Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5474
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Haro, Cristian Camilo. | - |
dc.date.accessioned | 2022-12-15T20:43:19Z | - |
dc.date.available | 2022-03-20 | - |
dc.date.available | 2022-12-15T20:43:19Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Haro, C. C. (2021). Comparación de diferentes técnicas para la detección y remoción de glifosato y 2,4-diclorofenoxiacetico presentes en las aguas residuales [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5474 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5474 | - |
dc.description | El glifosato y el 2,4-diclorofenoxiacetico son los herbicidas más utilizados y comercializados en el mundo por su alta efectividad en el control de malezas. El uso indiscriminado y su impacto medio ambiental ha fomentado el análisis de sus propiedades fisicoquímicas, las distintas maneras en que estos herbicidas podrían contaminar las fuentes hídricas y el análisis para implementar técnicas que ayuden a detectar y remover esos compuestos orgánicos que se encuentran presentes en las aguas residuales del sector agroindustrial. Este trabajo se realizó con la finalidad de recopilar las técnicas usadas en la actualidad para detectar y remover glifosato y 2,4-diclorofenoxiacetico de las aguas residuales, también de estudiar las propiedades fisicoquímicas de estos compuestos y sus posibles vías de contaminación al recurso hídrico. Se compararon las diferentes técnicas de detección evaluando límites de detección, porcentajes de recuperación, tiempos de tratamiento, costos e impacto medio ambiental para los dos herbicidas. De igual modo para las técnicas de remoción estimando la eficiencia, los tiempos de tratamiento, las ventajas y desventajas e impacto medio ambiental. | es_CO |
dc.description.abstract | Glyphosate and 2,4-dichlorophenoxyacetic are the most widely used and commercialized herbicides in the world due to their high effectiveness in weed control. The indiscriminate use and its environmental impact have promoted the analysis of its physicochemical properties, the different ways in which these herbicides could contaminate water sources and the analysis to implement techniques that help detect and remove those organic compounds that are present in the plants. wastewater from the agro-industrial sector. This work was carried out in order to compile the techniques currently used to detect and remove glyphosate and 2,4-dichlorophenoxyacetic acid from wastewater, as well as to study the physicochemical properties of these compounds and their possible contamination routes to the water resource. The different detection techniques were compared evaluating detection limits, recovery percentages, treatment times, costs and environmental impact for the two herbicides. Similarly for removal techniques, estimating efficiency, treatment times, advantages and disadvantages, and environmental impact. | es_CO |
dc.format.extent | 51 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | 2,4-D. | es_CO |
dc.subject | AMPA. | es_CO |
dc.subject | Cromatografía. | es_CO |
dc.subject | Derivatización. | es_CO |
dc.subject | Emergentes | es_CO |
dc.subject | Herbicida. | es_CO |
dc.subject | Toxicidad. | es_CO |
dc.title | Comparación de diferentes técnicas para la detección y remoción de glifosato y 2,4-diclorofenoxiacetico presentes en las aguas residuales. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-12-20 | - |
dc.relation.references | A. L. Valle, F. C. C. Mello, R. P. Alves-Balved, L. P. Rodrigues, & L. R. Goulart. (2018). Glyphosate detection: methods, needs and challenges. Environmental Chemistry Letters, 11–13. | es_CO |
dc.relation.references | Affam, A. C., & Chaudhuri, M. (2013). Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. Journal of Environmental Management, 130, 160–165. | es_CO |
dc.relation.references | Alalm, M. G., Tawfik, A., & Ookawara, S. (2015). Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs. Journal of Water Process Engineering, 8, 55–63. | es_CO |
dc.relation.references | Ali, I., & Gupta, V. K. (2006). Advances in water treatment by adsorption technology. Nature Protocols, 1(6), 2661–2667. | es_CO |
dc.relation.references | Aparicio, V. C., de Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866–1873. https://doi.org/https://doi.org/10.1016/j.chemosphere.2013.06.041 | es_CO |
dc.relation.references | Bautista carrillo Armando césar. (2017). estandarización de una metodología para la cuantificación de ácido 2,4-diclorofenoxiacético (2,4-d) por medio de electroforesis capilar en zona. | es_CO |
dc.relation.references | Arriaga, t. (2012). Tratamiento de pesticidas mediante un sistema acoplado de fotocatálisis solar y humedal subsuperficial. | es_CO |
dc.relation.references | Atamaniuk, T. M., Kubrak, O. I., Storey, K. B., & Lushchak, V. I. (2013). Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills. Ecotoxicology, 22(10), 1498–1508. https://doi.org/10.1007/s10646-013-1136-z | es_CO |
dc.relation.references | Ayala, E. B. (2016). Evaluación de la degradación del Ácido 2, 4-diclorofenoxiacético (2, 4- D) por Fotocatálisis Heterogénea | es_CO |
dc.relation.references | Banks, M. L., Kennedy, A. C., Kremer, R. J., & Eivazi, F. (2014). Soil microbial community response to surfactants and herbicides in two soils. Applied Soil Ecology, 74, 12–20. https://doi.org/https://doi.org/10.1016/j.apsoil.2013.08.018 | es_CO |
dc.relation.references | Bohórquez vivas dianny. (2020). métodos analíticos para la determinación de glifosato en matrices ambientale | es_CO |
dc.relation.references | Bonilla-Petriciolet, A., Mendoza-Castillo, D. I., Dotto, G. L., & Duran-Valle, C. J. (2019). Adsorption in Water Treatment, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier New Jersey | es_CO |
dc.relation.references | Brodeur, J. C., Poliserpi, & M.B., A. (2014). Synergy between glyphosate- and cypermethrin based pesticides during acute exposures in tadpoles of the common South American Toad Rhinella arenarum. | es_CO |
dc.relation.references | C. F. B. Coutinho, L. F. M. Coutinho, L. H. Mazo, C. A. P. Camara, & F. M. Lanças. (2007). Direct determination of glyphosate using hydrophilic interaction chromatography with coulometric detection at copper microelectrode. Anal. Chim, 30–35. | es_CO |
dc.relation.references | Carretta, L., Cardinali, A., Marotta, E., Zanin, G., & Masin, R. (2019). A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub μg/L level. Journal of Chromatography A, 1600, 65–72. | es_CO |
dc.relation.references | Cattani D, de Liz Oliveira Cavalli V, & Heinz Rieg CE et al. (2014). Mechanisms underlying the neurotoxicity induced by glyphosatebased herbicide in immature rat hippocampus: involvement of glutamate excitotoxicit. In Toxicology 320 (pp. 34–45). | es_CO |
dc.relation.references | Caviedes rubio diego ivan, & espinosa pastrana nadya liliam. (2020). tratamientos para la remoción de pesticidas presentes en aguas residuales. | es_CO |
dc.relation.references | Chemiinova. (2013). ficha de datos de seguridad del glifosato. | es_CO |
dc.relation.references | Colasurdo Diego. (2020). Estudio de la adsorción de los pesticidas Pendimetalina y Metolaclor sobre materiales carbonosos y silíceos para su eliminación de aguas contaminadas. | es_CO |
dc.relation.references | CONICET. (2014). Informe de evaluación de la información científica existente vinculada a la incidencia del glifosato sobre la salud humana y el ambiente. | es_CO |
dc.relation.references | Damaraju, M., Bhattacharyya, D., Panda, T. K., & Kurilla, K. K. (2020). Marigold wastewater treatment in a lab-scale and a field-scale continuous bipolar-mode electrocoagulation system. Journal of Cleaner Production, 245, 118693. | es_CO |
dc.relation.references | DANE. (2019). Encuesta Nacional Agropecuaria (ENA) | es_CO |
dc.relation.references | Danial, R., Sobri, S., Abdullah, L. C., & Mobarekeh, M. N. (2019). FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation. Chemosphere, 233, 559–569. | es_CO |
dc.relation.references | D’Avignon, D. A., & Ge, X. (2018). In vivo NMR investigations of glyphosate influences on plant metabolism. Journal of Magnetic Resonance, 292, 59–72. | es_CO |
dc.relation.references | De Roos AJ, A Blair, JA Rusiecki, JA Hoppin, M Svec, & M Dosemeci. (2006). Cancer incidence among Glyphosate-exposed pesticide applicators in the agricultural health study. Environ Health Persp, 49–54 | es_CO |
dc.relation.references | Diel, J. C., Franco, D. S. P., Nunes, I. dos S., Pereira, H. A., Moreira, K. S., Thiago, A. de L., Foletto, E. L., & Dotto, G. L. (2021). Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix. Journal of Environmental Chemical Engineering, 9(2), 105178. | es_CO |
dc.relation.references | Dotto, G. L., & McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 8(4), 103988. | es_CO |
dc.relation.references | EPA: Federal Register. (2007). 2.4-D, 2.4-DP, and 2.4-DB, Decision Not to Initiate Special Review. EPA: Federal Register: 2.4-D, www.epa.gov/federalregister/EPA PEST/2007/August/Day-08/p1510 | es_CO |
dc.relation.references | Faisal Islam, Jian Wang, Muhammad A. Farooqa, Muhammad S.S. Khan, Ling Xu, Jinwen Zhu, Min Zhao, & Stéphane Muños. (2017). Potential impact of the herbicide 2,4- dichlorophenoxyacetic acid on human and ecosystems. Elsevier | es_CO |
dc.relation.references | Farenhorst A, & B Prokopowich. (2003). The effect of propnil co-application on 2,4-D sorption by so. In J of Environ Sci and Health B (pp. 713–721). | es_CO |
dc.relation.references | Forest Health Protection. (2006). 2,4-D human health and ecological risk assessment finareport. Arlington. | es_CO |
dc.relation.references | Freydier, L., & Lundgren, J. G. (2016). Unintended effects of the herbicides 2,4-D and dicamba on lady beetles. In Ecotoxicology (pp. 1270–1277). | es_CO |
dc.relation.references | Galeano Naranjo, C. (2018). Evaluación del efecto matriz en un ensayo ELISA competitivo usando muestras clínicas para la detección del biomarcador Ag38kDa de tuberculosis. | es_CO |
dc.relation.references | Garrido, R., Vélez, H., & Vérez, V. (2013). Resonancia magnética nuclear: nuevas aplicaciones en la cuantificación y la evaluación de intermediarios de vacunas basadas en polisacáridos. VacciMonitor, 22(1), 35–42. | es_CO |
dc.relation.references | Gasnier C, Dumont C, & Benachour N et al. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. In Toxicology 262 (pp. 184–191). | es_CO |
dc.relation.references | Glusczak L, dos Santos Miron D, & Moraes BS et al. (2011). Acute efects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfsh (Rhamdia quelen). In Comp Biochem Physiol C Toxicol Pharmacol 146 (pp. 519–524 | es_CO |
dc.relation.references | Gmar, S., & Chagnes, A. (2019). Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy, 189, 105124. | es_CO |
dc.relation.references | H. Kataoka, S. Ryu, N. Sakiyama, & M. Makita. (2016). Simple and rapid determination of the herbicide’s glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. In J. Chromatogr (pp. 253–258). | es_CO |
dc.relation.references | Hui-Min, Q. I. U., Jin-Ju, G., Chao, H., & Hong-Qiang, R. E. N. (2013). Determination of phosphite, phosphate, glyphosate and aminomethylphosphonic acid by two-dimensional ion chromatography system coupled with capillary ion chromatography. Chinese Journal of Analytical Chemistry, 41(12), 1910–1914 | es_CO |
dc.relation.references | ICA. (2015). Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2015. | es_CO |
dc.relation.references | ICA. (2017). areas.agricola.servicios.regulacion y control de plaguicidasquimicos. cartilla.plaguicidas 2016-22-01-18. SITIO URL:https://www.ica.gov.co. Regulación y control de plaguicidas químico | es_CO |
dc.relation.references | J. Ding, H. Guo, W. Liu, W. Zhang, & J. Wang. (2015). “Current progress on the detection of glyphosate in environmental samples. J. Sci. Appl. Biomed, 03, 88–95. | es_CO |
dc.relation.references | J. Hu, C. Chen, & J. Li. (2012). A simple method for the determination of glyphosate residues in soil by capillary gas chromatography with nitrogen phosphorus,. In J. Anal. Chem (Vol. 63, pp. 371–375). | es_CO |
dc.relation.references | Jose V. Tarazona, Daniele Court-Marques, Manuela Tiramani, Hermine Reich, Rudolf Pfeil, & · Frederique Istace. (2017). Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Cross Mark | es_CO |
dc.relation.references | Kobylecka J, A. T. L. S. (2010). Phenoxyalkanoic acid complex Part II. Complexes of selected bivalent metals with 2,4-dichlorophenoxyacetic acid (2,4-D) and 2, (2,4. dichlorophenoxy) propionic acid (2,4DP). | es_CO |
dc.relation.references | Koskinen WC, Marek LJ, & Hall KE. (2016). Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil (pp. 423–432). | es_CO |
dc.relation.references | Krüger, M., Schledorn, P., Schrödl, W., Hoppe, H.-W., Lutz, W., & Shehata, A. A. (2014). Detection of glyphosate residues in animals and humans. J Environ Anal Toxicol, 4(2), 1–5 | es_CO |
dc.relation.references | Kudzin, Z. H., Gralak, D. K., Drabowicz, J., & Łuczak, J. (2002). Novel approach for the simultaneous analysis of glyphosate and its metabolites. Journal of Chromatography A, 947(1), 129–141 | es_CO |
dc.relation.references | Llanos, J., Raschitor, A., Cañizares, P., & Rodrigo, M. A. (2018). Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4- dichlorophenoxyacetic acid. Electrochimica Acta, 269, 415–42 | es_CO |
dc.relation.references | Lucotte, M., & Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by−product aminomethylphosphonic acid: an overview. Journal of Experimental Botany | es_CO |
dc.relation.references | M. Sun, J. Alikhani, R. Greine, & D.P. Jaisi. (2013). Phytate degradation by different phosphohydrolase enzymes: contrasting kinetics, decay rates, pathways, and isotope effects. Soil Sci. Soc, 61–75 | es_CO |
dc.relation.references | Maqueda, C., Undabeytia, T., Villaverde, J., & Morillo, E. (2017). Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of The Total Environment, 593– 594, 787–795. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.03.202 | es_CO |
dc.relation.references | Merck group. (2017). ficha de datos de seguridad de ácido 2,4-diclorofenoxiacetico para sintesis . | es_CO |
dc.relation.references | Nagatomi, Y., Yoshioka, T., Yanagisawa, M., Uyama, A., & Mochizuki, N. (2013). Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Bioscience, Biotechnology, and Biochemistry, 77(11), 2218–2221. | es_CO |
dc.relation.references | Nakbi, A., W Tayeb, S Dabbou, M Issaou, A K Grissa, N Attia, & M Hammami. (2013). Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2,4-D- exposed rats. Lipidword, 1–10. | es_CO |
dc.relation.references | Orooji, N., Takdastan, A., Yengejeh, R. J., Jorfi, S., & Davami, A. H. (2021). A quick and inexpensive method to determine 2, 4-dichlorophenoxyacetic acid residues in water samples by HPLC. Desalination and Water Treatment, 217(1), 329–338. | es_CO |
dc.relation.references | Osatinsky, R. (2007). ¿Qué es la electroforesis capilar. Bioquímica y Patología Clínica, 71(2), 60–66 | es_CO |
dc.relation.references | Patel, H. (2019). Fixed-bed column adsorption study: a comprehensive review. Applied Water Science, 9(3), 1–17. | es_CO |
dc.relation.references | Ramirez, C. E., Bellmund, S., & Gardinali, P. R. (2014). A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC-FLD+ MS/MS. Case study: canals with influence on Biscayne National Park. Science of the Total Environment, 496, 389–401. | es_CO |
dc.relation.references | Relyea RA. (2012). New efects of Roundup on amphibians: predators reduce herbicide morphologytality; herbicides induce antipredator morp. In Ecol Appl 22 (pp. 634–647). | es_CO |
dc.relation.references | Rendón-von Osten, J., & Dzul-Caamal, R. (2017). Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research and Public Health, 14(6), 595. | es_CO |
dc.relation.references | Robles, F. O., Rojo, J. C. T., & Bas, M. S. (2011). Tratamiento de aguas para la eliminación de microorganismos y agentes contaminantes.: Aplicación de procesos industriales a la reutilización de aguas residuales. Ediciones Díaz de Santos. | es_CO |
dc.relation.references | Rosales-Robles E y R Sanchez de la Cruz. (2013). Clasificación y uso de los herbicidas por su modo de acción. Folleto Técnico No. 35. INIFAP. ISBN: 968- 800-666-1. | es_CO |
dc.relation.references | Rose, T. J., van Zwieten, L., Claassens, A., Scanlan, C., & Rose, M. T. (2018). Phytotoxicity of soilborne glyphosate residues is influenced by the method of phosphorus fertiliser application. Plant and Soil, 422(1), 455–465. | es_CO |
dc.relation.references | Rubio, F., Veldhuis, L. J., Clegg, B. S., Fleeker, J. R., & Hall, J. C. (2003). Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. Journal of Agricultural and Food Chemistry, 51(3), 691–696. | es_CO |
dc.relation.references | S. H. Tseng, Y. W. Lo, P. C. Chang, S. S. Chou, & H. M. Chang. (2004). Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector (Vol. 52, pp. 4057–4063). | es_CO |
dc.relation.references | S. Wang, B. Liu, D. Yuan, & J. Ma. (2016a). “A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. In Talanta (Vol. 161, pp. 700–706) | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Haro_2021_TG.pdf | Haro_2021_TG | 503,1 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.