Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5496
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Falla Porras, Jean Carlos. | - |
dc.date.accessioned | 2022-12-16T13:51:57Z | - |
dc.date.available | 2021-10-09 | - |
dc.date.available | 2022-12-16T13:51:57Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Falla Porras, J. C. (2021). Aplicación de los líquidos iónicos en sistemas binarios azeotrópicos para la separación de alcoholes [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5496 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5496 | - |
dc.description | El autor no proporciona la información sobre este ítem. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 56 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Aplicación de los líquidos iónicos en sistemas binarios azeotrópicos para la separación de alcoholes. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-07-09 | - |
dc.relation.references | Abai, M., Atkins, M. P., Hassan, A., Holbrey, J. D., Kuah, Y., Nockemann, P., Oliferenko, A. A., Plechkova, N. V., Rafeen, S., Rahman, A. A., Ramli, R., Shariff, S. M., Seddon, K. R., Srinivasan, G., & Zou, Y. (2015). An ionic liquid process for mercury removal from natural gas. Dalton Transactions, 44(18), 8617–8624. https://doi.org/10.1039/c4dt03273j | es_CO |
dc.relation.references | Alexander, K. (2011). Ionic liquids : theory, properties new approache | es_CO |
dc.relation.references | Anastas, P. T., & Kirchhoff, M. M. (2002). Origins, current status, and future challenges of green chemistry. Accounts of Chemical Research, 35(9), 686–694. https://doi.org/10.1021/ar010065m | es_CO |
dc.relation.references | Bailey, M. M., Townsend, M. B., Jernigan, P. L., Sturdivant, J., Hough-Troutman, W. L., Rasco, J. F., Swatloski, R. P., Rogers, R. D., & Hood, R. D. (2008). Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice. Green Chemistry, 10(11), 1213–1217. https://doi.org/10.1039/b807019a | es_CO |
dc.relation.references | Barth, T., Korth, W., & Jess, A. (2017). Selectivity enhancing effect of a SCILL Catalyst in butadiene hydrogenation. Chemical Engineering and Technology, 40(2), 395–404. https://doi.org/10.1002/ceat.201600140 | es_CO |
dc.relation.references | Baumann, J., Sakka, Y., Bertrand, C., Köser, J., & Filser, J. (2014). Adaptation of the Daphnia sp . acute toxicity test : miniaturization and prolongation for the testing of nanomaterials. 2201–2213. https://doi.org/10.1007/s11356-013-2094-y | es_CO |
dc.relation.references | Bera, D., Lahiri, D., De Leonardis, A., & Nag, A. (2006). A novel azeotropic mixture for solvent extraction of edible oils. Agricultural Engineering International, 8, 1–6. | es_CO |
dc.relation.references | Breuer, F., Dören, L., & Ebke, K. (2016). Comparison of four measuring techniques to assess growth inhibition in standardized tests with seven freshwater algae and cyanobacteria. 2248(February). https://doi.org/10.1080/02772248.2016.1139116 | es_CO |
dc.relation.references | Chao Wang, Yu Zhuang, Yutao Qin, Yachao Dong, Linlin Liu, L. Z., & Du, J. (2021). Optimization and eco-efficiency analysis of extractive distillation processes with different solvents for separating the ternary mixture embedding two azeotropes. Separation and Purification Technology. https://doi.org/10.1016/j.seppur.2021.118763 | es_CO |
dc.relation.references | Coleman, D., & Gathergood, N. (2010). Biodegradation studies of ionic liquids. Chemical Society Reviews, 39(2), 600–637. https://doi.org/10.1039/b817717c | es_CO |
dc.relation.references | Couling, D. J., Bernot, R. J., Docherty, K. M., Dixon, J. N. K., & Maginn, E. J. (2006). Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure property relationship modeling. Green Chemistry, 8(1), 82–90. https://doi.org/10.1039/b511333d | es_CO |
dc.relation.references | Cui, X., Zhang, S., Shi, F., Zhang, Q., Ma, X., Lu, L., & Deng, Y. (2010). The influence of the acidity of ionic liquids on catalysis. ChemSusChem, 3(9), 1043–1047. https://doi.org/10.1002/cssc.201000075 | es_CO |
dc.relation.references | Doria Serrano, M. del C. (2009). Química verde: un nuevo enfoque para el cuidado del medio ambiente. Educación Química, 20(4), 412–420. https://doi.org/10.1016/s0187- 893x(18)30044-2 | es_CO |
dc.relation.references | Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7). https://doi.org/10.1351/pac200072071391 | es_CO |
dc.relation.references | Endres, F., & Zein El Abedin, S. (2006). Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 8(18), 2101. https://doi.org/10.1039/b600519p | es_CO |
dc.relation.references | Feider, N. O., Mahurin, S. M., Do-Thanh, C. L., Dai, S., & Jiang, D. en. (2021). Molecular dynamics simulations of a dicationic ionic liquid for CO2 capture. Journal of Molecular Liquids, 335, 116163. https://doi.org/10.1016/J.MOLLIQ.2021.116163 | es_CO |
dc.relation.references | Freemantle, M. (2005). Ionic liquids make splash in industry. | es_CO |
dc.relation.references | Gathergood, N., Garcia, M. T., & Scammells, P. J. (2004). Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chemistry, 6(3), 166–175. https://doi.org/10.1039/b315270g | es_CO |
dc.relation.references | Ghandi, K. (2014). A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry, 04(01), 44–53. https://doi.org/10.4236/gsc.2014.41008 | es_CO |
dc.relation.references | González, M. (2019). Formación Y Caracterización De Disolventes Eutécticos Profundos : Aplicación a La. | es_CO |
dc.relation.references | Greaves, T. L., & Drummond, C. J. (2008). Protic Ionic Liquids: Properties and Applications. Chemical Reviews, 108(1), 206–237. https://doi.org/10.1021/cr068040u | es_CO |
dc.relation.references | Greer, A. J., & Jacquemin, J. (2020). Industrial applications of ionic liquids. Molecules, 1–31. | es_CO |
dc.relation.references | Haap, T., & Triebskorn, R. (2008). Chemosphere Acute effects of diclofenac and DMSO to Daphnia magna : Immobilisation and. 73, 353–359. https://doi.org/10.1016/j.chemosphere.2008.05.062 | es_CO |
dc.relation.references | Hallett, J. P., & Welton, T. (2011). Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews, 111(5), 3508–3576. https://doi.org/10.1021/cr1003248 | es_CO |
dc.relation.references | Holbrey, J. D., & Plechkova, N. V. (2006). Recalling COIL. Green Chemistry, 411–414. https://doi.org/10.1039/b605378 | es_CO |
dc.relation.references | Hu, X., Li, Y., Cui, D., & Chen, B. (2008). Separation of ethyl acetate and ethanol by room temperature ionic liquids with the tetrafluoroborate anion. Journal of Chemical and Engineering Data, 53(2), 427–433. https://doi.org/10.1021/je700516t | es_CO |
dc.relation.references | Huang, C., Liu, Z., Xu, C., Chen, B., & Liu, Y. (2004). Effects of additives on the properties of chloroaluminate ionic liquids catalyst for alkylation of isobutane and butene. 277, 41– 43. https://doi.org/10.1016/j.apcata.2004.08.019 | es_CO |
dc.relation.references | Lei, Z., Li, C., & Chen, B. (2003). Extractive distillation: A review. Separation and Purification Reviews, 32(2), 121–213. https://doi.org/10.1081/SPM-120026627 | es_CO |
dc.relation.references | Li, H., Sun, G., Li, D., Xi, L., Zhou, P., Li, X., Zhang, J., & Gao, X. (2020). Molecular interaction mechanism in the separation of a binary azeotropic system by extractive distillation with ionic liquid. Green Energy & Environment, xxxx. https://doi.org/10.1016/j.gee.2020.11.025 | es_CO |
dc.relation.references | Li, Q., Zhang, J., Lei, Z., Zhu, J., Zhu, J., & Huang, X. (2009). Selection of ionic liquids as entrainers for the separation of ethyl acetate and ethanol. Industrial and Engineering Chemistry Research, 48(19), 9006–9012. https://doi.org/10.1021/ie8017127 | es_CO |
dc.relation.references | Lukkari, T., Aatsinki, M., Väisänen, A., & Haimi, J. (2005). Toxicity of copper and zinc assessed with three different earthworm tests. Applied Soil Ecology, 30(2), 133–146. https://doi.org/10.1016/j.apsoil.2005.02.00 | es_CO |
dc.relation.references | Moganty, S., & Lee, J. (2016). Hybrid ionic liquid electrolytes. | es_CO |
dc.relation.references | Naydenov, D., & Bart, H. J. (2009). Ternary liquid-liquid equilibria for systems containing alcohol or acetic acid + ester + 1-ethyl-3-methylimidazolium hydrogen sulfate at 313.2 K using headspace gas chromatography. Journal of Chemical and Engineering Data, 54(1), 54 43–47. https://doi.org/10.1021/je800547k | es_CO |
dc.relation.references | Olga, K. (2016). Economical aspects of ionic liquid application. In Aoolication, purification, and recovery of ionic liquids. | es_CO |
dc.relation.references | Orchillés, A. V., Miguel, P. J., Vercher, E., & Martínez-Andreu, A. (2007a). Ionic liquids as entrainers in extractive distillation: Isobaric vapor-liquid equilibria for acetone + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Journal of Chemical and Engineering Data, 52(1), 141–147. https://doi.org/10.1021/je0603170 | es_CO |
dc.relation.references | Orchillés, A. V., Miguel, P. J., Vercher, E., & Martínez-Andreu, A. (2007b). Isobaric vapor liquid equilibria for methyl acetate + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate at 100 kPa. Journal of Chemical and Engineering Data, 52(3), 915–920. https://doi.org/10.1021/je600518s | es_CO |
dc.relation.references | Orchillés, A. V., Miguel, P. J., Vercher, E., & Martínez-Andreu, A. (2010a). Isobaric vapor liquid and liquid-liquid equilibria for chloroform + ethanol + 1-ethyl-3- methylimidazolium trifluoromethanesulfonate at 100 kPa. Journal of Chemical and Engineering Data, 55(3), 1209–1214. https://doi.org/10.1021/je900594h | es_CO |
dc.relation.references | Orchillés, A. V., Miguel, P. J., Vercher, E., & Martínez-Andreu, A. (2010b). Isobaric vapor liquid and liquid-liquid equilibria for chloroform + methanol + 1-ethyl-3- methylimidazolium trifluoromethanesulfonate at 100 kPa. Journal of Chemical and Engineering Data, 55(3), 1209–1214. https://doi.org/10.1021/je900594h | es_CO |
dc.relation.references | Ozokwelu, D., Zhang, S., Okafor, O. C., Cheng, W., & Litombe, N. (2017). Preparation and characterization of ionic liquids. In Novel Catalytic and Separation Processes Based on Ionic Liquids. https://doi.org/10.1016/b978-0-12-802027-2.00002-9 | es_CO |
dc.relation.references | Passos, H., Freire, M. G., & Coutinho, J. A. P. (2014). Ionic liquids solution as extractive solvents of value added compounds from biomass. Green Chemistry, 3, 10715–10722. https://doi.org/10.1039/c4gc00236a | es_CO |
dc.relation.references | Pereiro, A., Araújo, J. M. M., Esperança, J. M. S. S., Marrucho, I. M., & Rebelo, L. P. N. (2012). Ionic liquids in separations of azeotropic systems - A review. Journal of Chemical Thermodynamics, 46(February 2011), 2–28. https://doi.org/10.1016/j.jct.2011.05.026 | es_CO |
dc.relation.references | Pereiro, A. B., & Rodríguez, A. (2007). Ternary (liquid + liquid) equilibria of the azeotrope (ethyl acetate + 2-propanol) with different ionic liquids at T = 298.15 K. Journal of Chemical Thermodynamics, 39(12), 1608–1613. https://doi.org/10.1016/j.jct.2007.04.010 | es_CO |
dc.relation.references | Pereiro, A., Canosa, J., & Rodríguez, A. (2007). Liquid-liquid equilibria of 1,3- dimethylimidazolium methyl sulfate with ketones, dialkyl carbonates and acetates. Fluid Phase Equilibria, 254(1–2), 150–157. https://doi.org/10.1016/j.fluid.2007.02.027 | es_CO |
dc.relation.references | Peric, B., Martí, E., Sierra, J., Cruañas, R., & Garau, M. A. (2012). Green chemistry: Ecotoxicity and biodegradability of ionic liquids. Recent Advances in Pharmaceutical Sciences II, 661(2), 89–113 | es_CO |
dc.relation.references | Pereiro, Ana B., & Rodríguez, A. (2007). Ternary liquid-liquid equilibria ethanol + 2-butanone + 1-butyl-3-methylimidazolium hexafluorophosphate, 2-propanol + 2-butanone + 1- butyl-3-methylimidazolium hexafluorophosphate, and 2-butanone + 2-propanol + 1,3- dimethylimidazolium methyl sulfate at 298. Journal of Chemical and Engineering Data, 52(6), 2138–2142. https://doi.org/10.1021/je700119m | es_CO |
dc.relation.references | Pla-Franco, J., Lladosa, E., Loras, S., & Montón, J. B. (2014). Thermodynamic analysis and process simulation of ethanol dehydration via heterogeneous azeotropic distillation. Industrial and Engineering Chemistry Research, 53(14), 6084–6093. https://doi.org/10.1021/ie403988c | es_CO |
dc.relation.references | Pretti, C., Chiappe, C., Pieraccini, D., Gregori, M., Abramo, F., Monni, G., & Intorre, L. (2006). Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chemistry, 8(3), 238–240. https://doi.org/10.1039/b511554j | es_CO |
dc.relation.references | Shiflett, M. (2020). Commercial applications of ionic liquids. | es_CO |
dc.relation.references | Sigma-Aldrich. (2021). Catálogo de productos. https://www.sigmaaldrich.com/CO/es/product/aldrich/39952 | es_CO |
dc.relation.references | Smith, J., Van Ness, H., & Abbott, M. (2007). Introducción a la termodinámica en Ingeniería Química. | es_CO |
dc.relation.references | Thuy Pham, T. P., Cho, C. W., & Yun, Y. S. (2010). Environmental fate and toxicity of ionic liquids: A review. Water Research, 44(2), 352–372. https://doi.org/10.1016/j.watres.2009.09.030 | es_CO |
dc.relation.references | Treybal, R. E. (2012). Operaciones De Transferencia de masa (3ra Edició). Mc Graw Hill | es_CO |
dc.relation.references | Tullo, A. (2020). The time is now for ionic liquid. | es_CO |
dc.relation.references | Vekariya, R. L. (2017). A review of ionic liquids: Applications towards catalytic organic transformations. Journal of Molecular Liquids, 227, 44–60. https://doi.org/10.1016/j.molliq.2016.11.123 | es_CO |
dc.relation.references | Yuan, X. L., Zhang, S. J., & Lu, X. M. (2007). Hydroxyl ammonium ionic liquids: Synthesis, 56 properties, and solubility of so2. Journal of Chemical and Engineering Data, 52(2), 596– 599. https://doi.org/10.1021/je060479w | es_CO |
dc.relation.references | Zeng, X., Wang, Z., & Rehman, A. (2015). Electrode-electrolyte interfacial processes in ionic liquids and sensor applications. In Electrochemistry in Ionic Liquids: Volume 1: Fundamentals (Vol. 1). https://doi.org/10.1007/978-3-319-13485-7_ | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Falla_2021_TG.pdf | Falla_2021 | 1,84 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.