Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5452
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Mora Alvarez, Sandra Bibiana. | - |
dc.date.accessioned | 2022-12-15T16:11:58Z | - |
dc.date.available | 2021-03-22 | - |
dc.date.available | 2022-12-15T16:11:58Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Mora Alvarez, S. B. (2020). Estudio comparativo de las tecnologías de conversión y almacenamiento de energía a partir de hidrógeno verde y azul [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5452 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5452 | - |
dc.description | La autora no proporciona la información sobre este ítem. | es_CO |
dc.description.abstract | La autora no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 43 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | La autora no proporciona la información sobre este ítem. | es_CO |
dc.title | Estudio comparativo de las tecnologías de conversión y almacenamiento de energía a partir de hidrógeno verde y azul. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
dc.date.accepted | 2020-12-22 | - |
dc.relation.references | Abe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29). https://doi.org/10.1016/j.ijhydene.2019.04.068 | es_CO |
dc.relation.references | Acar, C., & Dincer, I. (2018). 4 . 24 Hydrogen Energy Conversion Systems (Vol. 4, pp. 947– 984). https://doi.org/10.1016/B978-0-12-809597-3.00441-7 | es_CO |
dc.relation.references | Ahn, J., Park, S. H., Lee, S., Noh, Y., & Chang, D. (2018). Molten carbonate fuel cell (MCFC)- based hybrid propulsion systems for a liquefied hydrogen tanker. International Journal of Hydrogen Energy, 43(15), 7525–7537. https://doi.org/10.1016/j.ijhydene.2018.03.015 | es_CO |
dc.relation.references | Allebrod, F., Chatzichristodoulou, C., & Mogensen, M. B. (2013). Alkaline electrolysis cell at high temperature and pressure of 250 C and 42 bar. 229, 22–31. https://doi.org/10.1016/j.jpowsour.2012.11.105 | es_CO |
dc.relation.references | Ates, F., & Ozcan, H. (2020). Turkey ’ s industrial waste heat recovery potential with power and hydrogen conversion technologies : A techno-economic analysis. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.11.059 | es_CO |
dc.relation.references | Baeyens, J., Zhang, H., Nie, J., Appels, L., Dewil, R., Ansart, R., & Deng, Y. (2020). Reviewing the potential of bio-hydrogen production by fermentation. Renewable and Sustainable Energy Reviews, 131(July), 110023. https://doi.org/10.1016/j.rser.2020.110023 | es_CO |
dc.relation.references | Barco-burgos, J., Eicker, U., Saldaña-robles, N., Saldaña-robles, A. L., & Alcántar-camarena, V. (2020). Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure. Fuel, 276(December 2019), 117910. https://doi.org/10.1016/j.fuel.2020.117910 | es_CO |
dc.relation.references | Bloomberg NEF. (2020). Hydrogen Economy Outlook. | es_CO |
dc.relation.references | Cappelletti, A., Martelli, F., & Marta, V. S. (2017). Investigation of a pure hydrogen fueled gas turbine burner. International Journal of Hydrogen Energy, 42(15), 10513–10523. https://doi.org/10.1016/j.ijhydene.2017.02.104 | es_CO |
dc.relation.references | Chen, Z., Ma, Z., Zheng, J., Li, X., Akiba, E., & Li, H. (2020). Perspectives and challenges of hydrogen storage in solid-state hydrides. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2020.08.024 | es_CO |
dc.relation.references | Cloete, S., Ruhnau, O., & Hirth, L. (2020). On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.09.197 | es_CO |
dc.relation.references | convocatoria energía sostenible. (n.d.). Retrieved October 9, 2020, from https://minciencias.gov.co/sites/default/files/upload/convocatoria/tdr_energia_sostenible _y_su_aporte_a_la_planeacion_minero_energetica-2020_firmados.pdf | es_CO |
dc.relation.references | Eveloy, V., Karunkeyoon, W., Rodgers, P., & Al Alili, A. (2016). Energy, exergy and economic analysis of an integrated solid oxide fuel cell – gas turbine – organic Rankine power generation system. International Journal of Hydrogen Energy, 41(31), 13843– 35 13858. https://doi.org/10.1016/j.ijhydene.2016.01.146 | es_CO |
dc.relation.references | Garcia, G., Arriola, E., Chen, W., & Luna, M. D. De. (2020). A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainabulity. Energy, 119384. https://doi.org/10.1016/j.energy.2020.119384 | es_CO |
dc.relation.references | Gulcin, D., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11), 6793–6805. https://doi.org/10.1016/j.ijhydene.2019.12.161 | es_CO |
dc.relation.references | Han, M., Lao, J., Yao, Q., Zhang, B., & Meng, J. (2020). Carbon inequality and economic development across the Belt and Road regions. Journal of Environmental Management, 262(February), 110250. https://doi.org/10.1016/j.jenvman.2020.110250 | es_CO |
dc.relation.references | He, K., Zhang, C., He, Q., Wu, Q., Jackson, L., & Mao, L. (2020). Effectiveness of PEMFC historical state and operating mode in PEMFC prognosis. International Journal of Hydrogen Energy, 45(56), 32355–32366. https://doi.org/10.1016/j.ijhydene.2020.08.149 | es_CO |
dc.relation.references | Hernandez, Á., Ramirez, V., Guilbert, D., & Saldivar, B. (2020). Development of an adaptive static-dynamic electrical model based on input electrical energy for PEM water electrolysis. International Journal of Hydrogen Energy, 5. https://doi.org/10.1016/j.ijhydene.2020.04.182 | es_CO |
dc.relation.references | Inac, S., Ozen, S., & Midilli, A. (2020). Global warming , environmental and sustainability aspects of a geothermal energy based biodigester integrated SOFC system. International Journal of Hydrogen Energy, 45(60), 35039–35052. https://doi.org/10.1016/j.ijhydene.2020.06.224 | es_CO |
dc.relation.references | Kadier, A., Sahaid, M., Abdeshahian, P., Chandrasekhar, K., Mohamed, A., Farhana, N., Logroño, W., Simayi, Y., & Abdul, A. (2016). Recent advances and emerging challenges in microbial electrolysis cells ( MECs ) for microbial production of hydrogen and value added chemicals. Renewable and Sustainable Energy Reviews, 61, 501–525. https://doi.org/10.1016/j.rser.2016.04.017 | es_CO |
dc.relation.references | Koomson, S., & Lee, C. (2020). Lifetime Expectancy of molten carbonate fuel cells : Part I . Effect of temperature on the voltage and electrolyte reduction rates. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.07.218 | es_CO |
dc.relation.references | Kuznik, F., Johannes, K., Obrecht, C., & David, D. (2018). A review on recent developments in physisorption thermal energy storage for building applications. Renewable and Sustainable Energy Reviews, 94(June), 576–586. https://doi.org/10.1016/j.rser.2018.06.038 | es_CO |
dc.relation.references | Labandeira, X., Linares, P., & Würzburg, K. (2012). Energías renovables y cambio climático. Cuadernos Económicos de ICE, 83. https://doi.org/10.32796/cice.2012.83.6032 | es_CO |
dc.relation.references | Laborde, M., Lombardo, E., Bellot, F., Boaventura, J., García, J., & Gonzáles, M. (2010). Potencialidades del hidrógeno como vector de energía en Iberoamérica. | es_CO |
dc.relation.references | Lai, H., Farida, N., Tucker, D., & Adams, T. A. (2020). Design and eco-technoeconomic analyses of SOFC / GT hybrid systems accounting for long-term degradation effects. International Journal of Hydrogen Energy, xxxx. 36 https://doi.org/10.1016/j.ijhydene.2020.11.032 | es_CO |
dc.relation.references | Lui, J., Chen, W. H., Tsang, D. C. W., & You, S. (2020). A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies. Renewable and Sustainable Energy Reviews, 134(August), 110365. https://doi.org/10.1016/j.rser.2020.11036 | es_CO |
dc.relation.references | Minutillo, M., Perna, A., & Sorce, A. (2020). Green hydrogen production plants via biogas steam and autothermal reforming processes: energy and exergy analyses. Applied Energy, 277(June), 115452. https://doi.org/10.1016/j.apenergy.2020.11545 | es_CO |
dc.relation.references | Morales, A., Pérez, M., Pérez, J., & DE león, S. (2017). Energías renovables y el hidrógeno: un par prometedor en la transición energética de México. | es_CO |
dc.relation.references | Nicita, A., Maggio, G., Andaloro, A. P. F., & Squadrito, G. (2020). Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen Energy, 45(20), 11395–11408. https://doi.org/10.1016/j.ijhydene.2020.02.062 | es_CO |
dc.relation.references | Noh, Y. S., Lee, K. Y., & Moon, D. J. (2019). Hydrogen production by steam reforming of methane over nickel based structured catalysts supported on calcium aluminate modified SiC. International Journal of Hydrogen Energy, 44(38), 21010–21019. https://doi.org/10.1016/j.ijhydene.2019.04.287 | es_CO |
dc.relation.references | Olabi, A. G., Bahri, A. saleh, Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2020). Large-vscale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.10.110 | es_CO |
dc.relation.references | Pandey, A. P., Bhatnagar, A., Shukla, V., Soni, P. K., Singh, S., Verma, S. K., Shaneeth, M., Sekkar, V., & Srivastava, O. N. (2020). Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine. International Journal of Hydrogen Energy, 45(55), 30818–30827. https://doi.org/10.1016/j.ijhydene.2020.08.145 | es_CO |
dc.relation.references | Proost, J. (2020). Critical assessment of the production scale required for fossil parity of green electrolytic hydrogen. International Journal of Hydrogen Energy, 2050(xxxx). https://doi.org/10.1016/j.ijhydene.2020.04.259 | es_CO |
dc.relation.references | R.K, A., J.K, P., & T.Q, H. (2016). 5 - Cryo-compressed hydrogen storage. In Compendium of Hydrogen Energy (pp. 119–145). Elsevier Ltd. https://doi.org/10.1016/B978-1-78242- 362-1.00005-5 | es_CO |
dc.relation.references | Rezaei, M., Meshkani, F., Ravandi, A. B., Nematollahi, B., Ranjbar, A., Hadian, N., & Mosayebi, Z. (2011). Autothermal reforming of methane over Ni catalysts supported on nanocrystalline MgO with high surface area and plated-like shape. International Journal of Hydrogen Energy, 36(18), 11712–11717. https://doi.org/10.1016/j.ijhydene.2011.06.056 | es_CO |
dc.relation.references | Rezaeitavabe, F., Saadat, S., Talebbeydokhti, N., & Sartaj, M. (2020). Enhancing bio-hydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials ( exhausted resin and biochar ). Biomass and Bioenergy, 143(October), 105846. https://doi.org/10.1016/j.biombioe.2020.105846 | es_CO |
dc.relation.references | Rodrigo Vásquez, Felipe Salinas, D. G. für I. Z. (GIZ) G. (2018). tecnologías del hidrógeno y perspectivas paara chile | es_CO |
dc.relation.references | Sanchez, A., Ayala, O. R., Hernandez-sanchez, P., & Valdez-vazquez, I. (2020). An environment-economic analysis of hydrogen production using advanced biorefineries and its comparison with conventional technologies. International Journal of Hydrogen Energy, 5. https://doi.org/10.1016/j.ijhydene.2020.07.135 | es_CO |
dc.relation.references | Sazali, N. (2020). Emerging technologies by hydrogen : A review. International Journal of Hydrogen Energy, xxxx. https://doi.org/10.1016/j.ijhydene.2020.05.021 | es_CO |
dc.relation.references | Sharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Waste-to-energy nexus for circular economy and environmental protection : Recent trends in hydrogen energy. Science of the Total Environment, 713. https://doi.org/10.1016/j.scitotenv.2020.136633 | es_CO |
dc.relation.references | Shiva Kumar, S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2(3), 442–454. https://doi.org/10.1016/j.mset.2019.03.002 | es_CO |
dc.relation.references | Singh, R., Singh, M., & Gautam, S. (2020). Hydrogen economy, energy, and liquid organic carriers for its mobility. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.09.065 | es_CO |
dc.relation.references | TEC, J. (2013). ADSORCIÓN DE HIDRÓGENO EN MATERIAL COMPUESTO POR NANOTUBOS DE CARBONO DE PARED MÚLTIPLE, DIÓXIDO DE TITANIO Y POLI(ANILINA). | es_CO |
dc.relation.references | Thomas, J. M., Edwards, P. P., Dobson, P. J., & Owen, G. P. (2020). Decarbonising energy : The developing international activity in hydrogen technologies and fuel cells. Journal of Energy Chemistry. https://doi.org/10.1016/j.jechem.2020.03.087 | es_CO |
dc.relation.references | Upadhyaya, J., Peters, R., & Fouad, F. (2018). Environmental impact of fuel cell technology for electric power generation: an overview and case studies. 14, 63–65. https://doi.org/10.15900/j.cnki.zylf1995.2018.02.001 | es_CO |
dc.relation.references | Usman, M., Makhdum, M. S. A., & Kousar, R. (2020). Does financial inclusion, renewable and non-renewable energy utilization accelerate ecological footprints and economic growth? Fresh evidence from 15 highest emitting countries. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2020.102590 | es_CO |
dc.relation.references | Vajihinejad, V. (2017). Biological conversion of hydrogen to electricity for energy storage. Energy. https://doi.org/10.1016/j.energy.2017.04.110 | es_CO |
dc.relation.references | Velazquez Abad, A., & Dodds, P. E. (2020). Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy, 138(February), 111300. https://doi.org/10.1016/j.enpol.2020.11130 | es_CO |
dc.relation.references | Villa, K. (2013). ESTUDIO DE LA PRODUCCION DE HIDROGENO MEDIANTE FOTOCATALISIS HETEROGENEA. Journal of Chemical Information and Modeling, 53(1), 1689–1699. http://ir.obihiro.ac.jp/dspace/handle/10322/3933%0Ahttps://doi.org/10.1016/j.jag.2018.0 7.004%0Ahttp://dx.doi.org/10.1038/s41598-018-25369- w%0Ahttps://www.bertelsmann- 38 stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/MT_Globalization_Re port_ | es_CO |
dc.relation.references | Wang, X., Sun, B., & Luo, Q. (2018). Energy and exergy analysis of a turbocharged hydrogen internal combustion engine. International Journal of Hydrogen Energy, 44(11), 5551– 5563. https://doi.org/10.1016/j.ijhydene.2018.10.047 | es_CO |
dc.relation.references | World Energy Council. (2020). Five Steps to Energy Storage. Innovation Insights Brief 2020. 62. www.worldenergy.org | es_CO |
dc.relation.references | Yamada, N., & Anuar, N. (2010). Efficiency of hydrogen internal combustion engine combined with open steam Rankine cycle recovering water and waste heat. International Journal of Hydrogen Energy, 35(3), 1430–1442. https://doi.org/10.1016/j.ijhydene.2009.11.088 | es_CO |
dc.relation.references | Zeng, Z., Qian, Y., Zhang, Y., Hao, C., Dan, D., & Zhuge, W. (2020). A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell ( SOFC ) stacks. Applied Energy, 280(September), 115899. https://doi.org/10.1016/j.apenergy.2020.115899 | es_CO |
dc.relation.references | Zhang, J., Zheng, J., & Yang, W. (2021). Green supercapacitor assisted photocatalytic fuel cell system for sustainable hydrogen production. Chemical Engineering Journal, 403(July 2020), 126368. https://doi.org/10.1016/j.cej.2020.12636 | es_CO |
dc.relation.references | Zhiznin, S. Z., Timokhov, V. M., & Gusev, A. L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45(56), 31353–31366. https://doi.org/10.1016/j.ijhydene.2020.08.26 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Mora_2020_TG.pdf | Mora_2020_TG | 782,31 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.