• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5452
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMora Alvarez, Sandra Bibiana.-
    dc.date.accessioned2022-12-15T16:11:58Z-
    dc.date.available2021-03-22-
    dc.date.available2022-12-15T16:11:58Z-
    dc.date.issued2021-
    dc.identifier.citationMora Alvarez, S. B. (2020). Estudio comparativo de las tecnologías de conversión y almacenamiento de energía a partir de hidrógeno verde y azul [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5452es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5452-
    dc.descriptionLa autora no proporciona la información sobre este ítem.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent43es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleEstudio comparativo de las tecnologías de conversión y almacenamiento de energía a partir de hidrógeno verde y azul.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    dc.date.accepted2020-12-22-
    dc.relation.referencesAbe, J. O., Popoola, A. P. I., Ajenifuja, E., & Popoola, O. M. (2019). Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29). https://doi.org/10.1016/j.ijhydene.2019.04.068es_CO
    dc.relation.referencesAcar, C., & Dincer, I. (2018). 4 . 24 Hydrogen Energy Conversion Systems (Vol. 4, pp. 947– 984). https://doi.org/10.1016/B978-0-12-809597-3.00441-7es_CO
    dc.relation.referencesAhn, J., Park, S. H., Lee, S., Noh, Y., & Chang, D. (2018). Molten carbonate fuel cell (MCFC)- based hybrid propulsion systems for a liquefied hydrogen tanker. International Journal of Hydrogen Energy, 43(15), 7525–7537. https://doi.org/10.1016/j.ijhydene.2018.03.015es_CO
    dc.relation.referencesAllebrod, F., Chatzichristodoulou, C., & Mogensen, M. B. (2013). Alkaline electrolysis cell at high temperature and pressure of 250 C and 42 bar. 229, 22–31. https://doi.org/10.1016/j.jpowsour.2012.11.105es_CO
    dc.relation.referencesAtes, F., & Ozcan, H. (2020). Turkey ’ s industrial waste heat recovery potential with power and hydrogen conversion technologies : A techno-economic analysis. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.11.059es_CO
    dc.relation.referencesBaeyens, J., Zhang, H., Nie, J., Appels, L., Dewil, R., Ansart, R., & Deng, Y. (2020). Reviewing the potential of bio-hydrogen production by fermentation. Renewable and Sustainable Energy Reviews, 131(July), 110023. https://doi.org/10.1016/j.rser.2020.110023es_CO
    dc.relation.referencesBarco-burgos, J., Eicker, U., Saldaña-robles, N., Saldaña-robles, A. L., & Alcántar-camarena, V. (2020). Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure. Fuel, 276(December 2019), 117910. https://doi.org/10.1016/j.fuel.2020.117910es_CO
    dc.relation.referencesBloomberg NEF. (2020). Hydrogen Economy Outlook.es_CO
    dc.relation.referencesCappelletti, A., Martelli, F., & Marta, V. S. (2017). Investigation of a pure hydrogen fueled gas turbine burner. International Journal of Hydrogen Energy, 42(15), 10513–10523. https://doi.org/10.1016/j.ijhydene.2017.02.104es_CO
    dc.relation.referencesChen, Z., Ma, Z., Zheng, J., Li, X., Akiba, E., & Li, H. (2020). Perspectives and challenges of hydrogen storage in solid-state hydrides. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2020.08.024es_CO
    dc.relation.referencesCloete, S., Ruhnau, O., & Hirth, L. (2020). On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.09.197es_CO
    dc.relation.referencesconvocatoria energía sostenible. (n.d.). Retrieved October 9, 2020, from https://minciencias.gov.co/sites/default/files/upload/convocatoria/tdr_energia_sostenible _y_su_aporte_a_la_planeacion_minero_energetica-2020_firmados.pdfes_CO
    dc.relation.referencesEveloy, V., Karunkeyoon, W., Rodgers, P., & Al Alili, A. (2016). Energy, exergy and economic analysis of an integrated solid oxide fuel cell – gas turbine – organic Rankine power generation system. International Journal of Hydrogen Energy, 41(31), 13843– 35 13858. https://doi.org/10.1016/j.ijhydene.2016.01.146es_CO
    dc.relation.referencesGarcia, G., Arriola, E., Chen, W., & Luna, M. D. De. (2020). A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainabulity. Energy, 119384. https://doi.org/10.1016/j.energy.2020.119384es_CO
    dc.relation.referencesGulcin, D., Weber, N., Heinrichs, H. U., Linßen, J., Robinius, M., Kukla, P. A., & Stolten, D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11), 6793–6805. https://doi.org/10.1016/j.ijhydene.2019.12.161es_CO
    dc.relation.referencesHan, M., Lao, J., Yao, Q., Zhang, B., & Meng, J. (2020). Carbon inequality and economic development across the Belt and Road regions. Journal of Environmental Management, 262(February), 110250. https://doi.org/10.1016/j.jenvman.2020.110250es_CO
    dc.relation.referencesHe, K., Zhang, C., He, Q., Wu, Q., Jackson, L., & Mao, L. (2020). Effectiveness of PEMFC historical state and operating mode in PEMFC prognosis. International Journal of Hydrogen Energy, 45(56), 32355–32366. https://doi.org/10.1016/j.ijhydene.2020.08.149es_CO
    dc.relation.referencesHernandez, Á., Ramirez, V., Guilbert, D., & Saldivar, B. (2020). Development of an adaptive static-dynamic electrical model based on input electrical energy for PEM water electrolysis. International Journal of Hydrogen Energy, 5. https://doi.org/10.1016/j.ijhydene.2020.04.182es_CO
    dc.relation.referencesInac, S., Ozen, S., & Midilli, A. (2020). Global warming , environmental and sustainability aspects of a geothermal energy based biodigester integrated SOFC system. International Journal of Hydrogen Energy, 45(60), 35039–35052. https://doi.org/10.1016/j.ijhydene.2020.06.224es_CO
    dc.relation.referencesKadier, A., Sahaid, M., Abdeshahian, P., Chandrasekhar, K., Mohamed, A., Farhana, N., Logroño, W., Simayi, Y., & Abdul, A. (2016). Recent advances and emerging challenges in microbial electrolysis cells ( MECs ) for microbial production of hydrogen and value added chemicals. Renewable and Sustainable Energy Reviews, 61, 501–525. https://doi.org/10.1016/j.rser.2016.04.017es_CO
    dc.relation.referencesKoomson, S., & Lee, C. (2020). Lifetime Expectancy of molten carbonate fuel cells : Part I . Effect of temperature on the voltage and electrolyte reduction rates. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.07.218es_CO
    dc.relation.referencesKuznik, F., Johannes, K., Obrecht, C., & David, D. (2018). A review on recent developments in physisorption thermal energy storage for building applications. Renewable and Sustainable Energy Reviews, 94(June), 576–586. https://doi.org/10.1016/j.rser.2018.06.038es_CO
    dc.relation.referencesLabandeira, X., Linares, P., & Würzburg, K. (2012). Energías renovables y cambio climático. Cuadernos Económicos de ICE, 83. https://doi.org/10.32796/cice.2012.83.6032es_CO
    dc.relation.referencesLaborde, M., Lombardo, E., Bellot, F., Boaventura, J., García, J., & Gonzáles, M. (2010). Potencialidades del hidrógeno como vector de energía en Iberoamérica.es_CO
    dc.relation.referencesLai, H., Farida, N., Tucker, D., & Adams, T. A. (2020). Design and eco-technoeconomic analyses of SOFC / GT hybrid systems accounting for long-term degradation effects. International Journal of Hydrogen Energy, xxxx. 36 https://doi.org/10.1016/j.ijhydene.2020.11.032es_CO
    dc.relation.referencesLui, J., Chen, W. H., Tsang, D. C. W., & You, S. (2020). A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies. Renewable and Sustainable Energy Reviews, 134(August), 110365. https://doi.org/10.1016/j.rser.2020.11036es_CO
    dc.relation.referencesMinutillo, M., Perna, A., & Sorce, A. (2020). Green hydrogen production plants via biogas steam and autothermal reforming processes: energy and exergy analyses. Applied Energy, 277(June), 115452. https://doi.org/10.1016/j.apenergy.2020.11545es_CO
    dc.relation.referencesMorales, A., Pérez, M., Pérez, J., & DE león, S. (2017). Energías renovables y el hidrógeno: un par prometedor en la transición energética de México.es_CO
    dc.relation.referencesNicita, A., Maggio, G., Andaloro, A. P. F., & Squadrito, G. (2020). Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen Energy, 45(20), 11395–11408. https://doi.org/10.1016/j.ijhydene.2020.02.062es_CO
    dc.relation.referencesNoh, Y. S., Lee, K. Y., & Moon, D. J. (2019). Hydrogen production by steam reforming of methane over nickel based structured catalysts supported on calcium aluminate modified SiC. International Journal of Hydrogen Energy, 44(38), 21010–21019. https://doi.org/10.1016/j.ijhydene.2019.04.287es_CO
    dc.relation.referencesOlabi, A. G., Bahri, A. saleh, Abdelghafar, A. A., Baroutaji, A., Sayed, E. T., Alami, A. H., Rezk, H., & Abdelkareem, M. A. (2020). Large-vscale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.10.110es_CO
    dc.relation.referencesPandey, A. P., Bhatnagar, A., Shukla, V., Soni, P. K., Singh, S., Verma, S. K., Shaneeth, M., Sekkar, V., & Srivastava, O. N. (2020). Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine. International Journal of Hydrogen Energy, 45(55), 30818–30827. https://doi.org/10.1016/j.ijhydene.2020.08.145es_CO
    dc.relation.referencesProost, J. (2020). Critical assessment of the production scale required for fossil parity of green electrolytic hydrogen. International Journal of Hydrogen Energy, 2050(xxxx). https://doi.org/10.1016/j.ijhydene.2020.04.259es_CO
    dc.relation.referencesR.K, A., J.K, P., & T.Q, H. (2016). 5 - Cryo-compressed hydrogen storage. In Compendium of Hydrogen Energy (pp. 119–145). Elsevier Ltd. https://doi.org/10.1016/B978-1-78242- 362-1.00005-5es_CO
    dc.relation.referencesRezaei, M., Meshkani, F., Ravandi, A. B., Nematollahi, B., Ranjbar, A., Hadian, N., & Mosayebi, Z. (2011). Autothermal reforming of methane over Ni catalysts supported on nanocrystalline MgO with high surface area and plated-like shape. International Journal of Hydrogen Energy, 36(18), 11712–11717. https://doi.org/10.1016/j.ijhydene.2011.06.056es_CO
    dc.relation.referencesRezaeitavabe, F., Saadat, S., Talebbeydokhti, N., & Sartaj, M. (2020). Enhancing bio-hydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials ( exhausted resin and biochar ). Biomass and Bioenergy, 143(October), 105846. https://doi.org/10.1016/j.biombioe.2020.105846es_CO
    dc.relation.referencesRodrigo Vásquez, Felipe Salinas, D. G. für I. Z. (GIZ) G. (2018). tecnologías del hidrógeno y perspectivas paara chilees_CO
    dc.relation.referencesSanchez, A., Ayala, O. R., Hernandez-sanchez, P., & Valdez-vazquez, I. (2020). An environment-economic analysis of hydrogen production using advanced biorefineries and its comparison with conventional technologies. International Journal of Hydrogen Energy, 5. https://doi.org/10.1016/j.ijhydene.2020.07.135es_CO
    dc.relation.referencesSazali, N. (2020). Emerging technologies by hydrogen : A review. International Journal of Hydrogen Energy, xxxx. https://doi.org/10.1016/j.ijhydene.2020.05.021es_CO
    dc.relation.referencesSharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Waste-to-energy nexus for circular economy and environmental protection : Recent trends in hydrogen energy. Science of the Total Environment, 713. https://doi.org/10.1016/j.scitotenv.2020.136633es_CO
    dc.relation.referencesShiva Kumar, S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2(3), 442–454. https://doi.org/10.1016/j.mset.2019.03.002es_CO
    dc.relation.referencesSingh, R., Singh, M., & Gautam, S. (2020). Hydrogen economy, energy, and liquid organic carriers for its mobility. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.09.065es_CO
    dc.relation.referencesTEC, J. (2013). ADSORCIÓN DE HIDRÓGENO EN MATERIAL COMPUESTO POR NANOTUBOS DE CARBONO DE PARED MÚLTIPLE, DIÓXIDO DE TITANIO Y POLI(ANILINA).es_CO
    dc.relation.referencesThomas, J. M., Edwards, P. P., Dobson, P. J., & Owen, G. P. (2020). Decarbonising energy : The developing international activity in hydrogen technologies and fuel cells. Journal of Energy Chemistry. https://doi.org/10.1016/j.jechem.2020.03.087es_CO
    dc.relation.referencesUpadhyaya, J., Peters, R., & Fouad, F. (2018). Environmental impact of fuel cell technology for electric power generation: an overview and case studies. 14, 63–65. https://doi.org/10.15900/j.cnki.zylf1995.2018.02.001es_CO
    dc.relation.referencesUsman, M., Makhdum, M. S. A., & Kousar, R. (2020). Does financial inclusion, renewable and non-renewable energy utilization accelerate ecological footprints and economic growth? Fresh evidence from 15 highest emitting countries. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2020.102590es_CO
    dc.relation.referencesVajihinejad, V. (2017). Biological conversion of hydrogen to electricity for energy storage. Energy. https://doi.org/10.1016/j.energy.2017.04.110es_CO
    dc.relation.referencesVelazquez Abad, A., & Dodds, P. E. (2020). Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy, 138(February), 111300. https://doi.org/10.1016/j.enpol.2020.11130es_CO
    dc.relation.referencesVilla, K. (2013). ESTUDIO DE LA PRODUCCION DE HIDROGENO MEDIANTE FOTOCATALISIS HETEROGENEA. Journal of Chemical Information and Modeling, 53(1), 1689–1699. http://ir.obihiro.ac.jp/dspace/handle/10322/3933%0Ahttps://doi.org/10.1016/j.jag.2018.0 7.004%0Ahttp://dx.doi.org/10.1038/s41598-018-25369- w%0Ahttps://www.bertelsmann- 38 stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/MT_Globalization_Re port_es_CO
    dc.relation.referencesWang, X., Sun, B., & Luo, Q. (2018). Energy and exergy analysis of a turbocharged hydrogen internal combustion engine. International Journal of Hydrogen Energy, 44(11), 5551– 5563. https://doi.org/10.1016/j.ijhydene.2018.10.047es_CO
    dc.relation.referencesWorld Energy Council. (2020). Five Steps to Energy Storage. Innovation Insights Brief 2020. 62. www.worldenergy.orges_CO
    dc.relation.referencesYamada, N., & Anuar, N. (2010). Efficiency of hydrogen internal combustion engine combined with open steam Rankine cycle recovering water and waste heat. International Journal of Hydrogen Energy, 35(3), 1430–1442. https://doi.org/10.1016/j.ijhydene.2009.11.088es_CO
    dc.relation.referencesZeng, Z., Qian, Y., Zhang, Y., Hao, C., Dan, D., & Zhuge, W. (2020). A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell ( SOFC ) stacks. Applied Energy, 280(September), 115899. https://doi.org/10.1016/j.apenergy.2020.115899es_CO
    dc.relation.referencesZhang, J., Zheng, J., & Yang, W. (2021). Green supercapacitor assisted photocatalytic fuel cell system for sustainable hydrogen production. Chemical Engineering Journal, 403(July 2020), 126368. https://doi.org/10.1016/j.cej.2020.12636es_CO
    dc.relation.referencesZhiznin, S. Z., Timokhov, V. M., & Gusev, A. L. (2020). Economic aspects of nuclear and hydrogen energy in the world and Russia. International Journal of Hydrogen Energy, 45(56), 31353–31366. https://doi.org/10.1016/j.ijhydene.2020.08.26es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Mora_2020_TG.pdfMora_2020_TG782,31 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.