• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5514
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorPorras Ariza, Mishel Yelitza.-
    dc.date.accessioned2022-12-16T16:52:58Z-
    dc.date.available2022-03-20-
    dc.date.available2022-12-16T16:52:58Z-
    dc.date.issued2022-
    dc.identifier.citationPorras Ariza, M. Y. (2021). Purificación del PÉPTIDO POLYGLY y evaluación de sus propiedades interfaciales y emulsificantes [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5514es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5514-
    dc.descriptionLa producción de biosurfactantes representa una alternativa en la elaboración de productos más ambientalmente amigables, pues son moléculas tensioactivas obtenidas a base biológica. En este estudio, se evaluó la actividad emulsificante experimental de un péptido diseñado en un estudio previo elaborado en la Universidad de los Andes, en el que mediante un diseño racional basado en propiedades como la polaridad, estabilidad, conformaciones, perfiles de densidad de masa, orientaciones, energía de interacción y otras propiedades de los aminoácidos, a partir de dinámica molecular (MD) se seleccionó al péptido PolyGly con una de las secuencias con mejor capacidad de estabilizar emulsiones, para facilitar su posterior producción y purificación a nivel macroscópico. Para ello se realizó una producción recombinante del péptido, se purificó mediante cromatografía por afinidad y exclusión por tamaño, se liofilizó y se evaluó su estabilidad y tensión interfacial en la interfaz agua/decano. Debido a la adición de una cadena que codifica 16 aminoácidos en el diseño inicial del plásmido, el péptido pasó de pesar 3,72 kDa a 5,37 kDa; este aumento generó un cambio en la propiedades del péptido, aumentando la hidrofobicidad, generando inestabilidad emulsificante y carencia de concentración micelar critica; sin embargo, exhibió una disminución en la tensión interfacial de 4,64 mN/m para la solución más concentrada (39,65 g/L) mediante el método de gota pendiente.es_CO
    dc.description.abstractThe production of biosurfactants represents an alternative in the elaboration of more environmentally friendly products, since they are surfactant molecules obtained on a biological basis. In this study, the experimental emulsifying activity of a peptide designed in a previous study developed at the Universidad de los Andes was evaluated, in which through a rational design based on properties such as polarity, stability, conformations, mass density profiles, Orientations, interaction energy and other properties of amino acids, from molecular dynamics (MD), the PolyGly peptide was selected with one of the sequences with the best ability to stabilize emulsions, to facilitate its subsequent production and purification at the macroscopic level. For this, a recombinant production of the peptide was carried out, it was purified by affinity chromatography and size exclusion, it was lyophilized and its stability and interfacial tension at the water / decane interface were evaluated. Due to the addition of a chain encoding 16 amino acids in the initial plasmid design, the peptide went from weighing 3.72 kDa to 5.37 kDa; This increase generated a change in the properties of the peptide, increasing hydrophobicity, generating emulsifying instability and lack of critical micellar concentration; however, it exhibited a decrease in interfacial tension of 4.64 mN / m for the more concentrated solution (39.65 g / L) by the sloping drop method..es_CO
    dc.format.extent51es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectBiosurfactantees_CO
    dc.subjectEscherichia coli.es_CO
    dc.subjectPéptido emulsificante.es_CO
    dc.subjectProducción recombinante.es_CO
    dc.subjectTensión interfacial.es_CO
    dc.titlePurificación del PÉPTIDO POLYGLY y evaluación de sus propiedades interfaciales y emulsificantes.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-12-20-
    dc.relation.referencesAbdulraheim, A. M. (2018). Green polymeric surface active agents for crude oil demulsification. Journal of Molecular Liquids, 271. https://doi.org/10.1016/j.molliq.2018.08.153es_CO
    dc.relation.referencesAlexandrova, L., Grigorov, L., Khristov, K., & Petkova, H. (2017). Effects of pH on wetting behavior of ‘star-like’ block copolymer surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 519. https://doi.org/10.1016/j.colsurfa.2016.03.070es_CO
    dc.relation.referencesAlfred Nobel. (2000). ProfinityTM IMAC Resins Instruction Manual. Bio-Rad Laboratories. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/10001677B.PDFes_CO
    dc.relation.referencesAndersson, L., Blomberg, L., Flegel, M., Lepsa, L., Nilsson, B., & Verlander, M. (2000). Large-scale synthesis of peptides. Biopolymers - Peptide Science Section, 55(3). https://doi.org/10.1002/1097- 0282(2000)55:3<227::AID-BIP50>3.0.CO;2-7es_CO
    dc.relation.referencesArgos, P. (1990). An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. Journal of Molecular Biology, 211(4). https://doi.org/10.1016/0022-2836(90)90085-es_CO
    dc.relation.referencesAtta, A. M., Abdullah, M. M. S., Al-Lohedan, H. A., & Ezzat, A. O. (2018). Demulsification of heavy crude oil using new nonionic cardanol surfactants. Journal of Molecular Liquids, 252. https://doi.org/10.1016/j.molliq.2017.12.15es_CO
    dc.relation.referencesBenchling. (n.d.). Plasmid PolyGly Hphobic. Retrieved November 26, 2021, from https://benchling.com/s/seq-c5lys1m6sB7ReGwnEQli/edites_CO
    dc.relation.referencesBio-Rad Labs. (n.d.). Mini-PROTEAN® II Electrophoresis Cell Instruction Manual. Retrieved November 24, 2021, from https://www.sfu.ca/bisc/bisc-429/BioRad.pdfes_CO
    dc.relation.referencesBornhorst, J. A., & Falke, J. J. (2000). Purification of proteins using polyhistidine affinity tags. In Methods in Enzymology (Vol. 326). https://doi.org/10.1016/s0076-6879(00)26058-8es_CO
    dc.relation.referencesCai, M., Huang, Y., Sakaguchi, K., Clore, G. M., Gronenborn, A. M., & Craigie, R. (1998). An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. Journal of Biomolecular NMR, 11(1). https://doi.org/10.1023/A:100822213147es_CO
    dc.relation.referencesChen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. In Advanced Drug Delivery Reviews (Vol. 65, Issue 10). https://doi.org/10.1016/j.addr.2012.09.039es_CO
    dc.relation.referencesChevallet, M., Luche, S., & Rabilloud, T. (2006). Silver staining of proteins in polyacrylamide gels. Nature Protocols, 1(4). https://doi.org/10.1038/nprot.2006.288es_CO
    dc.relation.referencesClarke, J. G., Wicks, S. R., & Farr, S. J. (1993). Surfactant mediated effects in pressurized metered dose inhalers formulated as suspensions. I. Drug/surfactant interactions in a model propellant system. International Journal of Pharmaceutics, 93(1–3). https://doi.org/10.1016/0378-5173(93)90181-Ees_CO
    dc.relation.referencesDavid S. Hage. (2005). Handbook of Affinity Chromatography (2nd ed., Vol. 92). Taylor and Francis Group.es_CO
    dc.relation.referencesDiego Camilo Pradilla Ragua. (2013). Diseño multi-escala aplicado a procesos de emulsificación emulsiones directas e inversas [Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/11846es_CO
    dc.relation.referencesDiller, T., Thompson, J., & Steer, B. (2021). Biological validation of a novel process and product for quantitating western blots. Journal of Biotechnology, 326. https://doi.org/10.1016/j.jbiotec.2020.12.012es_CO
    dc.relation.referencesDomínguez Rivera, Á., Martínez Urbina, M. Á., & López y López, V. E. (2019). Advances on research in the use of agro-industrial waste in biosurfactant production. In World Journal of Microbiology and Biotechnology (Vol. 35, Issue 10). https://doi.org/10.1007/s11274-019-2729-3es_CO
    dc.relation.referencesEl Achouri, M., Kertit, S., Gouttaya, H. M., Nciri, B., Bensouda, Y., Perez, L., Infante, M. R., & Elkacemi, K. (2001). Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide). Progress in Organic Coatings, 43(4). https://doi.org/10.1016/S0300-9440(01)00208-9es_CO
    dc.relation.referencesEl Mehbad, N. (2017). Efficiency of N-Decyl-N-benzyl-N-methylglycine and N-Dodecyl-N-benzyl-N methylglycine surfactants for flow improvers and pour point depressants. In Journal of Molecular Liquids (Vol. 229). https://doi.org/10.1016/j.molliq.2016.12.075es_CO
    dc.relation.referencesElachouri, M., Hajji, M. S., Kertit, S., Essassi, E. M., Salem, M., & Coudert, R. (1995). Some surfactants in the series of 2-(alkyldimethylammonio) alkanol bromides as inhibitors of the corrosion of iron in acid chloride solution. Corrosion Science, 37(3). https://doi.org/10.1016/0010-938X(94)00134-Res_CO
    dc.relation.referencesEncyclopedia of Colloid and Interface Science. (2013). In Encyclopedia of Colloid and Interface Science. Purificación del péptido PolyGly y evaluación de sus propiedades interfaciales y emulsificantes Mishel Yelitza Porras Ariza 45 https://doi.org/10.1007/978-3-642-20665-8es_CO
    dc.relation.referencesFarn, R. J. (2007). Chemistry and Technology of Surfactants. In Chemistry and Technology of Surfactants. https://doi.org/10.1002/978047098859es_CO
    dc.relation.referencesFuchs, C., Köster, D., Wiebusch, S., Mahr, K., Eisbrenner, G., & Märkl, H. (2002). Scale-up of dialysis fermentation for high cell density cultivation of Escherichia coli. Journal of Biotechnology, 93(3). https://doi.org/10.1016/S0168-1656(01)00402-3es_CO
    dc.relation.referencesGarcía, J., Santana, Z., Zumalacárregui, L., Quintana, M., González, D., Furrazola, G., & Cruz, O. (2013). Estrategias de obtención de proteínas recombinantes en escherichia coli. VacciMonitor, 22(2).es_CO
    dc.relation.referencesGomez, J. D., Pradilla, D., & Alvarez, O. (2021). A Multiscale Approach to the Design and Manipulation of Oil-in-Water Emulsion-Based Products. International Journal of Chemical Engineering, 2021. https://doi.org/10.1155/2021/889798es_CO
    dc.relation.referencesGreen, M. R., & Sambrook, J. (2012). Molecular Cloning A Laboratory Manual (4th ed., Vol. 1). John Inglis.es_CO
    dc.relation.referencesGu, X., Zhang, F., Li, Y., Zhang, J., Chen, S., Qu, C., & Chen, G. (2018). Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study. Journal of Petroleum Science and Engineering, 164. https://doi.org/10.1016/j.petrol.2018.01.045es_CO
    dc.relation.referencesGupta, P. L., Rajput, M., Oza, T., Trivedi, U., & Sanghvi, G. (2019). Eminence of Microbial Products in Cosmetic Industry. In Natural Products and Bioprospecting (Vol. 9, Issue 4). https://doi.org/10.1007/s13659-019-0215-es_CO
    dc.relation.referencesGu, X., Zhang, F., Li, Y., Zhang, J., Chen, S., Qu, C., & Chen, G. (2018). Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study. Journal of Petroleum Science and Engineering, 164. https://doi.org/10.1016/j.petrol.2018.01.045es_CO
    dc.relation.referencesHaider, S. R., Reid, H. J., & Sharp, B. L. (2012). Tricine-SDS-PAGE. Methods in Molecular Biology, 869. https://doi.org/10.1007/978-1-61779-821-4_8es_CO
    dc.relation.referencesHarvard Apparatus. (n.d.). Guide to Gel Filtration or Size Exclusion Chromatography. Retrieved November 25, 2021, from https://www.harvardapparatus.com/media/harvard/pdf/Guide+for+Gel+Filtration.pdfes_CO
    dc.relation.referencesHayes, D. G., & Smith, G. A. (2019). Biobased Surfactants: Overview and Industrial State of the Art. In Biobased Surfactants. https://doi.org/10.1016/b978-0-12-812705-6.00001-0es_CO
    dc.relation.referencesHenkel, M., & Hausmann, R. (2019). Diversity and Classification of Microbial Surfactants. In Biobased Surfactants. https://doi.org/10.1016/b978-0-12-812705-6.00002-2es_CO
    dc.relation.referencesHeukeshoven, J., & Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. ELECTROPHORESIS, 6(3). https://doi.org/10.1002/elps.115006030es_CO
    dc.relation.referencesHowe, A. M., Clarke, A., Mitchell, J., Staniland, J., Hawkes, L., & Whalan, C. (2015). Visualising surfactant enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480. https://doi.org/10.1016/j.colsurfa.2014.08.032es_CO
    dc.relation.referencesItakura, K., Hirose, T., Crea, R., Riggs, A. D., Heyneker, H. L., Bolivar, F., & Boyer, H. W. (1977). Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science, 198(4321). https://doi.org/10.1126/science.412251es_CO
    dc.relation.referencesJahan, R., Bodratti, A. M., Tsianou, M., & Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. In Advances in Colloid and Interface Science (Vol. 275). https://doi.org/10.1016/j.cis.2019.102061es_CO
    dc.relation.referencesJean L. Salager, & Raquel Anton. (2005). Métodos De Medición De La Tensión Superficial O Interfacial. Universidad de Los Andes. https://firp-ula.org/wp content/uploads/2019/06/S205_MedicionTension.pdfes_CO
    dc.relation.referencesJonasson, P., Liljeqvist, S., Nygren, P.-Å., & Ståhl, S. (2002). Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology and Applied Biochemistry, 35(2). https://doi.org/10.1042/ba20010099es_CO
    dc.relation.referencesJonsson, B., Lindman, B., & Holmberg, K. (1998). Surfactants and polymers in aqueous solutions. IEEE Electrical Insulation Magazine, 14(5). https://doi.org/10.1109/MEI.1998.714652es_CO
    dc.relation.referencesKang, W., Mushi, S. J., Yang, H., Wang, P., & Hou, X. (2020). Development of smart viscoelastic surfactants and its applications in fracturing fluid: A review. In Journal of Petroleum Science and Engineering (Vol. 190). https://doi.org/10.1016/j.petrol.2020.10710es_CO
    dc.relation.referencesKaur, J., Kumar, A., & Kaur, J. (2018). Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. In International Journal of Biological Macromolecules (Vol. 106). https://doi.org/10.1016/j.ijbiomac.2017.08.080es_CO
    dc.relation.referencesKent, S. B. H. (1988). Chemical synthesis of peptides and proteins. In Annual Review of Biochemistry (Vol. 57). https://doi.org/10.1146/annurev.bi.57.070188.004521es_CO
    dc.relation.referencesKhan, M. N. H., Gunawan, T. S., Rahman, M. T., & Khan, S. (2015). Evaluation of various leakage current paths with different switching conditions. Proceedings - 5th International Conference on Computer and Communication Engineering: Emerging Technologies via Comp-Unication Convergence, ICCCE 2014. https://doi.org/10.1109/ICCCE.2014.83es_CO
    dc.relation.referencesKim, H., Jang, J. H., Kim, S. C., & Cho, J. H. (2014). De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. Journal of Antimicrobial Chemotherapy, 69(1). https://doi.org/10.1093/jac/dkt322es_CO
    dc.relation.referencesothekar, S. C., Ware, A. M., Waghmare, J. T., & Momin, S. A. (2007). Comparative analysis of the properties of Tween-20, Tween-60, Tween-80, Arlacel-60, and Arlacel-80. Journal of Dispersion Science and Technology, 28(3). https://doi.org/10.1080/01932690601108045es_CO
    dc.relation.referencesKronberg, B., Holmberg, K., & Lindman, B. (2014). Surface Chemistry of Surfactants and Polymers (1st ed., Vol. 9781119961246). Wiley.es_CO
    dc.relation.referencesKyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1). https://doi.org/10.1016/0022-2836(82)90515-0es_CO
    dc.relation.referencesang, S. (2002). Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid and Interface Science, 7(1–2). https://doi.org/10.1016/S1359-0294(02)00007-9es_CO
    dc.relation.referencesLendínez Gris, M. C. (2016). Estudio de emulsiones altamente concentradas de tipo W/O: relación entre tamaño de gota y propiedades. TDX (Tesis Doctorals En Xarxa)es_CO
    dc.relation.referencesLi, Y. (2011). Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expression and Purification, 80(2). https://doi.org/10.1016/j.pep.2011.08.001es_CO
    dc.relation.referencesLiu, Z., Li, Z., Zhong, H., Zeng, G., Liang, Y., Chen, M., Wu, Z., Zhou, Y., Yu, M., & Shao, B. (2017). Recent advances in the environmental applications of biosurfactant saponins: A review. In Journal of Environmental Chemical Engineering (Vol. 5, Issue 6). https://doi.org/10.1016/j.jece.2017.11.021es_CO
    dc.relation.referencesMahmood, M. E., & Al-koofee, D. a F. (2013). Effect of Temperature Changes on Critical Micelle Concentration for Tween Series Surfactant. Global Journal of Science Frontier Research Chemistry, 13(4).es_CO
    dc.relation.referencesMahmood, T., & Yang, P. C. (2012). Western blot: Technique, theory, and trouble shooting. North American Journal of Medical Sciences, 4(9). https://doi.org/10.4103/1947-2714.100998es_CO
    dc.relation.referencesMaria Del R. Rocha Pizasa. (2005). Utilidad De Una Etiqueta De Poli-Fflstidina Para La Purificacion De La Hormona Del Crecimiento Bovino Recombinante [Universidad Autonoma De Nuevo Leon]. http://eprints.uanl.mx/1673/1/1080127594.PDes_CO
    dc.relation.referencesMerril, C. R., Goldman, D., Sedman, S. A., & Ebert, M. H. (1981). Ultrasensitive stain for proteins in polyacrylamide gels shows regional variaes_CO
    dc.relation.referencesMiguel Ángel Suárez Valdés. (2012). Emulsificación Con Membranas: Emulsión Monodispersas Y Parámetros De Paso De Escala [Universidad de Oviedo]. https://digibuo.uniovi.es/dspace/bitstream/handle/10651/13459/TD_miguelangelsuarezvaldes.pdf? Purificación del péptido PolyGly y evaluación de sus propiedades interfaciales y emulsificantes Mishel Yelitza Porras Ariza 48 sequence=2&isAllowed=yes_CO
    dc.relation.referencesMilton J. Rosen, & Joy T. Kunjappu. (2004). Surfactants and Interfacial Phenomena (3rd ed.). https://books.google.com.co/books?id=pdTsgREZp5QC&lpg=PR15&ots=- 84HXfsSrR&lr&hl=es&pg=PR15#v=onepage&q&f=falsees_CO
    dc.relation.referencesMoritz, C. P. (2020). 40 years Western blotting: A scientific birthday toast. Journal of Proteomics, 212. https://doi.org/10.1016/j.jprot.2019.103575es_CO
    dc.relation.referencesOwczarek, B., Gerszberg, A., & Hnatuszko-Konka, K. (2019). A Brief Reminder of Systems of Production and Chromatography-Based Recovery of Recombinant Protein Biopharmaceuticals. In BioMed Research International (Vol. 2019). https://doi.org/10.1155/2019/421606es_CO
    dc.relation.referencesPal, N., Samanta, K., & Mandal, A. (2019). A novel family of non-ionic gemini surfactants derived from sunflower oil: Synthesis, characterization and physicochemical evaluation. Journal of Molecular Liquids, 275. https://doi.org/10.1016/j.molliq.2018.11.111es_CO
    dc.relation.referencesPérez Bejarano, J. V., Fajardo Rojas, F., Alvarez, O., Burgos, J. C., Reyes, L. H., & Pradilla, D. (2021). Novel Biosurfactants: Rationally Designed Surface-Active Peptides and in Silico Evaluation at the Decane-Water Interface. Universidad de los Andes.es_CO
    dc.relation.referencesQiu, L. G., Wu, Y., Wang, Y. M., & Jiang, X. (2008). Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid. Corrosion Science, 50(2). https://doi.org/10.1016/j.corsci.2007.07.010es_CO
    dc.relation.referencesRabilloud, T. (2012). Silver staining of 2D electrophoresis gels. Methods in Molecular Biology, 893. https://doi.org/10.1007/978-1-61779-885-6_5es_CO
    dc.relation.referencesRicardo, F., Pradilla, D., Cruz, J. C., & Alvarez, O. (2021). Emerging emulsifiers: Conceptual basis for the identification and rational design of peptides with surface activity. In International Journal of Molecular Sciences (Vol. 22, Issue 9). https://doi.org/10.3390/ijms22094615es_CO
    dc.relation.referencesRodriguez, E. L., Poddar, S., Iftekhar, S., Suh, K., Woolfork, A. G., Ovbude, S., Pekarek, A., Walters, M., Lott, S., & Hage, D. S. (2020). Affinity chromatography: A review of trends and developments over the past 50 years. In Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences (Vol. 1157). https://doi.org/10.1016/j.jchromb.2020.122332es_CO
    dc.relation.referencesRodríguez, V., Asenjo, J. A., & Andrews, B. A. (2014). Design and implementation of a high yield Purificación del péptido PolyGly y evaluación de sus propiedades interfaciales y emulsificantes Mishel Yelitza Porras Ariza 49 production system for recombinant expression of peptides. Microbial Cell Factories, 13(1). https://doi.org/10.1186/1475-2859-13-65es_CO
    dc.relation.referencesRosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. In Frontiers in Microbiology (Vol. 5, Issue APR). https://doi.org/10.3389/fmicb.2014.00172es_CO
    dc.relation.referencesSmith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. In Computers and Chemical Engineering (Vol. 34, Issue 6). https://doi.org/10.1016/j.compchemeng.2010.02.039es_CO
    dc.relation.referencesSoltaninasab, S., Ahmadzadeh, M., Shahhosseini, S., & Mohit, E. (2022). Evaluating the efficacy of immobilized metal affinity chromatography (IMAC) for host cell protein (HCP) removal from anti HER2 scFv expressed in Escherichia coli. Protein Expression and Purification, 190. https://doi.org/10.1016/j.pep.2021.106004es_CO
    dc.relation.referencesSteinhilber, D., Witting, M., Zhang, X., Staegemann, M., Paulus, F., Friess, W., Küchler, S., & Haag, R. (2013). Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. Journal of Controlled Release, 169(3). https://doi.org/10.1016/j.jconrel.2012.12.008es_CO
    dc.relation.referencesSteinhilber, D., Witting, M., Zhang, X., Staegemann, M., Paulus, F., Friess, W., Küchler, S., & Haag, R. (2013). Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. Journal of Controlled Release, 169(3). https://doi.org/10.1016/j.jconrel.2012.12.008es_CO
    dc.relation.referencesTehrani-Bagha, A. R. (2016). Cationic gemini surfactant with cleavable spacer: Emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508. https://doi.org/10.1016/j.colsurfa.2016.08.020es_CO
    dc.relation.referencesThermo Fisher Scientific. (n.d.). Peptide Synthesis and Proteotypic Peptide Analyzing Tool. Retrieved November 26, 2021, from https://www.thermofisher.com/co/en/home/life-science/protein biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzinges_CO
    dc.relation.referencesThermo Fisher ScientificTM. (n.d.). Estándar de proteínas de amplia gama sin teñir PageRulerTM en electroforesis de proteínas (SDS-PAGE) y western blott. Retrieved December 17, 2021, from https://www.fishersci.es/shop/products/pageruler-unstained-broad-range-protein-ladder/p-4530011es_CO
    dc.relation.referencesTorchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems. In Journal of Controlled Release (Vol. 73, Issues 2–3). https://doi.org/10.1016/S0168-3659(01)00299- 1es_CO
    dc.relation.referencesTripathy, D. B., Mishra, A., Clark, J., & Farmer, T. (2018). Synthesis, chemistry, physicochemical Purificación del péptido PolyGly y evaluación de sus propiedades interfaciales y emulsificantes Mishel Yelitza Porras Ariza 50 properties and industrial applications of amino acid surfactants: A review. In Comptes Rendus Chimie (Vol. 21, Issue 2). https://doi.org/10.1016/j.crci.2017.11.005es_CO
    dc.relation.referencesVan Hamme, J. D., Singh, A., & Ward, O. P. (2006). Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. In Biotechnology Advances (Vol. 24, Issue 6). https://doi.org/10.1016/j.biotechadv.2006.08.001es_CO
    dc.relation.referencesWard, O. P. (2010). Microbial biosurfactants andbiodegradation. Advances in Experimental Medicine and Biology, 672. https://doi.org/10.1007/978-1-4419-5979-9_5es_CO
    dc.relation.referencesWeiszhár, Z., Czúcz, J., Révész, C., Rosivall, L., Szebeni, J., & Rozsnyay, Z. (2012). Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, tween-80 and tween-20. European Journal of Pharmaceutical Sciences, 45(4). https://doi.org/10.1016/j.ejps.2011.09.016es_CO
    dc.relation.referencesXiong, Y. L. (1997). Protein Denaturation and Functionality Losses. In Quality in Frozen Foods. https://doi.org/10.1007/978-1-4615-5975-7_8es_CO
    dc.relation.referencesYada, S., Matsuoka, K., Nagai Kanasaki, Y., Gotoh, K., & Yoshimura, T. (2019). Emulsification, solubilization, and detergency behaviors of homogeneous polyoxypropylene-polyoxyethylene alkyl ether type nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 564. https://doi.org/10.1016/j.colsurfa.2018.12.030es_CO
    dc.relation.referencesYan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H., & Dunn, M. J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis, 21(17). https://doi.org/10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6es_CO
    dc.relation.referencesYano, Y. F. (2012). Kinetics of protein unfolding at interfaces. In Journal of Physics Condensed Matter (Vol. 24, Issue 50). https://doi.org/10.1088/0953-8984/24/50/503101es_CO
    dc.relation.referencesYin, L. M., Edwards, M. A., Li, J., Yip, C. M., & Deber, C. M. (2012). Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. Journal of Biological Chemistry, 287(10). https://doi.org/10.1074/jbc.M111.303602es_CO
    dc.relation.referencesYoshii, N., Fujimoto, K., & Okazaki, S. (2016). Molecular dynamics study of the structure of anionic SDS, cationic DTAC, zwitterionic DDAO, and nonionic C12E8 spherical micelles in solution. Journal of Molecular Liquids, 217. https://doi.org/10.1016/j.molliq.2015.12.062es_CO
    dc.relation.referencesZhai, J. li, Day, L., Aguilar, M. I., & Wooster, T. J. (2013). Protein folding at emulsion oil/water interfaces. In Current Opinion in Colloid and Interface Science (Vol. 18, Issue 4). https://doi.org/10.1016/j.cocis.2013.03.002es_CO
    dc.relation.referencesZhang, D., Sha, M., Pan, R., Lin, X., Xing, P., & Jiang, B. (2019). Synthesis and properties study of novel fluorinated surfactants with perfluorinated branched ether chain. Journal of Fluorine Chemistry, 219. https://doi.org/10.1016/j.jfluchem.2018.11.001es_CO
    dc.relation.referencesZhao, M., Lv, W., Li, Y., Dai, C., Wang, X., Zhou, H., Zou, C., Gao, M., Zhang, Y., & Wu, Y. (2018). Study on the synergy between silica nanoparticles and surfactants for enhanced oil recovery during spontaneous imbibition. Journal of Molecular Liquids, 261. https://doi.org/10.1016/j.molliq.2018.04.034es_CO
    dc.relation.referencesZheleznov, A., Windmöller, D., Körner, S., & Böddeker, K. W. (1998). Dialytic transport of carboxylic acids through an anion exchange membrane. Journal of Membrane Science, 139(1). https://doi.org/10.1016/S0376-7388(97)00271-es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Porras_2021_TG.pdfPorras_2021_TG2,27 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.