• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5481
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorSánchez Parra, Edwin Antonio.-
    dc.date.accessioned2022-12-15T22:14:23Z-
    dc.date.available2021-10-09-
    dc.date.available2022-12-15T22:14:23Z-
    dc.date.issued2022-
    dc.identifier.citationSánchez Parra, E. A. (2021). Comparación de los parámetros en la síntesis de películas de biopolímeros a base de almidón y ácido poliláctico reforzado con residuos agrícolas (cascarilla de café, cascarilla de arroz y residuos de naranja) [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5481es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5481-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent51es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleComparación de los parámetros en la síntesis de películas de biopolímeros a base de almidón y ácido poliláctico reforzado con residuos agrícolas (cascarilla de café, cascarilla de arroz y residuos de naranja).es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-07-09-
    dc.relation.referencesABNT. (2008). Associaç˜ao Brasileira de Normas T´ecnicas. NBR 15448-2. Embalagens pl´asticas degrad´aveis e/ou de fontes renov´aveis Parte 2: Biodegradaç˜ao e compostagem- Requisitos e m´etodos de ensaioes_CO
    dc.relation.referencesAlvarez, J., Hooshdaran, B., Cortazar, M., Amutio, M., Lopez, G., Freire, F. B., Haghshenasfard, M., Hosseini, S. H., & Olazar, M. (2018). Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel, 224(July 2017), 111–120. https://doi.org/10.1016/j.fuel.2018.03.028es_CO
    dc.relation.referencesAndreeßen, C., & Steinbüchel, A. (2019). Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Applied Microbiology and Biotechnology, 103(1), 143–157. https://doi.org/10.1007/s00253-018- 9483-es_CO
    dc.relation.referencesASTM (1995). Standard test methods for water vapor transmission of materials. Standard designations: E96-95. Annual books of ASTM. Philadelphia: ASTM406–413.es_CO
    dc.relation.referencesASTM (1999). Standard test method for specular gloss. Designation (D523) annual book of ASTM standards, vol. 06.01. PA: American Society for Testing and Materials Philadelphiaes_CO
    dc.relation.referencesASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. Annual book of American standard testing methods. PA: American Society for Testing and Materials Philadelphia162–170es_CO
    dc.relation.referencesASTM D3985-95, Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor, ASTM International, West Conshohocken, PA, 1995es_CO
    dc.relation.referencesBalaji, A. B., Pakalapati, H., Khalid, M., Walvekar, R., & Siddiqui, H. (2017). Natural and synthetic biocompatible and biodegradable polymers. In Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications (Issue January). https://doi.org/10.1016/B978-0-08-100970-3.00001-8es_CO
    dc.relation.referencesBallesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, Functional, and 47 Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7(12), 3493–3503. https://doi.org/10.1007/s11947-014-1349-zes_CO
    dc.relation.referencesBekalo, S. A., & Reinhardt, H. W. (2010). Fibers of coffee husk and hulls for the production of particleboard. Materials and Structures/Materiaux et Constructions, 43(8), 1049–1060. https://doi.org/10.1617/s11527-009-9565-0es_CO
    dc.relation.referencesBhandari, K., Roy Maulik, S., & Bhattacharyya, A. R. (2020). Synthesis and Characterization of Microcrystalline Cellulose from Rice Husk. Journal of The Institution of Engineers (India): Series E, 101(2), 99–108. https://doi.org/10.1007/s40034-020-00160-7es_CO
    dc.relation.referencesBhattacharjee, N., & Biswas, A. B. (2019). Pyrolysis of orange bagasse: Comparative study and parametric influence on the product yield and their characterization. Journal of Environmental Chemical Engineering, 7(1), 102903. https://doi.org/10.1016/j.jece.2019.102903es_CO
    dc.relation.referencesBrooks, A. L., Wang, S., & Jambeck, J. R. (2018). The Chinese import ban and its impact on global plastic waste trade. Science Advances, 4(6), 1–8. https://doi.org/10.1126/sciadv.aat0131es_CO
    dc.relation.referencesCeballos-Sierra, F., & Dall’Erba, S. (2021). The effect of climate variability on Colombian coffee productivity: A dynamic panel model approach. Agricultural Systems, 190(February 2020), 103126. https://doi.org/10.1016/j.agsy.2021.103126es_CO
    dc.relation.referencesClaudia Leites, L., Julia Menegotto Frick, P., & Isabel Cristina, T. (2021). Influence of the incorporation form of waste from the production of orange juice in the properties of cassava starch-based films. Food Hydrocolloids, 117(September 2020), 106730. https://doi.org/10.1016/j.foodhyd.2021.10673es_CO
    dc.relation.referencesClavijo, J. (2013). Caracterización de materiales a través de medidas de microscopía electrónica de barrido (SEM). Elementos, 3(3). https://doi.org/10.15765/e.v3i3.420es_CO
    dc.relation.referencesCollazo-Bigliardi, S., Ortega-Toro, R., & Boix, A. C. (2018). Reinforcement of thermoplastic starch films with cellulose fibres obtained from rice and coffee husks. Journal of Renewable Materials, 6(6), 599–610. https://doi.org/10.32604/JRM.2018.00127es_CO
    dc.relation.referencesCollazo-Bigliardi, S., Ortega-Toro, R., & Chiralt, A. (2019). Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packaging and Shelf Life, 22(November 2018). https://doi.org/10.1016/j.fpsl.2019.100383es_CO
    dc.relation.referencesCollazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Isolation and 48 characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 191, 205–215. https://doi.org/10.1016/j.carbpol.2018.03.022es_CO
    dc.relation.referencesCollazo Bigliardi, S. (2019). Lignocellulosic fractions from rice and coffee husks to improve functionality of biodegradable films based on starch and poly-lactic acid. May, 1.es_CO
    dc.relation.referencesColombia, C. de. (2020). “Por la cual se prohíbe en el territorio nacional la fabricación, importación, exportación, comercialización y distribución de plásticos de un solo uso, se establecen medidas tendientes a la reducción de su producción y consumo, y se dictan otras disposic. Proyecto de Ley 010 de 2020 Cámara, Acumulado Con El Proyecto de Ley 274 de 2020 Cámara. https://www.camara.gov.co/plasticoses_CO
    dc.relation.referencesde Melo Pereira, G. V., de Carvalho Neto, D. P., Magalhães Júnior, A. I., do Prado, F. G., Pagnoncelli, M. G. B., Karp, S. G., & Soccol, C. R. (2020). Chemical composition and health properties of coffee and coffee by-products. In Advances in Food and Nutrition Research (1st ed., Vol. 91). Elsevier Inc. https://doi.org/10.1016/bs.afnr.2019.10.002es_CO
    dc.relation.referencesEriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE, 9(12), 1–15. https://doi.org/10.1371/journal.pone.0111913es_CO
    dc.relation.referencesFarag, M. A., Abib, B., Ayad, L., & Khattab, A. R. (2020). Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chemistry, 331(May), 127306. https://doi.org/10.1016/j.foodchem.2020.127306es_CO
    dc.relation.referencesFarah, A., & Dos Santos, T. F. (2015). The Coffee Plant and Beans: An Introduction. In Coffee in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12- 409517-5.00001-2es_CO
    dc.relation.referencesHafemann, E., Battisti, R., Bresolin, D., Marangoni, C., & Machado, R. A. F. (2020). Enhancing Chlorine-Free Purification Routes of Rice Husk Biomass Waste to Obtain Cellulose Nanocrystals. Waste and Biomass Valorization, 11(12), 6595–6611. https://doi.org/10.1007/s12649-020-00937-2es_CO
    dc.relation.referencesHelien, P. R., José Luis, S. S., Luis Felipe, C. P., Magda Viviana, M. S., Beatriz Lorena, R. M., Luisa Fernanda, A. Z., Elisa del Carmen, N. R., Jairo Antonio, P. L., Luis Manuel, P. M., & José Alexander, R. H. (2020). ENSIII Encuentro Nacional de Semilleros de 49 Investigación de Ingeniería Industrial. ENSIII Encuentro Nacional de Semilleros de Investigación de Ingeniería Industrial. https://doi.org/10.15332/dt.inv.2020.01680es_CO
    dc.relation.referencesHoseini, M., Cocco, S., Casucci, C., Cardelli, V., & Corti, G. (2021). Coffee by-products derived resources. A review. Biomass and Bioenergy, 148(January), 106009. https://doi.org/10.1016/j.biombioe.2021.106009es_CO
    dc.relation.referencesJawaid, M., & Swain, S. K. (2017). Bionanocomposites for packaging applications. In Bionanocomposites for Packaging Applications. https://doi.org/10.1007/978-3-319- 67319-6es_CO
    dc.relation.referencesJiang, T., Duan, Q., Zhu, J., Liu, H., & Yu, L. (2020). Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research, 3(1), 8–18. https://doi.org/10.1016/j.aiepr.2019.11.003es_CO
    dc.relation.referencesLagou, V. C., Konan, N. Y., & Assa, R. R. (2018). Physicochemical and nutritive characteristics of the residues deriving from the oranges ( Citrus sinensis L .) consumed in Côte d ’ Ivoire. 58(5), 3777–3785.es_CO
    dc.relation.referencesMarín, F. R., Soler-Rivas, C., Benavente-García, O., Castillo, J., & Pérez-Alvarez, J. A. (2007). By-products from different citrus processes as a source of customized functional fibres. Food Chemistry, 100(2), 736–741. https://doi.org/10.1016/j.foodchem.2005.04.040es_CO
    dc.relation.referencesMariño, M. A., Rezende, C. A., & Tasic, L. (2018). A multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose, 25(10), 5739–5750. https://doi.org/10.1007/s10570-018-1977-yes_CO
    dc.relation.referencesNazrin, A., Sapuan, S. M., Zuhri, M. Y. M., Ilyas, R. A., Syafiq, R., & Sherwani, S. F. K. (2020). Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. In Frontiers in Chemistry (Vol. 8). https://doi.org/10.3389/fchem.2020.00213es_CO
    dc.relation.referencesOrtiz-Sanchez, M., Solarte-Toro, J. C., Orrego-Alzate, C. E., Acosta-Medina, C. D., & Cardona-Alzate, C. A. (2021). Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Conversion and Biorefinery, 11(2), 645–659. https://doi.org/10.1007/s13399-020-00627- yes_CO
    dc.relation.referencesOrtiz, D. L., Batuecas, E., Orrego, C. E., Rodríguez, L. J., Camelin, E., & Fino, D. (2020). Sustainable management of peel waste in the small-scale orange juice industries: A Colombian case study. Journal of Cleaner Production, 265, 121587. 50 https://doi.org/10.1016/j.jclepro.2020.121587es_CO
    dc.relation.referencesPiñeros-Guerrero, N., Piñeros-Castro, Y., & Ortega-Toro, R. (2020). Active biodegradable films based on thermoplastic starch and poly (ε-caprolactone): Technological application of antioxidant extracts from rice husk. Revista Mexicana de Ingeniera Quimica, 19(3), 1095–1101. https://doi.org/10.24275/rmiq/Poli898es_CO
    dc.relation.referencesPorta, R., Sabbah, M., & Di Pierro, P. (2020). Biopolymers as food packaging materials. International Journal of Molecular Sciences, 21(14), 1–3. https://doi.org/10.3390/ijms21144942es_CO
    dc.relation.referencesPuga, H., Alves, R. C., Costa, A. S., Vinha, A. F., & Oliveira, M. B. P. P. (2017). Multi frequency multimode modulated technology as a clean, fast, and sustainable process to recover antioxidants from a coffee by-product. Journal of Cleaner Production, 168, 14– 21. https://doi.org/10.1016/j.jclepro.2017.08.231es_CO
    dc.relation.referencesQin, L., Qiu, J., Liu, M., Ding, S., Shao, L., Lü, S., Zhang, G., Zhao, Y., & Fu, X. (2011). Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chemical Engineering Journal, 166(2), 772–778. https://doi.org/10.1016/j.cej.2010.11.039es_CO
    dc.relation.referencesRashid, S., & Dutta, H. (2020). Characterization of nanocellulose extracted from short, medium and long grain rice husks. Industrial Crops and Products, 154(June), 112627. https://doi.org/10.1016/j.indcrop.2020.112627es_CO
    dc.relation.referencesSampath, U. G. T. M., Ching, Y. C., Chuah, C. H., Sabariah, J. J., & Lin, P. C. (2016). Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials, 9(12), 1–32. https://doi.org/10.3390/ma9120991es_CO
    dc.relation.referencesSantos, É. M. dos, Macedo, L. M. de, Tundisi, L. L., Ataide, J. A., Camargo, G. A., Alves, R. C., Oliveira, M. B. P. P., & Mazzola, P. G. (2021). Coffee by-products in topical formulations: A review. Trends in Food Science and Technology, 111(March), 280–291. https://doi.org/10.1016/j.tifs.2021.02.064es_CO
    dc.relation.referencesSegura, D. (2015). Contaminación ambiental y bacterias productoras de plásticos biodegradables. November, 361–372.es_CO
    dc.relation.referencesSohn, Y. J., Kim, H. T., Baritugo, K. A., Jo, S. Y., Song, H. M., Park, S. Y., Park, S. K., Pyo, J., Cha, H. G., Kim, H., Na, J. G., Park, C., Choi, J. Il, Joo, J. C., & Park, S. J. (2020). Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnology Journal, 15(6), 1–16. https://doi.org/10.1002/biot.201900489es_CO
    dc.relation.referencesSung, S. H., Chang, Y., & Han, J. (2017a). Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydrate Polymers, 169, 495–503. https://doi.org/10.1016/j.carbpol.2017.04.037es_CO
    dc.relation.referencesSung, S. H., Chang, Y., & Han, J. (2017b). Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydrate Polymers, 169, 495–503. https://doi.org/10.1016/j.carbpol.2017.04.037es_CO
    dc.relation.referencesThakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/j.ijbiomac.2019.03.19es_CO
    dc.relation.referencesUbeda, S., Aznar, M., Alfaro, P., & Nerín, C. (2019). Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Analytical and Bioanalytical Chemistry, 411(16), 3521–3532. https://doi.org/10.1007/s00216-019- 01831-0es_CO
    dc.relation.referencesValero-Valdivieso, M. F., Ortegón, Y., & Uscategui, Y. (2013). Biopolímeros: Avances y perspectivas. DYNA (Colombia), 80(181), 171–180.es_CO
    dc.relation.referencesWang, Y., Zhang, R., Ahmed, S., Qin, W., & Liu, Y. (2019). Preparation and characterization of corn starch bio-active edible packaging films based on zein incorporated with orange peel oil. Antioxidants, 8(9). https://doi.org/10.3390/antiox809039es_CO
    dc.relation.referencesYadav, A., Mangaraj, S., Singh, R., Das, K., Kumar, N., & Arora, S. (2018). Biopolymers as packaging material in food and allied industry. ~ 2411 ~ International Journal of Chemical Studies, 6(2), 2411–2418. http://krishi.icar.gov.in/jspui/handle/123456789/28956es_CO
    dc.relation.referencesZou, Y., & Yang, T. (2019). Rice husk, rice husk ash and their applications. In Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812828-2.00009-es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Sánchez_2021_TG.pdfSánchez_2021_TG663,74 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.