• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Please use this identifier to cite or link to this item: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5465
    Full metadata record
    DC FieldValueLanguage
    dc.contributor.authorSierra Álvarez, Andrés Felipe.-
    dc.date.accessioned2022-12-15T19:31:24Z-
    dc.date.available2022-03-20-
    dc.date.available2022-12-15T19:31:24Z-
    dc.date.issued2022-
    dc.identifier.citationSierra Álvarez, A. F. (2021). Caracterización teórica de las técnicas de la ciencia de datos e inteligencia artificial implementadas en el campo de la ciencia e ingeniería de los materiales: Oportunidades, descubrimientos e innovación [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5465es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5465-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent49es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleCaracterización teórica de las técnicas de la ciencia de datos e inteligencia artificial implementadas en el campo de la ciencia e ingeniería de los materiales: Oportunidades, descubrimientos e innovación.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-12-20-
    dc.relation.referencesAddin, O., Sapuan, S. M., Mahdi, E., & Othman, M. (2007). A Naïve-Bayes classifier for damage detection in engineering materials. Materials and Design, 28(8), 2379–2386. https://doi.org/10.1016/j.matdes.2006.07.018es_CO
    dc.relation.referencesAgrawal, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Materials, 4(5). https://doi.org/10.1063/1.494689es_CO
    dc.relation.referencesAgrawal, A., Deshpande, P. D., Cecen, A., Basavarsu, G. P., Choudhary, A. N., & Kalidindi, S. R. (2014). Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. 1–19.es_CO
    dc.relation.referencesAha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66. https://doi.org/10.1007/BF00153759es_CO
    dc.relation.referencesAsaduzzaman, M., Hossain, N., Ahmed, B., Fotouhi, M., Islam, S., Ali, R., & Abul, M. (2021). Recent machine learning guided material research - A review. Computational Condensed Matter, 29(June), e00597. https://doi.org/10.1016/j.cocom.2021.e00597es_CO
    dc.relation.referencesAustin, T. (2016). Towards a digital infrastructure for engineering materials data. Materials Discovery, 3, 1–12. https://doi.org/10.1016/J.MD.2015.12.003es_CO
    dc.relation.referencesBastidas-Rodriguez, M. X., Prieto-Ortiz, F. A., & Espejo, E. (2016). Fractographic classification in metallic materials by using computer vision. Engineering Failure Analysis, 59, 237–252. https://doi.org/https://doi.org/10.1016/j.engfailanal.2015.10.008es_CO
    dc.relation.referencesBeck, D. A. C., Carothers, J. M., Subramanian, V. R., & Pfaendtner, J. (2016). Data Science: Accelerating Innovation and Discovery in Chemical Engineering. AIChE Journal, 62. https://doi.org/10.1002/aices_CO
    dc.relation.referencesBishop, C. M., Bishop, P. N. C. C. M., Hinton, G., & Press, O. U. (1995). Neural Networks for Pattern Recognition. Clarendon Press. https://books.google.com.co/books?id=- aAwQO%5C_-rXwCes_CO
    dc.relation.referencesBolstad, W. (2004). Introduction to Bayesian Statistics. In University of Waikato. John Wiley.es_CO
    dc.relation.referencesBouckaert, R. (2004). Naive Bayes Classifiers That Perform Well with Continuous Variables (Vol. 3339). https://doi.org/10.1007/978-3-540-30549-1_106es_CO
    dc.relation.referencesBreiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/BF00058655es_CO
    dc.relation.referencesButler, K. T., & Daniel, W. (2018). Machine learning for molecular and materials science. Nature. https://doi.org/10.1038/s41586-018-0337-2es_CO
    dc.relation.referencesCai, J., Chu, X., Xu, K., Li, H., & Wei, J. (2020). Machine learning-driven new material discovery. 3115–3130. https://doi.org/10.1039/d0na00388ces_CO
    dc.relation.referencesChen, L.-Q., Chen, L.-D., Kalinin, S. V, Klimeck, G., Kumar, S. K., Neugebauer, J., & Terasaki, I. (2015). Design and discovery of materials guided by theory and computation. Npj Computational Materials, 1(1), 15007. https://doi.org/10.1038/npjcompumats.2015es_CO
    dc.relation.referencesChibani, S., & Coudert, F. (2021). Machine learning approaches for the prediction of materials properties. 080701(August 2020). https://doi.org/10.1063/5.0018384es_CO
    dc.relation.referencesCurtarolo, S., Hart, G. L. W., Nardelli, M. B., Mingo, N., Sanvito, S., & Levy, O. (2013). The high-throughput highway to computational materials design. Nature Materials, 12(3), 191–201. https://doi.org/10.1038/nmat3568es_CO
    dc.relation.referencesDeCost, B. L., & Holm, E. A. (2017). Characterizing powder materials using keypoint-based computer vision methods. Computational Materials Science, 126, 438–445. 46 https://doi.org/https://doi.org/10.1016/j.commatsci.2016.08.038es_CO
    dc.relation.referencesFausett, L., & Fausett, L. V. (1994). Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall. https://books.google.com.co/books?id=ONylQgAACAAJes_CO
    dc.relation.referencesFernandez, R., Okariz, A., Ibarretxe, J., Iturrondobeitia, M., & Guraya, T. (2014). Use of decision tree models based on evolutionary algorithms for the morphological classification of reinforcing nano-particle aggregates. COMPUTATIONAL MATERIALS SCIENCE, 92, 102–113. https://doi.org/10.1016/j.commatsci.2014.05.038es_CO
    dc.relation.referencesFeynman, R. P. (1939). Forces in Molecules. Phys. Rev., 56(4), 340–343. https://doi.org/10.1103/PhysRev.56.340es_CO
    dc.relation.referencesFrançois-lavet, S. C. V., Henderson, P., Islam, R., François-lavet, V., Pineau, J., & Bellemare, M. G. (2018). An Introduction to Deep Reinforcement Learning. https://doi.org/10.1561/2200000071.Vincentes_CO
    dc.relation.referencesFreund, Y., & Hill, M. (1996). Experiments with a New Boosting Algorithm.es_CO
    dc.relation.referencesGibert, X., Patel, V. M., & Chellappa, R. (2017). Deep Multitask Learning for Railway Track Inspection. Trans. Intell. Transport. Sys., 18(1), 153–164. https://doi.org/10.1109/TITS.2016.2568758es_CO
    dc.relation.referencesGreeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5(11), 909–913. https://doi.org/10.1038/nmat1752es_CO
    dc.relation.referencesHansen, K., Biegler, F., Fazli, S., Rupp, M., Sche, M., Lilienfeld, O. A. Von, Tkatchenko, A., & Mu, K. (2013). Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.es_CO
    dc.relation.referencesHautier, G., Jain, A., & Ping, S. (2012). From the computer to the laboratory : materials discovery and design using first-principles calculations. https://doi.org/10.1007/s10853- 012-6424-0es_CO
    dc.relation.referencesHimanen, L., Geurts, A., Foster, A. S., & Rinke, P. (2019). Data-Driven Materials Science: Status, Challenges, and Perspectives. Advanced Science, 6(21). https://doi.org/10.1002/advs.201900808es_CO
    dc.relation.referencesHo, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601es_CO
    dc.relation.referencesHosmer, D., & Lemeshow, S. (1989). Applied Logistic Regression. John Wiley and Sons.es_CO
    dc.relation.referencesJablonka, K. M., Ongari, D., Moosavi, S. M., & Smit, B. (2020). Big-Data Science in Porous Materials: Materials Genomics and Machine Learning. Ces_CO
    dc.relation.referencesJohn, G., & Langley, P. (2013). Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, 1.es_CO
    dc.relation.referencesKessler, S., Spearing, S., Atalla, M., & Cesnik, C. (2001). Structural health monitoring in composite materials using frequency response methods. Proceedings of SPIE - The International Society for Optical Engineering, 4336. https://doi.org/10.1117/12.435552es_CO
    dc.relation.referencesKohavi, R. (1997). The Power of Decision Tables. Proceedings of European Conference on Machine Learning. https://doi.org/10.1007/3-540-59286-5_57es_CO
    dc.relation.referencesLandwehr, N., Hall, M., & Frank, E. (2005). Logistic Model Trees. Machine Learning, 59(1), 161–205. https://doi.org/10.1007/s10994-005-0466-3es_CO
    dc.relation.referencesLangley, P., Carbonell, J. G., & IBM. (2018). Machine Learning For Dummies. In Journal of the American Society for Information Science (Vol. 35, Issue 5). https://doi.org/10.1002/asi.4630350509es_CO
    dc.relation.referencesLeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.es_CO
    dc.relation.referencesLi, M.-X., Zhao, S.-F., Lu, Z., Hirata, A., Wen, P., Bai, H.-Y., Chen, M., Schroers, J., Liu, Y., & Wang, W.-H. (2019). High-temperature bulk metallic glasses developed by combinatorial methods. Nature, 569(7754), 99–103. https://doi.org/10.1038/s41586-019- 1145-zes_CO
    dc.relation.referencesLiu, H., Bimbo, J., Seneviratne, L., Althoefer, K., & Mary, Q. (2014). Surface material recognition through haptic exploration using an intelligent contact sensing finger. October 2012. https://doi.org/10.1109/IROS.2012.6385815es_CO
    dc.relation.referencesLiu, Y., Zhao, T., Ju, W., Shi, S., Shi, S., & Shi, S. (2017). Materials discovery and design using machine learning. Journal of Materiomics, 3(3), 159–177. https://doi.org/10.1016/j.jmat.2017.08.002es_CO
    dc.relation.referencesMaimon, O., & Rokach, L. (2005). Data Mining And Knowledge Discovery Handbook.es_CO
    dc.relation.referencesMason, L. (2002). The Alternating Decision Tree Learning Algorithm. Proc. 16th International Conference on Machine Learning, 99.es_CO
    dc.relation.referencesMohri, M. (2018). Foundations of Machine Learning (F. Bach (ed.); 2nd ed.). The MIT Press.es_CO
    dc.relation.referencesMorgan, D., & Jacobs, R. (2020). Opportunities and Challenges for Machine Learning in Materials Science. Annual Review of Materials Research, 50, 71–103. https://doi.org/10.1146/annurev-matsci-070218-010015es_CO
    dc.relation.referencesNigsch, F., Bender, A., Buuren, B. Van, Tissen, J., Nigsch, E., & Mitchell, J. B. O. (2006). Melting Point Prediction Employing k -Nearest Neighbor Algorithms and Genetic Parameter Optimization. 2412–2422.es_CO
    dc.relation.referencesOng, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L., Persson, K. A., & Ceder, G. (2013). Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science, 68, 314–319. https://doi.org/https://doi.org/10.1016/j.commatsci.2012.10.028es_CO
    dc.relation.referencesPaul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.10.010es_CO
    dc.relation.referencesPhilip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences, 275, 314–347. https://doi.org/https://doi.org/10.1016/j.ins.2014.01.015es_CO
    dc.relation.referencesPizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., & Kozinsky, B. (2016). AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 111, 218–230. https://doi.org/https://doi.org/10.1016/j.commatsci.2015.09.013es_CO
    dc.relation.referencesQuinlan, J. R. (1992). Learning With Continuous Classes.es_CO
    dc.relation.referencesRiveret, R., Gao, Y., Governatori, G., Rotolo, A., Pitt, J., & Sartor, G. (2019). A probabilistic argumentation framework for reinforcement learning agents: Towards a mentalistic approach to agent profiles. In Autonomous Agents and Multi-Agent Systems (Vol. 33, Issues 1–2). Springer US. https://doi.org/10.1007/s10458-019-09404-2es_CO
    dc.relation.referencesRodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation Forest: A New Classifier Ensemble Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1619–1630. https://doi.org/10.1109/TPAMI.2006.211es_CO
    dc.relation.referencesRouhiainen, L. (2018). Inteligencia artificial 101 cosas que debes saber. Alienta Editorial, 352. https://planetadelibrosar0.cdnstatics.com/libros_contenido_extra/40/39307_Inteligencia_ artificial.pdfes_CO
    dc.relation.referencesRussell, S. J., & Norvig, P. (2019). Artificial Intelligence A Modern Approach (4th ed., Vol. 1).es_CO
    dc.relation.referencesSajid, S., Haleem, A., Bahl, S., Javaid, M., Goyal, T., & Mittal, M. (2021). Data science applications for predictive maintenance and materials science in context to Industry 4.0. Materials Today: Proceedings, 45(xxxx), 4898–4905. https://doi.org/10.1016/j.matpr.2021.01.357es_CO
    dc.relation.referencesSalzberg, S. L. (1994). C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning, 16(3), 235–240. https://doi.org/10.1007/BF00993309es_CO
    dc.relation.referencesSánchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Inverse molecular design using machine learning: Generative models for matter engineering. Science, 361, 360–365.es_CO
    dc.relation.referencesSchleder, G. R., Padilha, A. C. M., Acosta, C. M., Costa, M., & Fazzio, A. (2019). From DFT to machine learning: Recent approaches to materials science - A review. JPhys Materials, 2(3). https://doi.org/10.1088/2515-7639/ab084bes_CO
    dc.relation.referencesShakhnarovich, G., & Darrell, T. (2005). Nearest-Neighbor Methods in Learning and Vision: Theory and Practice. In The MIT Presses_CO
    dc.relation.referencesShiraiwa, T., Miyazawa, Y., & Enoki, M. (2018). Prediction of Fatigue Strength in Steels by Linear Regression and Neural Network. 60(2), 189–198.es_CO
    dc.relation.referencesSolomatine, D. P., & Xue, Y. (2004). M5 Model Trees and Neural Networks : Application to Flood Forecasting in the Upper Reach of the Huai River in China. 9(6). https://doi.org/10.1061/(ASCE)1084-0699(2004)9es_CO
    dc.relation.referencesSong, I. Y., & Zhu, Y. (2016). Big data and data science: what should we teach? Expert Systems, 33(4), 364–373. https://doi.org/10.1111/exsy.12130es_CO
    dc.relation.referencesSumner, M., Frank, E., & Hall, M. (2005). Speeding Up Logistic Model Tree Induction. In 9th European Conference on Principles and Practice of Knowledge Discovery in Databases. https://doi.org/10.1007/11564126_72es_CO
    dc.relation.referencesThomas, C. R., George, S., Horst, A. M., Ji, Z., Miller, R. J., Peralta-Videa, J. R., Xia, T., Pokhrel, S., Mädler, L., Gardea-Torresdey, J. L., Holden, P. A., Keller, A. A., Lenihan, H. S., Nel, A. E., & Zink, J. I. (2011). Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano, 5(1), 13–20. https://doi.org/10.1021/nn103485es_CO
    dc.relation.referencesVapnik, V. (2000). The Nature of Statistical Learning Theory. In Statistics for Engineering and Information Science (Vol. 8, pp. 1–15). https://doi.org/10.1007/978-1-4757-3264-1_1es_CO
    dc.relation.referencesVirkus, S., & Garoufallou, E. (2019). Data science from a library and information science perspective. Data Technologies and Applications, 53, 442–441. https://doi.org/10.1108/DTA-05-2019-0076es_CO
    dc.relation.referencesWang, Y., & Witten, I. (1997). Induction of model trees for predicting continuous classes. Induction of Model Trees for Predicting Continuous Classes.es_CO
    dc.relation.referencesWard, C. (2012). Materials Genome Initiative for Global Competitiveness (Issue June).es_CO
    dc.relation.referencesWeher, E. (1977). An introduction to linear regression and correlation. (A series of books in psychology.). Biometrical Journal, 19(1), 83–84. https://doi.org/https://doi.org/10.1002/bimj.4710190121es_CO
    dc.relation.referencesWei, J., Chu, X., Sun, X., Xu, K., Deng, H., Chen, J., Wei, Z., & Lei, M. (2019). Machine learning in materials science. Wiley Interdisciplinary Reviews, 1(3), 338–358. https://doi.org/10.1002/inf2.12028es_CO
    dc.relation.referencesWitten, I. H., Frank, E., Hall, M. A., & Pal, C. (2016). Data Mining: Practical Machine Learning Tools and Techniques. Elsevier Science. https://books.google.co.uk/books?id=1SylCgAAQBAJes_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Appears in Collections:Ingeniería Química

    Files in This Item:
    File Description SizeFormat 
    Sierra_2020_TG.pdfSierra_2020_TG1,34 MBAdobe PDFView/Open


    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.