• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5457
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorAmaya Cervantes, Sergio Andrés.-
    dc.date.accessioned2022-12-15T18:13:41Z-
    dc.date.available2021-03-22-
    dc.date.available2022-12-15T18:13:41Z-
    dc.date.issued2021-
    dc.identifier.citationAmaya Cervantes, S. A. (2020). Importancia de los análisis de ciclo de vida en la medición de impactos ambientales. [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5457es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5457-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent58es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleImportancia de los análisis de ciclo de vida en la medición de impactos ambientales.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-12-22-
    dc.relation.referencesBanco Mundial. (5 de 06 de 2020). WDI. Obtenido de http://datatopics.worldbank.org/world development-indicatores_CO
    dc.relation.referencesCIA. (2020). The Word Factbook. Obtenido de https://www.cia.gov/library/publications/resources/the-world factbook/geos/xx.html#field-anchor-energy-crude-oil-production Ciclos.top. (2020). Ciclos.top. Obtenido de https://ciclos.top/ciclo-del-agua/ Ciclos.top. (2020). Ciclos-top. Obtenido de https://ciclos.top/ciclo-del-carbono/ ciclos.top. (2020). https://ciclos.top/ciclo-del-oxigeno/. Obtenido de https://ciclos.top/ciclo del-oxigeno/es_CO
    dc.relation.referencesCiclos-Biogeoquímicos. (2020). Ciclos Biogeoquímicos - Qué son, Tipos y Características [2020]. Obtenido de https://ciclos.top/es_CO
    dc.relation.referencesGlobal Footprint. (2016). Global Footprint Netword. Obtenido de http://data.footprintnetwork.org/?__hstc=207509324.1240b4f877c144997e3c54433c1 537b0.1586220768594.1586220768594.1586220768594.1&__hssc=207509324.1.158 6220768594&__hsfp=3069542372#/countryTrends?cn=5001&type=earthes_CO
    dc.relation.referencesHannah Ritchie, M. R. (2020). OurWorldInData.org. Obtenido de https://ourworldindata.org/environmental-impacts-of-foodes_CO
    dc.relation.referencesHauschild MZ, H. M. (2015). Life Cycle Impact Assessment. Dordrecht. (Springer, Ed.) doi:https://doi.org/10.1007/978-94-017-9744-3_1es_CO
    dc.relation.referencesIPCC. (2013). Climate Change 2013: The Physical Science Basis. Cambridge Reino Unido: CAMBRIDGE UNIVERSITY PRESS.es_CO
    dc.relation.referencesISO 14044. (2006). Online Browsing Platform (OBP). Obtenido de https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:eses_CO
    dc.relation.referencesISO14040. (2006). ISO 14040:2006(es) Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia. Obtenido de https://www.iso.org/obp/ui#iso:std:iso:14040:ed-2:v1:eses_CO
    dc.relation.referencesKulczycka J, L. Ł. (2014). Eco-efficiency of investment projects using the concept of product life cycle. Cracovia, Polonia: Springer, Cham. doi:https://doi.org/10.1007/978-3-319- 03826-1es_CO
    dc.relation.referencesNational Oceanic and Atmospheric Administration. (2020). noaa.gov. Obtenido de https://www.noaa.gov/education/resource-collections/climate/carbon-cyclees_CO
    dc.relation.referencesTurton R., B. R. (2012). Analysis, Synthesis, and Design of Chemical. Ann Arbor, Michigan, USA: Prentice Hall.es_CO
    dc.relation.referencesZimmermann, A., Müller, L. J., Marxen, A., Armstrong, K., Buchner, G., Wunderlich, J., . . . Bardow, A. (2018). Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization. doi:https://doi.org/10.3998/2027.42/145436es_CO
    dc.relation.referencesAmezcua-Allieri, M. A., Martínez-Hernández, E., Anaya-Reza, O., Magdaleno-Molina, M., Melgarejo-Flores, L. A., Palmerín-Ruiz, M. E., Eguía-Lis, J. A. Z., Rosas-Molina, A., Enríquez-Poy, M., & Aburto, J. (2019). Techno-economic analysis and life cycle assessment for energy generation from sugarcane bagasse: Case study for a sugar mill in Mexico. Food and Bioproducts Processing, 118, 281–292. https://doi.org/10.1016/j.fbp.2019.09.014es_CO
    dc.relation.referencesAmienyo, D., Gujba, H., Stichnothe, H., & Azapagic, A. (2013). Life cycle environmental impacts of carbonated soft drinks. International Journal of Life Cycle Assessment, 18(1), 77–92. https://doi.org/10.1007/s11367-012-0459-yes_CO
    dc.relation.referencesAtampugre, G., Nursey-Bray, M., & Adade, R. (2019). Using geospatial techniques to assess climate risks in savannah agroecological systems. Remote Sensing Applications: Society and Environment, 14(January), 100–107. https://doi.org/10.1016/j.rsase.2019.01.006es_CO
    dc.relation.referencesBamber, N., Turner, I., Arulnathan, V., Li, Y., Zargar Ershadi, S., Smart, A., & Pelletier, N. (2020). Comparing sources and analysis of uncertainty in consequential and attributional life cycle assessment: review of current practice and recommendations. International Journal of Life Cycle Assessment, 25(1), 168–180. https://doi.org/10.1007/s11367-019- 01663-1es_CO
    dc.relation.referencesBare, J. C. (2010). Life cycle impact assessment research developments and needs. Clean Technologies and Environmental Policy, 12(4), 341–351. https://doi.org/10.1007/s10098- 009-0265-9es_CO
    dc.relation.referencesBoulamanti, A., & Moya, J. A. (2016). Production costs of the non-ferrous metals in the EU and other countries: Copper and zinc. Resources Policy, 49, 112–118. https://doi.org/10.1016/j.resourpol.2016.04.011es_CO
    dc.relation.referencesChen, H., Yang, Y., Yang, Y., Jiang, W., & Zhou, J. (2014). A bibliometric investigation of life cycle assessment research in the web of science databases. International Journal of Life Cycle Assessment, 19(10), 1674–1685. https://doi.org/10.1007/s11367-014-0777-3es_CO
    dc.relation.referencesChen, W., Geng, Y., Hong, J., Yang, D., & Ma, X. (2018). Life cycle assessment of potash fertilizer production in China. Resources, Conservation and Recycling, 138(August), 238–245. https://doi.org/10.1016/j.resconrec.2018.07.028es_CO
    dc.relation.referencesde Jong, S., Antonissen, K., Hoefnagels, R., Lonza, L., Wang, M., Faaij, A., & Junginger, M. (2017). Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnology for Biofuels, 10(1), 64. https://doi.org/10.1186/s13068-017- 0739-7es_CO
    dc.relation.referencesDivya, Y., & Gopinathan, P. (2019). Soil water content measurement using hyper-spectral remote sensing techniques – A case study from north-western part of Tamil Nadu, India. Remote Sensing Applications: Society and Environment, 14(August 2018), 1–7. https://doi.org/10.1016/j.rsase.2019.01.005es_CO
    dc.relation.referencesEshun, J. F., Potting, J., & Leemans, R. (2010). Inventory analysis of the timber industry in Ghana. International Journal of Life Cycle Assessment, 15(7), 715–725. https://doi.org/10.1007/s11367-010-0207-0es_CO
    dc.relation.referencesEshun, J. F., Potting, J., & Leemans, R. (2011). LCA of the timber sector in Ghana: Preliminary life cycle impact assessment (LCIA). International Journal of Life Cycle Assessment, 16(7), 625–638. https://doi.org/10.1007/s11367-011-0307-5es_CO
    dc.relation.referencesFinkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010). Towards life cycle sustainability assessment. Sustainability, 2(10), 3309–3322. https://doi.org/10.3390/su2103309es_CO
    dc.relation.referencesFrank Eshun, J., Potting, J., & Leemans, R. (2012). Wood waste minimization in the timber sector of Ghana: A systems approach to reduce environmental impact. Journal of Cleaner Production, 26, 67–78. https://doi.org/10.1016/j.jclepro.2011.12.025es_CO
    dc.relation.referencesHeijungs, R. (2014). Ten easy lessons for good communication of LCA. International Journal of Life Cycle Assessment, 19(3), 473–476. https://doi.org/10.1007/s11367-013-0662-5es_CO
    dc.relation.referencesHeijungs, R., Huppes, G., & Guinée, J. B. (2010). Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polymer Degradation and Stability, 95(3), 422–428. https://doi.org/10.1016/j.polymdegradstab.2009.11.010es_CO
    dc.relation.referencesJolliet, O., Frischknecht, R., Bare, J., Boulay, A. M., Bulle, C., Fantke, P., Gheewala, S., Hauschild, M., Itsubo, N., Margni, M., McKone, T. E., Y Canals, L. M., Postuma, L., Prado-Lopez, V., Ridoutt, B., Sonnemann, G., Rosenbaum, R. K., Seager, T., Struijs, J., … Weisbrod, A. (2014). Global guidance on environmental life cycle impact assessment indicators: Findings of the scoping phase. International Journal of Life Cycle Assessment, 19(4), 962–967. https://doi.org/10.1007/s11367-014-0703-8es_CO
    dc.relation.referencesKleinekorte, J., Fleitmann, L., Bachmann, M., Kätelhön, A., Barbosa-Póvoa, A., von der Assen, N., & Bardow, A. (2020). Life Cycle Assessment for the Design of Chemical Processes, Products, and Supply Chains. Annual Review of Chemical and Biomolecular Engineering, 11(1), 203–236. https://doi.org/10.1146/annurev-chembioeng-011520- 075844es_CO
    dc.relation.referencesKucukvar, M., Gumus, S., Egilmez, G., & Tatari, O. (2014). Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method. Automation in Construction, 40, 33–43. https://doi.org/10.1016/j.autcon.2013.12.009es_CO
    dc.relation.referencesKulczycka, J., & Smol, M. (2016). Environmentally friendly pathways for the evaluation of investment projects using life cycle assessment (LCA) and life cycle cost analysis (LCCA). Clean Technologies and Environmental Policy, 18(3), 829–842. https://doi.org/10.1007/s10098-015-1059-xes_CO
    dc.relation.referencesLi, S., Feliachi, Y., Agbleze, S., Ruiz-Mercado, G. J., Smith, R. L., Meyer, D. E., Gonzalez, M. A., & Lima, F. V. (2018). A process systems framework for rapid generation of life cycle inventories for pollution control and sustainability evaluation. Clean Technologies and Environmental Policy, 20(7), 1543–1561. https://doi.org/10.1007/s10098-018-1530- 6es_CO
    dc.relation.referencesMasanet, E., Chang, Y., Gopal, A. R., Larsen, P., Morrow, W. R., Sathre, R., Shehabi, A., & Zhai, P. (2013). Life-Cycle Assessment of Electric Power Systems. Annual Review of Environment and Resources, 38(1), 107–136. https://doi.org/10.1146/annurev-environ 010710-100408es_CO
    dc.relation.referencesMcCulloch, A., & Lindley, A. A. (2003). From mine to refrigeration: A life cycle inventory analysis of the production of HFC-134a. International Journal of Refrigeration, 26(8), 865–872. https://doi.org/10.1016/S0140-7007(03)00095-1es_CO
    dc.relation.referencesMeyer, D. E., & Upadhyayula, V. K. K. (2014). The use of life cycle tools to support decision making for sustainable nanotechnologies. Clean Technologies and Environmental Policy, 16(4), 757–772. https://doi.org/10.1007/s10098-013-0686-3es_CO
    dc.relation.referencesNiero, M., & Olsen, S. I. (2016). Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resources, Conservation and Recycling, 114, 18–31. https://doi.org/10.1016/j.resconrec.2016.06.023es_CO
    dc.relation.referencesNuss, P., & Gardner, K. H. (2013). Attributional life cycle assessment (ALCA) of polyitaconic acid production from northeast US softwood biomass. International Journal of Life Cycle Assessment, 18(3), 603–612. https://doi.org/10.1007/s11367-012-0511-yes_CO
    dc.relation.referencesOtoma, S., & Diaz, R. (2017). Life-cycle greenhouse gas emissions and economic analysis of alternative treatments of solid waste from city markets in Vietnam. Journal of Material Cycles and Waste Management, 19(1), 70–87. https://doi.org/10.1007/s10163-015-0380- 0es_CO
    dc.relation.referencesPoore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992. https://doi.org/10.1126/science.aaq0216es_CO
    dc.relation.referencesPopp, A., Lotze-Campen, H., & Bodirsky, B. (2010). Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change, 20(3), 451–462. https://doi.org/10.1016/j.gloenvcha.2010.02.001es_CO
    dc.relation.referencesRivera, J. L., & Sutherland, J. W. (2015). A design of experiments (DOE) approach to data uncertainty in LCA: Application to nanotechnology evaluation. Clean Technologies and Environmental Policy, 17(6), 1585–1595. https://doi.org/10.1007/s10098-014-0890-9es_CO
    dc.relation.referencesWeersink, A., Fraser, E., Pannell, D., Duncan, E., & Rotz, S. (2018). Opportunities and Challenges for Big Data in Agricultural and Environmental Analysis. Annual Review of Resource Economics, 10(1), 19–37. https://doi.org/10.1146/annurev-resource-100516- 053654es_CO
    dc.relation.referencesYan, M. J., Humphreys, J., & Holden, N. M. (2011). An evaluation of life cycle assessment of European milk production. Journal of Environmental Management, 92(3), 372–379. https://doi.org/10.1016/j.jenvman.2010.10.025es_CO
    dc.relation.referencesZeshan, M. (2019). Carbon footprint accounts of Pakistan: an input-output life cycle assessment model. Environmental Science and Pollution Research, 26(29), 30313–30323. https://doi.org/10.1007/s11356-019-06196-6es_CO
    dc.relation.referencesZhang, H., Chen, L., Tong, Y., Zhang, W., Yang, W., Liu, M., Liu, L., Wang, H., & Wang, X. (2018). Impacts of supply and consumption structure on the mercury emission in China: An input-output analysis based assessment. Journal of Cleaner Production, 170, 96–107. https://doi.org/10.1016/j.jclepro.2017.09.139es_CO
    dc.relation.referencesZhang, X., Liu, K., & Zhang, Z. (2020). Life cycle carbon emissions of two residential buildings in China: Comparison and uncertainty analysis of different assessment methods. Journal of Cleaner Production, 266, 122037. https://doi.org/10.1016/j.jclepro.2020.122037es_CO
    dc.relation.referencesZhang, X., & Wang, F. (2016). Assessment of embodied carbon emissions for building construction in China: Comparative case studies using alternative methods. Energy and Buildings, 130, 330–340. https://doi.org/10.1016/j.enbuild.2016.08.080es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Amaya_2020_TG.pdfAmaya_2020_TG2,74 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.