• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5474
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorHaro, Cristian Camilo.-
    dc.date.accessioned2022-12-15T20:43:19Z-
    dc.date.available2022-03-20-
    dc.date.available2022-12-15T20:43:19Z-
    dc.date.issued2022-
    dc.identifier.citationHaro, C. C. (2021). Comparación de diferentes técnicas para la detección y remoción de glifosato y 2,4-diclorofenoxiacetico presentes en las aguas residuales [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5474es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5474-
    dc.descriptionEl glifosato y el 2,4-diclorofenoxiacetico son los herbicidas más utilizados y comercializados en el mundo por su alta efectividad en el control de malezas. El uso indiscriminado y su impacto medio ambiental ha fomentado el análisis de sus propiedades fisicoquímicas, las distintas maneras en que estos herbicidas podrían contaminar las fuentes hídricas y el análisis para implementar técnicas que ayuden a detectar y remover esos compuestos orgánicos que se encuentran presentes en las aguas residuales del sector agroindustrial. Este trabajo se realizó con la finalidad de recopilar las técnicas usadas en la actualidad para detectar y remover glifosato y 2,4-diclorofenoxiacetico de las aguas residuales, también de estudiar las propiedades fisicoquímicas de estos compuestos y sus posibles vías de contaminación al recurso hídrico. Se compararon las diferentes técnicas de detección evaluando límites de detección, porcentajes de recuperación, tiempos de tratamiento, costos e impacto medio ambiental para los dos herbicidas. De igual modo para las técnicas de remoción estimando la eficiencia, los tiempos de tratamiento, las ventajas y desventajas e impacto medio ambiental.es_CO
    dc.description.abstractGlyphosate and 2,4-dichlorophenoxyacetic are the most widely used and commercialized herbicides in the world due to their high effectiveness in weed control. The indiscriminate use and its environmental impact have promoted the analysis of its physicochemical properties, the different ways in which these herbicides could contaminate water sources and the analysis to implement techniques that help detect and remove those organic compounds that are present in the plants. wastewater from the agro-industrial sector. This work was carried out in order to compile the techniques currently used to detect and remove glyphosate and 2,4-dichlorophenoxyacetic acid from wastewater, as well as to study the physicochemical properties of these compounds and their possible contamination routes to the water resource. The different detection techniques were compared evaluating detection limits, recovery percentages, treatment times, costs and environmental impact for the two herbicides. Similarly for removal techniques, estimating efficiency, treatment times, advantages and disadvantages, and environmental impact.es_CO
    dc.format.extent51es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subject2,4-D.es_CO
    dc.subjectAMPA.es_CO
    dc.subjectCromatografía.es_CO
    dc.subjectDerivatización.es_CO
    dc.subjectEmergenteses_CO
    dc.subjectHerbicida.es_CO
    dc.subjectToxicidad.es_CO
    dc.titleComparación de diferentes técnicas para la detección y remoción de glifosato y 2,4-diclorofenoxiacetico presentes en las aguas residuales.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-12-20-
    dc.relation.referencesA. L. Valle, F. C. C. Mello, R. P. Alves-Balved, L. P. Rodrigues, & L. R. Goulart. (2018). Glyphosate detection: methods, needs and challenges. Environmental Chemistry Letters, 11–13.es_CO
    dc.relation.referencesAffam, A. C., & Chaudhuri, M. (2013). Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. Journal of Environmental Management, 130, 160–165.es_CO
    dc.relation.referencesAlalm, M. G., Tawfik, A., & Ookawara, S. (2015). Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs. Journal of Water Process Engineering, 8, 55–63.es_CO
    dc.relation.referencesAli, I., & Gupta, V. K. (2006). Advances in water treatment by adsorption technology. Nature Protocols, 1(6), 2661–2667.es_CO
    dc.relation.referencesAparicio, V. C., de Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866–1873. https://doi.org/https://doi.org/10.1016/j.chemosphere.2013.06.041es_CO
    dc.relation.referencesBautista carrillo Armando césar. (2017). estandarización de una metodología para la cuantificación de ácido 2,4-diclorofenoxiacético (2,4-d) por medio de electroforesis capilar en zona.es_CO
    dc.relation.referencesArriaga, t. (2012). Tratamiento de pesticidas mediante un sistema acoplado de fotocatálisis solar y humedal subsuperficial.es_CO
    dc.relation.referencesAtamaniuk, T. M., Kubrak, O. I., Storey, K. B., & Lushchak, V. I. (2013). Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D): studies with goldfish gills. Ecotoxicology, 22(10), 1498–1508. https://doi.org/10.1007/s10646-013-1136-zes_CO
    dc.relation.referencesAyala, E. B. (2016). Evaluación de la degradación del Ácido 2, 4-diclorofenoxiacético (2, 4- D) por Fotocatálisis Heterogéneaes_CO
    dc.relation.referencesBanks, M. L., Kennedy, A. C., Kremer, R. J., & Eivazi, F. (2014). Soil microbial community response to surfactants and herbicides in two soils. Applied Soil Ecology, 74, 12–20. https://doi.org/https://doi.org/10.1016/j.apsoil.2013.08.018es_CO
    dc.relation.referencesBohórquez vivas dianny. (2020). métodos analíticos para la determinación de glifosato en matrices ambientalees_CO
    dc.relation.referencesBonilla-Petriciolet, A., Mendoza-Castillo, D. I., Dotto, G. L., & Duran-Valle, C. J. (2019). Adsorption in Water Treatment, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier New Jerseyes_CO
    dc.relation.referencesBrodeur, J. C., Poliserpi, & M.B., A. (2014). Synergy between glyphosate- and cypermethrin based pesticides during acute exposures in tadpoles of the common South American Toad Rhinella arenarum.es_CO
    dc.relation.referencesC. F. B. Coutinho, L. F. M. Coutinho, L. H. Mazo, C. A. P. Camara, & F. M. Lanças. (2007). Direct determination of glyphosate using hydrophilic interaction chromatography with coulometric detection at copper microelectrode. Anal. Chim, 30–35.es_CO
    dc.relation.referencesCarretta, L., Cardinali, A., Marotta, E., Zanin, G., & Masin, R. (2019). A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub μg/L level. Journal of Chromatography A, 1600, 65–72.es_CO
    dc.relation.referencesCattani D, de Liz Oliveira Cavalli V, & Heinz Rieg CE et al. (2014). Mechanisms underlying the neurotoxicity induced by glyphosatebased herbicide in immature rat hippocampus: involvement of glutamate excitotoxicit. In Toxicology 320 (pp. 34–45).es_CO
    dc.relation.referencesCaviedes rubio diego ivan, & espinosa pastrana nadya liliam. (2020). tratamientos para la remoción de pesticidas presentes en aguas residuales.es_CO
    dc.relation.referencesChemiinova. (2013). ficha de datos de seguridad del glifosato.es_CO
    dc.relation.referencesColasurdo Diego. (2020). Estudio de la adsorción de los pesticidas Pendimetalina y Metolaclor sobre materiales carbonosos y silíceos para su eliminación de aguas contaminadas.es_CO
    dc.relation.referencesCONICET. (2014). Informe de evaluación de la información científica existente vinculada a la incidencia del glifosato sobre la salud humana y el ambiente.es_CO
    dc.relation.referencesDamaraju, M., Bhattacharyya, D., Panda, T. K., & Kurilla, K. K. (2020). Marigold wastewater treatment in a lab-scale and a field-scale continuous bipolar-mode electrocoagulation system. Journal of Cleaner Production, 245, 118693.es_CO
    dc.relation.referencesDANE. (2019). Encuesta Nacional Agropecuaria (ENA)es_CO
    dc.relation.referencesDanial, R., Sobri, S., Abdullah, L. C., & Mobarekeh, M. N. (2019). FTIR, CHNS and XRD analyses define mechanism of glyphosate herbicide removal by electrocoagulation. Chemosphere, 233, 559–569.es_CO
    dc.relation.referencesD’Avignon, D. A., & Ge, X. (2018). In vivo NMR investigations of glyphosate influences on plant metabolism. Journal of Magnetic Resonance, 292, 59–72.es_CO
    dc.relation.referencesDe Roos AJ, A Blair, JA Rusiecki, JA Hoppin, M Svec, & M Dosemeci. (2006). Cancer incidence among Glyphosate-exposed pesticide applicators in the agricultural health study. Environ Health Persp, 49–54es_CO
    dc.relation.referencesDiel, J. C., Franco, D. S. P., Nunes, I. dos S., Pereira, H. A., Moreira, K. S., Thiago, A. de L., Foletto, E. L., & Dotto, G. L. (2021). Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix. Journal of Environmental Chemical Engineering, 9(2), 105178.es_CO
    dc.relation.referencesDotto, G. L., & McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 8(4), 103988.es_CO
    dc.relation.referencesEPA: Federal Register. (2007). 2.4-D, 2.4-DP, and 2.4-DB, Decision Not to Initiate Special Review. EPA: Federal Register: 2.4-D, www.epa.gov/federalregister/EPA PEST/2007/August/Day-08/p1510es_CO
    dc.relation.referencesFaisal Islam, Jian Wang, Muhammad A. Farooqa, Muhammad S.S. Khan, Ling Xu, Jinwen Zhu, Min Zhao, & Stéphane Muños. (2017). Potential impact of the herbicide 2,4- dichlorophenoxyacetic acid on human and ecosystems. Elsevieres_CO
    dc.relation.referencesFarenhorst A, & B Prokopowich. (2003). The effect of propnil co-application on 2,4-D sorption by so. In J of Environ Sci and Health B (pp. 713–721).es_CO
    dc.relation.referencesForest Health Protection. (2006). 2,4-D human health and ecological risk assessment finareport. Arlington.es_CO
    dc.relation.referencesFreydier, L., & Lundgren, J. G. (2016). Unintended effects of the herbicides 2,4-D and dicamba on lady beetles. In Ecotoxicology (pp. 1270–1277).es_CO
    dc.relation.referencesGaleano Naranjo, C. (2018). Evaluación del efecto matriz en un ensayo ELISA competitivo usando muestras clínicas para la detección del biomarcador Ag38kDa de tuberculosis.es_CO
    dc.relation.referencesGarrido, R., Vélez, H., & Vérez, V. (2013). Resonancia magnética nuclear: nuevas aplicaciones en la cuantificación y la evaluación de intermediarios de vacunas basadas en polisacáridos. VacciMonitor, 22(1), 35–42.es_CO
    dc.relation.referencesGasnier C, Dumont C, & Benachour N et al. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. In Toxicology 262 (pp. 184–191).es_CO
    dc.relation.referencesGlusczak L, dos Santos Miron D, & Moraes BS et al. (2011). Acute efects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfsh (Rhamdia quelen). In Comp Biochem Physiol C Toxicol Pharmacol 146 (pp. 519–524es_CO
    dc.relation.referencesGmar, S., & Chagnes, A. (2019). Recent advances on electrodialysis for the recovery of lithium from primary and secondary resources. Hydrometallurgy, 189, 105124.es_CO
    dc.relation.referencesH. Kataoka, S. Ryu, N. Sakiyama, & M. Makita. (2016). Simple and rapid determination of the herbicide’s glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. In J. Chromatogr (pp. 253–258).es_CO
    dc.relation.referencesHui-Min, Q. I. U., Jin-Ju, G., Chao, H., & Hong-Qiang, R. E. N. (2013). Determination of phosphite, phosphate, glyphosate and aminomethylphosphonic acid by two-dimensional ion chromatography system coupled with capillary ion chromatography. Chinese Journal of Analytical Chemistry, 41(12), 1910–1914es_CO
    dc.relation.referencesICA. (2015). Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2015.es_CO
    dc.relation.referencesICA. (2017). areas.agricola.servicios.regulacion y control de plaguicidasquimicos. cartilla.plaguicidas 2016-22-01-18. SITIO URL:https://www.ica.gov.co. Regulación y control de plaguicidas químicoes_CO
    dc.relation.referencesJ. Ding, H. Guo, W. Liu, W. Zhang, & J. Wang. (2015). “Current progress on the detection of glyphosate in environmental samples. J. Sci. Appl. Biomed, 03, 88–95.es_CO
    dc.relation.referencesJ. Hu, C. Chen, & J. Li. (2012). A simple method for the determination of glyphosate residues in soil by capillary gas chromatography with nitrogen phosphorus,. In J. Anal. Chem (Vol. 63, pp. 371–375).es_CO
    dc.relation.referencesJose V. Tarazona, Daniele Court-Marques, Manuela Tiramani, Hermine Reich, Rudolf Pfeil, & · Frederique Istace. (2017). Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Cross Markes_CO
    dc.relation.referencesKobylecka J, A. T. L. S. (2010). Phenoxyalkanoic acid complex Part II. Complexes of selected bivalent metals with 2,4-dichlorophenoxyacetic acid (2,4-D) and 2, (2,4. dichlorophenoxy) propionic acid (2,4DP).es_CO
    dc.relation.referencesKoskinen WC, Marek LJ, & Hall KE. (2016). Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil (pp. 423–432).es_CO
    dc.relation.referencesKrüger, M., Schledorn, P., Schrödl, W., Hoppe, H.-W., Lutz, W., & Shehata, A. A. (2014). Detection of glyphosate residues in animals and humans. J Environ Anal Toxicol, 4(2), 1–5es_CO
    dc.relation.referencesKudzin, Z. H., Gralak, D. K., Drabowicz, J., & Łuczak, J. (2002). Novel approach for the simultaneous analysis of glyphosate and its metabolites. Journal of Chromatography A, 947(1), 129–141es_CO
    dc.relation.referencesLlanos, J., Raschitor, A., Cañizares, P., & Rodrigo, M. A. (2018). Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4- dichlorophenoxyacetic acid. Electrochimica Acta, 269, 415–42es_CO
    dc.relation.referencesLucotte, M., & Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by−product aminomethylphosphonic acid: an overview. Journal of Experimental Botanyes_CO
    dc.relation.referencesM. Sun, J. Alikhani, R. Greine, & D.P. Jaisi. (2013). Phytate degradation by different phosphohydrolase enzymes: contrasting kinetics, decay rates, pathways, and isotope effects. Soil Sci. Soc, 61–75es_CO
    dc.relation.referencesMaqueda, C., Undabeytia, T., Villaverde, J., & Morillo, E. (2017). Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of The Total Environment, 593– 594, 787–795. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.03.202es_CO
    dc.relation.referencesMerck group. (2017). ficha de datos de seguridad de ácido 2,4-diclorofenoxiacetico para sintesis .es_CO
    dc.relation.referencesNagatomi, Y., Yoshioka, T., Yanagisawa, M., Uyama, A., & Mochizuki, N. (2013). Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Bioscience, Biotechnology, and Biochemistry, 77(11), 2218–2221.es_CO
    dc.relation.referencesNakbi, A., W Tayeb, S Dabbou, M Issaou, A K Grissa, N Attia, & M Hammami. (2013). Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2,4-D- exposed rats. Lipidword, 1–10.es_CO
    dc.relation.referencesOrooji, N., Takdastan, A., Yengejeh, R. J., Jorfi, S., & Davami, A. H. (2021). A quick and inexpensive method to determine 2, 4-dichlorophenoxyacetic acid residues in water samples by HPLC. Desalination and Water Treatment, 217(1), 329–338.es_CO
    dc.relation.referencesOsatinsky, R. (2007). ¿Qué es la electroforesis capilar. Bioquímica y Patología Clínica, 71(2), 60–66es_CO
    dc.relation.referencesPatel, H. (2019). Fixed-bed column adsorption study: a comprehensive review. Applied Water Science, 9(3), 1–17.es_CO
    dc.relation.referencesRamirez, C. E., Bellmund, S., & Gardinali, P. R. (2014). A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC-FLD+ MS/MS. Case study: canals with influence on Biscayne National Park. Science of the Total Environment, 496, 389–401.es_CO
    dc.relation.referencesRelyea RA. (2012). New efects of Roundup on amphibians: predators reduce herbicide morphologytality; herbicides induce antipredator morp. In Ecol Appl 22 (pp. 634–647).es_CO
    dc.relation.referencesRendón-von Osten, J., & Dzul-Caamal, R. (2017). Glyphosate residues in groundwater, drinking water and urine of subsistence farmers from intensive agriculture localities: a survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research and Public Health, 14(6), 595.es_CO
    dc.relation.referencesRobles, F. O., Rojo, J. C. T., & Bas, M. S. (2011). Tratamiento de aguas para la eliminación de microorganismos y agentes contaminantes.: Aplicación de procesos industriales a la reutilización de aguas residuales. Ediciones Díaz de Santos.es_CO
    dc.relation.referencesRosales-Robles E y R Sanchez de la Cruz. (2013). Clasificación y uso de los herbicidas por su modo de acción. Folleto Técnico No. 35. INIFAP. ISBN: 968- 800-666-1.es_CO
    dc.relation.referencesRose, T. J., van Zwieten, L., Claassens, A., Scanlan, C., & Rose, M. T. (2018). Phytotoxicity of soilborne glyphosate residues is influenced by the method of phosphorus fertiliser application. Plant and Soil, 422(1), 455–465.es_CO
    dc.relation.referencesRubio, F., Veldhuis, L. J., Clegg, B. S., Fleeker, J. R., & Hall, J. C. (2003). Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water. Journal of Agricultural and Food Chemistry, 51(3), 691–696.es_CO
    dc.relation.referencesS. H. Tseng, Y. W. Lo, P. C. Chang, S. S. Chou, & H. M. Chang. (2004). Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector (Vol. 52, pp. 4057–4063).es_CO
    dc.relation.referencesS. Wang, B. Liu, D. Yuan, & J. Ma. (2016a). “A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. In Talanta (Vol. 161, pp. 700–706)es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Haro_2021_TG.pdfHaro_2021_TG503,1 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.