Siystems Specialized Nano madimes for Protein Delivery into Target Cells. Annu Rev Microbiol 2014; 68(1):415-438.es_CO
    dc.relation.references60. Wang G, Jiabing F, Dangl J, Johal G. Balint P. Molecular and functional analyses of a maize autoactive NB-LRR Protein Identify Precise Structural Requirements for Activity. PLoS Pathog 2015; doi10.1371/journal.ppat.1004674.es_CO
    dc.relation.references61. Derksen H, Badawi M. Diferential Expression of Potato Defense Genes Associated with the Salicylic Acid Defence Signalling Pathway in Response to Weakly and Highly Aggressive Isolates of Verticillium dahlia. J Phytopathol 2013; 161(3):142-153.es_CO
    dc.relation.references62. Saucet S, Ma Y, Sarris P, Furzer O, Sohn K, Jones J. (2015). Two linked pairs of Arabidopsis TNL resistance Genes independently confer recognition of bacterial effector AvrRps4. Nat Commun 2015; 6(6):6338.es_CO
    dc.relation.references63. Li C, Wang X, Chen Z, Zhang Z, Song J. Computational characterization of parallel dimeric and trimeric, Coiled-Coils using effective amino acid indices. Mol Biosyst 2015; 11(2):354-360.es_CO
    dc.relation.references64. Surkunt J, Pereira J. Evolutionary patterns in coiled- colis. Genome Biol E 2015; 7(2):545-556.es_CO
    dc.relation.references65. Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds P. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front Plant Sci 2014; 5(606): doi:103389/fpls.201400606.es_CO
    dc.relation.references66. Cesari S, Thillieza G, Ribota C, Chalvona V, Michela C, Jauneauc A, et al. The Rice Resistance Protein Pair RGA4/RGA5. Recognizes the Magnaporthe oryzae Effectors AVR-Pia and AVR1- CO39 by Direct Binding. The Plant Cell Preview 2013; 27(11):1-19.es_CO
    dc.relation.references67. Karp G. Biología celular y molecular. 7 ed. Bogotá: Mc Graw Hill; 2014 p. 752-76.0.es_CO
    dc.relation.references68. Ji H, Dong H. Key Steps type III Secretion System (T355) Towards Translocon Assembly with Potential Sensor at Plant Plasma Membrana. Mol Plant Pathol 2015; 16(7):762-773.es_CO
    dc.relation.references69. Tampakaki, A. (2014). Commonalities and Differences ot T355s in Rhizobia and Plant Pthogenic Bacteria. Front Plant Sci 2014; 5(114):doi:10.3389/tpls 2014.00114.es_CO
    dc.relation.references70. Souza D, Oka G, Alvarez C, Bisson A, Dunger G, Hobeika L, et al. (2015). Bacterial Killing via type IV Secretion System. Nat Comun 6(6):6453.es_CO
    dc.relation.references71. Ho B, Dong T, Mekalanos J. A view to a kill: the Bacterial type VI Secretion System. Cell Host Microbe 2014; 15(1):9-21.es_CO
    dc.relation.references72. Petre B, Kamoun B. How do Filamentous Pathogens Deliver Effector Proteins into Plant Cells?. PLoS Biology 2014; doi:10.1371/journal.pbio.1001801.es_CO
    dc.relation.references73. Üstün S, Börnke F. Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Front Plant Sci 2014; doi:10.3389/fpls.2014.00736.es_CO
    dc.relation.references74. Üstün S, Börnke F. The Xanthomonas campestris type III efector XopJ proteolytically degrades proteasome subunit RPT6. Plant Physiol March 2015; 168(1):107-119.es_CO
    dc.relation.references75. Üstün S, König P, Guttman D, Börnke F. HopZ4 from Pseudomonas syringae, a member of the HopZ type III effector family from the YopJ superfamily, inhibits the proteasome in plants.Mol. Plant Microbe Interact 2014; 27(7):611623.es_CO
    dc.relation.references76. Cheong M, Kirik A, Kim J, Frame K, Kirik V, Mudgett M. AvrBsT Acetylates Arabidopsis ACIPI, a Protein that Associates with Microtubules and Is Required for Immunity. PLoS Pathog 2014; 10(2): e1003952.doi.10.1371/journal.ppat.1003952.es_CO
    dc.relation.references77. Guy E, Lautier M, Chabannes M, Roux B, Lauber E, Arlat M, et al. XopACtriggered Immunity against Xanthomonas Depends on Arabidopsis ReceptorLike Cytolasmic Kinase Genes PBL2 and RIPK. PLoS One 2013; 8(8):e73469.es_CO
    dc.relation.references78. Ve, T. et al. Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector- triggered immunity. Proc Natl Acad Sci U S A 2013; 110(43):17594-17599.es_CO
    dc.relation.references79. Matschi S, Williams T, Catanzariti A, Rafiqi M, Rahman M, Ellis J, et al. The Calcium-Dependent Protein Kinase CPK28 Regulates Development by Inducing Grow Phase-Specific, Spatially Restricted Alterations in Jasmonic Acid Levels Independent of Defense Responses in Arabidopsis. Plant Cell 2015; 110(43):17594-17599.es_CO
    dc.relation.references80. Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu J, et al. Protein – protein interactions in the regulation of WRKY Transcription Factors. Molecular Plant 2013; 6(2):287-300.es_CO
    dc.relation.references81. Duan Y, Jiang Y, Ye S, Karim A, Ling Z, He Y, et al. PtrWRKY 73, a Salicylic acid-inducible poplar WRKY transcription factor is involved in disease resistance in Arabidopsis thaliana. Plant Cell Reports 2015; 34(5):831-843.es_CO
    dc.relation.references82. Shuta A, Rallapalli G, Piquerez S, Caillaud M, Furzer O, Ishaque N, et al. Expression Profiling during. Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid. PLos Pathogens 2014; doi:10.1371/journal.ppat.1004443.es_CO
    dc.relation.references83. Wasternack C, House, B. Jasmonates Biosynthesis, Perception, Signal Transduccion and Action in Plant StressResponse, Growth and Development. Annls ot Botany 2013; 111(6):doi: 1093/aob/mct067.es_CO
    dc.relation.references84. Jiang S, Yao Y, Ma K, Zhou H, Song J, Yang S, et al. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional Repressors. PLoS Pathog 2013; 9:e1003715.doi:1371/journal.ppat.1003715.es_CO
    dc.relation.references85. Ju C, Yoon G, Shemansky J, Lin D, Ying Z, Chang J, et al. CTR1 phosphorylates the Central Regulator EIN2 to Central Ethylene Harmonic Signaling from the ER Membrane to the Nucleus in Arabidopsis. PNAS 2012; 109(47):19486-19491.es_CO
    dc.relation.references86. Gupta D, Shekhar, S, Agrawal L. Plant proteomics: technologics and applications. The Omics of Plant Science. New Delhi: springer; 2015. p. 213256.es_CO
    dc.relation.references87. Kumar D, Kirti P. Transcriptomic and Proteomic Analyses of Resistant Host Responses in Arachis diogoi Challenged with Late Leaf Spot Pathogen, Phaeoisariopsis personata. PLoS 2015; doi:10.1371/journal.pone.0117559es_CO
    dc.relation.references88. Lodha T, Hembram P, Jolly N. Proteomics:A Successful Approach to Understand the Molecular Mechanism of Plant-Pathogen Interaction. Am J Sci 2013; 4(1):1212-1226.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Biología Molecular y Biotecnología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Arevalo_2015_TGArevalo_2015_TG4,15 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.