Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5514
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Porras Ariza, Mishel Yelitza. | - |
dc.date.accessioned | 2022-12-16T16:52:58Z | - |
dc.date.available | 2022-03-20 | - |
dc.date.available | 2022-12-16T16:52:58Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Porras Ariza, M. Y. (2021). Purificación del PÉPTIDO POLYGLY y evaluación de sus propiedades interfaciales y emulsificantes [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5514 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5514 | - |
dc.description | La producción de biosurfactantes representa una alternativa en la elaboración de productos más ambientalmente amigables, pues son moléculas tensioactivas obtenidas a base biológica. En este estudio, se evaluó la actividad emulsificante experimental de un péptido diseñado en un estudio previo elaborado en la Universidad de los Andes, en el que mediante un diseño racional basado en propiedades como la polaridad, estabilidad, conformaciones, perfiles de densidad de masa, orientaciones, energía de interacción y otras propiedades de los aminoácidos, a partir de dinámica molecular (MD) se seleccionó al péptido PolyGly con una de las secuencias con mejor capacidad de estabilizar emulsiones, para facilitar su posterior producción y purificación a nivel macroscópico. Para ello se realizó una producción recombinante del péptido, se purificó mediante cromatografía por afinidad y exclusión por tamaño, se liofilizó y se evaluó su estabilidad y tensión interfacial en la interfaz agua/decano. Debido a la adición de una cadena que codifica 16 aminoácidos en el diseño inicial del plásmido, el péptido pasó de pesar 3,72 kDa a 5,37 kDa; este aumento generó un cambio en la propiedades del péptido, aumentando la hidrofobicidad, generando inestabilidad emulsificante y carencia de concentración micelar critica; sin embargo, exhibió una disminución en la tensión interfacial de 4,64 mN/m para la solución más concentrada (39,65 g/L) mediante el método de gota pendiente. | es_CO |
dc.description.abstract | The production of biosurfactants represents an alternative in the elaboration of more environmentally friendly products, since they are surfactant molecules obtained on a biological basis. In this study, the experimental emulsifying activity of a peptide designed in a previous study developed at the Universidad de los Andes was evaluated, in which through a rational design based on properties such as polarity, stability, conformations, mass density profiles, Orientations, interaction energy and other properties of amino acids, from molecular dynamics (MD), the PolyGly peptide was selected with one of the sequences with the best ability to stabilize emulsions, to facilitate its subsequent production and purification at the macroscopic level. For this, a recombinant production of the peptide was carried out, it was purified by affinity chromatography and size exclusion, it was lyophilized and its stability and interfacial tension at the water / decane interface were evaluated. Due to the addition of a chain encoding 16 amino acids in the initial plasmid design, the peptide went from weighing 3.72 kDa to 5.37 kDa; This increase generated a change in the properties of the peptide, increasing hydrophobicity, generating emulsifying instability and lack of critical micellar concentration; however, it exhibited a decrease in interfacial tension of 4.64 mN / m for the more concentrated solution (39.65 g / L) by the sloping drop method.. | es_CO |
dc.format.extent | 51 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | Biosurfactante | es_CO |
dc.subject | Escherichia coli. | es_CO |
dc.subject | Péptido emulsificante. | es_CO |
dc.subject | Producción recombinante. | es_CO |
dc.subject | Tensión interfacial. | es_CO |
dc.title | Purificación del PÉPTIDO POLYGLY y evaluación de sus propiedades interfaciales y emulsificantes. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-12-20 | - |
dc.relation.references | Abdulraheim, A. M. (2018). Green polymeric surface active agents for crude oil demulsification. Journal of Molecular Liquids, 271. https://doi.org/10.1016/j.molliq.2018.08.153 | es_CO |
dc.relation.references | Alexandrova, L., Grigorov, L., Khristov, K., & Petkova, H. (2017). Effects of pH on wetting behavior of ‘star-like’ block copolymer surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 519. https://doi.org/10.1016/j.colsurfa.2016.03.070 | es_CO |
dc.relation.references | Alfred Nobel. (2000). ProfinityTM IMAC Resins Instruction Manual. Bio-Rad Laboratories. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/10001677B.PDF | es_CO |
dc.relation.references | Andersson, L., Blomberg, L., Flegel, M., Lepsa, L., Nilsson, B., & Verlander, M. (2000). Large-scale synthesis of peptides. Biopolymers - Peptide Science Section, 55(3). https://doi.org/10.1002/1097- 0282(2000)55:3<227::AID-BIP50>3.0.CO;2-7 | es_CO |
dc.relation.references | Argos, P. (1990). An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. Journal of Molecular Biology, 211(4). https://doi.org/10.1016/0022-2836(90)90085- | es_CO |
dc.relation.references | Atta, A. M., Abdullah, M. M. S., Al-Lohedan, H. A., & Ezzat, A. O. (2018). Demulsification of heavy crude oil using new nonionic cardanol surfactants. Journal of Molecular Liquids, 252. https://doi.org/10.1016/j.molliq.2017.12.15 | es_CO |
dc.relation.references | Benchling. (n.d.). Plasmid PolyGly Hphobic. Retrieved November 26, 2021, from https://benchling.com/s/seq-c5lys1m6sB7ReGwnEQli/edit | es_CO |
dc.relation.references | Bio-Rad Labs. (n.d.). Mini-PROTEAN® II Electrophoresis Cell Instruction Manual. Retrieved November 24, 2021, from https://www.sfu.ca/bisc/bisc-429/BioRad.pdf | es_CO |
dc.relation.references | Bornhorst, J. A., & Falke, J. J. (2000). Purification of proteins using polyhistidine affinity tags. In Methods in Enzymology (Vol. 326). https://doi.org/10.1016/s0076-6879(00)26058-8 | es_CO |
dc.relation.references | Cai, M., Huang, Y., Sakaguchi, K., Clore, G. M., Gronenborn, A. M., & Craigie, R. (1998). An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. Journal of Biomolecular NMR, 11(1). https://doi.org/10.1023/A:100822213147 | es_CO |
dc.relation.references | Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. In Advanced Drug Delivery Reviews (Vol. 65, Issue 10). https://doi.org/10.1016/j.addr.2012.09.039 | es_CO |
dc.relation.references | Chevallet, M., Luche, S., & Rabilloud, T. (2006). Silver staining of proteins in polyacrylamide gels. Nature Protocols, 1(4). https://doi.org/10.1038/nprot.2006.288 | es_CO |
dc.relation.references | Clarke, J. G., Wicks, S. R., & Farr, S. J. (1993). Surfactant mediated effects in pressurized metered dose inhalers formulated as suspensions. I. Drug/surfactant interactions in a model propellant system. International Journal of Pharmaceutics, 93(1–3). https://doi.org/10.1016/0378-5173(93)90181-E | es_CO |
dc.relation.references | David S. Hage. (2005). Handbook of Affinity Chromatography (2nd ed., Vol. 92). Taylor and Francis Group. | es_CO |
dc.relation.references | Diego Camilo Pradilla Ragua. (2013). Diseño multi-escala aplicado a procesos de emulsificación emulsiones directas e inversas [Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/11846 | es_CO |
dc.relation.references | Diller, T., Thompson, J., & Steer, B. (2021). Biological validation of a novel process and product for quantitating western blots. Journal of Biotechnology, 326. https://doi.org/10.1016/j.jbiotec.2020.12.012 | es_CO |
dc.relation.references | Domínguez Rivera, Á., Martínez Urbina, M. Á., & López y López, V. E. (2019). Advances on research in the use of agro-industrial waste in biosurfactant production. In World Journal of Microbiology and Biotechnology (Vol. 35, Issue 10). https://doi.org/10.1007/s11274-019-2729-3 | es_CO |
dc.relation.references | El Achouri, M., Kertit, S., Gouttaya, H. M., Nciri, B., Bensouda, Y., Perez, L., Infante, M. R., & Elkacemi, K. (2001). Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide). Progress in Organic Coatings, 43(4). https://doi.org/10.1016/S0300-9440(01)00208-9 | es_CO |
dc.relation.references | El Mehbad, N. (2017). Efficiency of N-Decyl-N-benzyl-N-methylglycine and N-Dodecyl-N-benzyl-N methylglycine surfactants for flow improvers and pour point depressants. In Journal of Molecular Liquids (Vol. 229). https://doi.org/10.1016/j.molliq.2016.12.075 | es_CO |
dc.relation.references | Elachouri, M., Hajji, M. S., Kertit, S., Essassi, E. M., Salem, M., & Coudert, R. (1995). Some surfactants in the series of 2-(alkyldimethylammonio) alkanol bromides as inhibitors of the corrosion of iron in acid chloride solution. Corrosion Science, 37(3). https://doi.org/10.1016/0010-938X(94)00134-R | es_CO |
dc.relation.references | Encyclopedia of Colloid and Interface Science. (2013). In Encyclopedia of Colloid and Interface Science. Purificación del péptido PolyGly y evaluación de sus propiedades interfaciales y emulsificantes Mishel Yelitza Porras Ariza 45 https://doi.org/10.1007/978-3-642-20665-8 | es_CO |
dc.relation.references | Farn, R. J. (2007). Chemistry and Technology of Surfactants. In Chemistry and Technology of Surfactants. https://doi.org/10.1002/978047098859 | es_CO |
dc.relation.references | Fuchs, C., Köster, D., Wiebusch, S., Mahr, K., Eisbrenner, G., & Märkl, H. (2002). Scale-up of dialysis fermentation for high cell density cultivation of Escherichia coli. Journal of Biotechnology, 93(3). https://doi.org/10.1016/S0168-1656(01)00402-3 | es_CO |
dc.relation.references | García, J., Santana, Z., Zumalacárregui, L., Quintana, M., González, D., Furrazola, G., & Cruz, O. (2013). Estrategias de obtención de proteínas recombinantes en escherichia coli. VacciMonitor, 22(2). | es_CO |
dc.relation.references | Gomez, J. D., Pradilla, D., & Alvarez, O. (2021). A Multiscale Approach to the Design and Manipulation of Oil-in-Water Emulsion-Based Products. International Journal of Chemical Engineering, 2021. https://doi.org/10.1155/2021/889798 | es_CO |
dc.relation.references | Green, M. R., & Sambrook, J. (2012). Molecular Cloning A Laboratory Manual (4th ed., Vol. 1). John Inglis. | es_CO |
dc.relation.references | Gu, X., Zhang, F., Li, Y., Zhang, J., Chen, S., Qu, C., & Chen, G. (2018). Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study. Journal of Petroleum Science and Engineering, 164. https://doi.org/10.1016/j.petrol.2018.01.045 | es_CO |
dc.relation.references | Gupta, P. L., Rajput, M., Oza, T., Trivedi, U., & Sanghvi, G. (2019). Eminence of Microbial Products in Cosmetic Industry. In Natural Products and Bioprospecting (Vol. 9, Issue 4). https://doi.org/10.1007/s13659-019-0215- | es_CO |
dc.relation.references | Gu, X., Zhang, F., Li, Y., Zhang, J., Chen, S., Qu, C., & Chen, G. (2018). Investigation of cationic surfactants as clean flow improvers for crude oil and a mechanism study. Journal of Petroleum Science and Engineering, 164. https://doi.org/10.1016/j.petrol.2018.01.045 | es_CO |
dc.relation.references | Haider, S. R., Reid, H. J., & Sharp, B. L. (2012). Tricine-SDS-PAGE. Methods in Molecular Biology, 869. https://doi.org/10.1007/978-1-61779-821-4_8 | es_CO |
dc.relation.references | Harvard Apparatus. (n.d.). Guide to Gel Filtration or Size Exclusion Chromatography. Retrieved November 25, 2021, from https://www.harvardapparatus.com/media/harvard/pdf/Guide+for+Gel+Filtration.pdf | es_CO |
dc.relation.references | Hayes, D. G., & Smith, G. A. (2019). Biobased Surfactants: Overview and Industrial State of the Art. In Biobased Surfactants. https://doi.org/10.1016/b978-0-12-812705-6.00001-0 | es_CO |
dc.relation.references | Henkel, M., & Hausmann, R. (2019). Diversity and Classification of Microbial Surfactants. In Biobased Surfactants. https://doi.org/10.1016/b978-0-12-812705-6.00002-2 | es_CO |
dc.relation.references | Heukeshoven, J., & Dernick, R. (1985). Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. ELECTROPHORESIS, 6(3). https://doi.org/10.1002/elps.115006030 | es_CO |
dc.relation.references | Howe, A. M., Clarke, A., Mitchell, J., Staniland, J., Hawkes, L., & Whalan, C. (2015). Visualising surfactant enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 480. https://doi.org/10.1016/j.colsurfa.2014.08.032 | es_CO |
dc.relation.references | Itakura, K., Hirose, T., Crea, R., Riggs, A. D., Heyneker, H. L., Bolivar, F., & Boyer, H. W. (1977). Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science, 198(4321). https://doi.org/10.1126/science.412251 | es_CO |
dc.relation.references | Jahan, R., Bodratti, A. M., Tsianou, M., & Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. In Advances in Colloid and Interface Science (Vol. 275). https://doi.org/10.1016/j.cis.2019.102061 | es_CO |
dc.relation.references | Jean L. Salager, & Raquel Anton. (2005). Métodos De Medición De La Tensión Superficial O Interfacial. Universidad de Los Andes. https://firp-ula.org/wp content/uploads/2019/06/S205_MedicionTension.pdf | es_CO |
dc.relation.references | Jonasson, P., Liljeqvist, S., Nygren, P.-Å., & Ståhl, S. (2002). Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology and Applied Biochemistry, 35(2). https://doi.org/10.1042/ba20010099 | es_CO |
dc.relation.references | Jonsson, B., Lindman, B., & Holmberg, K. (1998). Surfactants and polymers in aqueous solutions. IEEE Electrical Insulation Magazine, 14(5). https://doi.org/10.1109/MEI.1998.714652 | es_CO |
dc.relation.references | Kang, W., Mushi, S. J., Yang, H., Wang, P., & Hou, X. (2020). Development of smart viscoelastic surfactants and its applications in fracturing fluid: A review. In Journal of Petroleum Science and Engineering (Vol. 190). https://doi.org/10.1016/j.petrol.2020.10710 | es_CO |
dc.relation.references | Kaur, J., Kumar, A., & Kaur, J. (2018). Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. In International Journal of Biological Macromolecules (Vol. 106). https://doi.org/10.1016/j.ijbiomac.2017.08.080 | es_CO |
dc.relation.references | Kent, S. B. H. (1988). Chemical synthesis of peptides and proteins. In Annual Review of Biochemistry (Vol. 57). https://doi.org/10.1146/annurev.bi.57.070188.004521 | es_CO |
dc.relation.references | Khan, M. N. H., Gunawan, T. S., Rahman, M. T., & Khan, S. (2015). Evaluation of various leakage current paths with different switching conditions. Proceedings - 5th International Conference on Computer and Communication Engineering: Emerging Technologies via Comp-Unication Convergence, ICCCE 2014. https://doi.org/10.1109/ICCCE.2014.83 | es_CO |
dc.relation.references | Kim, H., Jang, J. H., Kim, S. C., & Cho, J. H. (2014). De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. Journal of Antimicrobial Chemotherapy, 69(1). https://doi.org/10.1093/jac/dkt322 | es_CO |
dc.relation.references | othekar, S. C., Ware, A. M., Waghmare, J. T., & Momin, S. A. (2007). Comparative analysis of the properties of Tween-20, Tween-60, Tween-80, Arlacel-60, and Arlacel-80. Journal of Dispersion Science and Technology, 28(3). https://doi.org/10.1080/01932690601108045 | es_CO |
dc.relation.references | Kronberg, B., Holmberg, K., & Lindman, B. (2014). Surface Chemistry of Surfactants and Polymers (1st ed., Vol. 9781119961246). Wiley. | es_CO |
dc.relation.references | Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1). https://doi.org/10.1016/0022-2836(82)90515-0 | es_CO |
dc.relation.references | ang, S. (2002). Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid and Interface Science, 7(1–2). https://doi.org/10.1016/S1359-0294(02)00007-9 | es_CO |
dc.relation.references | Lendínez Gris, M. C. (2016). Estudio de emulsiones altamente concentradas de tipo W/O: relación entre tamaño de gota y propiedades. TDX (Tesis Doctorals En Xarxa) | es_CO |
dc.relation.references | Li, Y. (2011). Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expression and Purification, 80(2). https://doi.org/10.1016/j.pep.2011.08.001 | es_CO |
dc.relation.references | Liu, Z., Li, Z., Zhong, H., Zeng, G., Liang, Y., Chen, M., Wu, Z., Zhou, Y., Yu, M., & Shao, B. (2017). Recent advances in the environmental applications of biosurfactant saponins: A review. In Journal of Environmental Chemical Engineering (Vol. 5, Issue 6). https://doi.org/10.1016/j.jece.2017.11.021 | es_CO |
dc.relation.references | Mahmood, M. E., & Al-koofee, D. a F. (2013). Effect of Temperature Changes on Critical Micelle Concentration for Tween Series Surfactant. Global Journal of Science Frontier Research Chemistry, 13(4). | es_CO |
dc.relation.references | Mahmood, T., & Yang, P. C. (2012). Western blot: Technique, theory, and trouble shooting. North American Journal of Medical Sciences, 4(9). https://doi.org/10.4103/1947-2714.100998 | es_CO |
dc.relation.references | Maria Del R. Rocha Pizasa. (2005). Utilidad De Una Etiqueta De Poli-Fflstidina Para La Purificacion De La Hormona Del Crecimiento Bovino Recombinante [Universidad Autonoma De Nuevo Leon]. http://eprints.uanl.mx/1673/1/1080127594.PD | es_CO |
dc.relation.references | Merril, C. R., Goldman, D., Sedman, S. A., & Ebert, M. H. (1981). Ultrasensitive stain for proteins in polyacrylamide gels shows regional varia | es_CO |
dc.relation.references | Miguel Ángel Suárez Valdés. (2012). Emulsificación Con Membranas: Emulsión Monodispersas Y Parámetros De Paso De Escala [Universidad de Oviedo]. https://digibuo.uniovi.es/dspace/bitstream/handle/10651/13459/TD_miguelangelsuarezvaldes.pdf? Purificación del péptido PolyGly y evaluación de sus propiedades interfaciales y emulsificantes Mishel Yelitza Porras Ariza 48 sequence=2&isAllowed=y | es_CO |
dc.relation.references | Milton J. Rosen, & Joy T. Kunjappu. (2004). Surfactants and Interfacial Phenomena (3rd ed.). https://books.google.com.co/books?id=pdTsgREZp5QC&lpg=PR15&ots=- 84HXfsSrR&lr&hl=es&pg=PR15#v=onepage&q&f=false | es_CO |
dc.relation.references | Moritz, C. P. (2020). 40 years Western blotting: A scientific birthday toast. Journal of Proteomics, 212. https://doi.org/10.1016/j.jprot.2019.103575 | es_CO |
dc.relation.references | Owczarek, B., Gerszberg, A., & Hnatuszko-Konka, K. (2019). A Brief Reminder of Systems of Production and Chromatography-Based Recovery of Recombinant Protein Biopharmaceuticals. In BioMed Research International (Vol. 2019). https://doi.org/10.1155/2019/421606 | es_CO |
dc.relation.references | Pal, N., Samanta, K., & Mandal, A. (2019). A novel family of non-ionic gemini surfactants derived from sunflower oil: Synthesis, characterization and physicochemical evaluation. Journal of Molecular Liquids, 275. https://doi.org/10.1016/j.molliq.2018.11.111 | es_CO |
dc.relation.references | Pérez Bejarano, J. V., Fajardo Rojas, F., Alvarez, O., Burgos, J. C., Reyes, L. H., & Pradilla, D. (2021). Novel Biosurfactants: Rationally Designed Surface-Active Peptides and in Silico Evaluation at the Decane-Water Interface. Universidad de los Andes. | es_CO |
dc.relation.references | Qiu, L. G., Wu, Y., Wang, Y. M., & Jiang, X. (2008). Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid. Corrosion Science, 50(2). https://doi.org/10.1016/j.corsci.2007.07.010 | es_CO |
dc.relation.references | Rabilloud, T. (2012). Silver staining of 2D electrophoresis gels. Methods in Molecular Biology, 893. https://doi.org/10.1007/978-1-61779-885-6_5 | es_CO |
dc.relation.references | Ricardo, F., Pradilla, D., Cruz, J. C., & Alvarez, O. (2021). Emerging emulsifiers: Conceptual basis for the identification and rational design of peptides with surface activity. In International Journal of Molecular Sciences (Vol. 22, Issue 9). https://doi.org/10.3390/ijms22094615 | es_CO |
dc.relation.references | Rodriguez, E. L., Poddar, S., Iftekhar, S., Suh, K., Woolfork, A. G., Ovbude, S., Pekarek, A., Walters, M., Lott, S., & Hage, D. S. (2020). Affinity chromatography: A review of trends and developments over the past 50 years. In Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences (Vol. 1157). https://doi.org/10.1016/j.jchromb.2020.122332 | es_CO |
dc.relation.references | Rodríguez, V., Asenjo, J. A., & Andrews, B. A. (2014). Design and implementation of a high yield Purificación del péptido PolyGly y evaluación de sus propiedades interfaciales y emulsificantes Mishel Yelitza Porras Ariza 49 production system for recombinant expression of peptides. Microbial Cell Factories, 13(1). https://doi.org/10.1186/1475-2859-13-65 | es_CO |
dc.relation.references | Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. In Frontiers in Microbiology (Vol. 5, Issue APR). https://doi.org/10.3389/fmicb.2014.00172 | es_CO |
dc.relation.references | Smith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. In Computers and Chemical Engineering (Vol. 34, Issue 6). https://doi.org/10.1016/j.compchemeng.2010.02.039 | es_CO |
dc.relation.references | Soltaninasab, S., Ahmadzadeh, M., Shahhosseini, S., & Mohit, E. (2022). Evaluating the efficacy of immobilized metal affinity chromatography (IMAC) for host cell protein (HCP) removal from anti HER2 scFv expressed in Escherichia coli. Protein Expression and Purification, 190. https://doi.org/10.1016/j.pep.2021.106004 | es_CO |
dc.relation.references | Steinhilber, D., Witting, M., Zhang, X., Staegemann, M., Paulus, F., Friess, W., Küchler, S., & Haag, R. (2013). Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. Journal of Controlled Release, 169(3). https://doi.org/10.1016/j.jconrel.2012.12.008 | es_CO |
dc.relation.references | Steinhilber, D., Witting, M., Zhang, X., Staegemann, M., Paulus, F., Friess, W., Küchler, S., & Haag, R. (2013). Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules. Journal of Controlled Release, 169(3). https://doi.org/10.1016/j.jconrel.2012.12.008 | es_CO |
dc.relation.references | Tehrani-Bagha, A. R. (2016). Cationic gemini surfactant with cleavable spacer: Emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508. https://doi.org/10.1016/j.colsurfa.2016.08.020 | es_CO |
dc.relation.references | Thermo Fisher Scientific. (n.d.). Peptide Synthesis and Proteotypic Peptide Analyzing Tool. Retrieved November 26, 2021, from https://www.thermofisher.com/co/en/home/life-science/protein biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzing | es_CO |
dc.relation.references | Thermo Fisher ScientificTM. (n.d.). Estándar de proteínas de amplia gama sin teñir PageRulerTM en electroforesis de proteínas (SDS-PAGE) y western blott. Retrieved December 17, 2021, from https://www.fishersci.es/shop/products/pageruler-unstained-broad-range-protein-ladder/p-4530011 | es_CO |
dc.relation.references | Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems. In Journal of Controlled Release (Vol. 73, Issues 2–3). https://doi.org/10.1016/S0168-3659(01)00299- 1 | es_CO |
dc.relation.references | Tripathy, D. B., Mishra, A., Clark, J., & Farmer, T. (2018). Synthesis, chemistry, physicochemical Purificación del péptido PolyGly y evaluación de sus propiedades interfaciales y emulsificantes Mishel Yelitza Porras Ariza 50 properties and industrial applications of amino acid surfactants: A review. In Comptes Rendus Chimie (Vol. 21, Issue 2). https://doi.org/10.1016/j.crci.2017.11.005 | es_CO |
dc.relation.references | Van Hamme, J. D., Singh, A., & Ward, O. P. (2006). Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. In Biotechnology Advances (Vol. 24, Issue 6). https://doi.org/10.1016/j.biotechadv.2006.08.001 | es_CO |
dc.relation.references | Ward, O. P. (2010). Microbial biosurfactants andbiodegradation. Advances in Experimental Medicine and Biology, 672. https://doi.org/10.1007/978-1-4419-5979-9_5 | es_CO |
dc.relation.references | Weiszhár, Z., Czúcz, J., Révész, C., Rosivall, L., Szebeni, J., & Rozsnyay, Z. (2012). Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, tween-80 and tween-20. European Journal of Pharmaceutical Sciences, 45(4). https://doi.org/10.1016/j.ejps.2011.09.016 | es_CO |
dc.relation.references | Xiong, Y. L. (1997). Protein Denaturation and Functionality Losses. In Quality in Frozen Foods. https://doi.org/10.1007/978-1-4615-5975-7_8 | es_CO |
dc.relation.references | Yada, S., Matsuoka, K., Nagai Kanasaki, Y., Gotoh, K., & Yoshimura, T. (2019). Emulsification, solubilization, and detergency behaviors of homogeneous polyoxypropylene-polyoxyethylene alkyl ether type nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 564. https://doi.org/10.1016/j.colsurfa.2018.12.030 | es_CO |
dc.relation.references | Yan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H., & Dunn, M. J. (2000). A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis, 21(17). https://doi.org/10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6 | es_CO |
dc.relation.references | Yano, Y. F. (2012). Kinetics of protein unfolding at interfaces. In Journal of Physics Condensed Matter (Vol. 24, Issue 50). https://doi.org/10.1088/0953-8984/24/50/503101 | es_CO |
dc.relation.references | Yin, L. M., Edwards, M. A., Li, J., Yip, C. M., & Deber, C. M. (2012). Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. Journal of Biological Chemistry, 287(10). https://doi.org/10.1074/jbc.M111.303602 | es_CO |
dc.relation.references | Yoshii, N., Fujimoto, K., & Okazaki, S. (2016). Molecular dynamics study of the structure of anionic SDS, cationic DTAC, zwitterionic DDAO, and nonionic C12E8 spherical micelles in solution. Journal of Molecular Liquids, 217. https://doi.org/10.1016/j.molliq.2015.12.062 | es_CO |
dc.relation.references | Zhai, J. li, Day, L., Aguilar, M. I., & Wooster, T. J. (2013). Protein folding at emulsion oil/water interfaces. In Current Opinion in Colloid and Interface Science (Vol. 18, Issue 4). https://doi.org/10.1016/j.cocis.2013.03.002 | es_CO |
dc.relation.references | Zhang, D., Sha, M., Pan, R., Lin, X., Xing, P., & Jiang, B. (2019). Synthesis and properties study of novel fluorinated surfactants with perfluorinated branched ether chain. Journal of Fluorine Chemistry, 219. https://doi.org/10.1016/j.jfluchem.2018.11.001 | es_CO |
dc.relation.references | Zhao, M., Lv, W., Li, Y., Dai, C., Wang, X., Zhou, H., Zou, C., Gao, M., Zhang, Y., & Wu, Y. (2018). Study on the synergy between silica nanoparticles and surfactants for enhanced oil recovery during spontaneous imbibition. Journal of Molecular Liquids, 261. https://doi.org/10.1016/j.molliq.2018.04.034 | es_CO |
dc.relation.references | Zheleznov, A., Windmöller, D., Körner, S., & Böddeker, K. W. (1998). Dialytic transport of carboxylic acids through an anion exchange membrane. Journal of Membrane Science, 139(1). https://doi.org/10.1016/S0376-7388(97)00271- | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Porras_2021_TG.pdf | Porras_2021_TG | 2,27 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.