• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5442
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorArdila Rodriguez, Ricardo.-
    dc.date.accessioned2022-12-15T15:27:25Z-
    dc.date.available2020-09-22-
    dc.date.available2022-12-15T15:27:25Z-
    dc.date.issued2020-
    dc.identifier.citationArdila Rodríguez, R. (2020). Estudio de las propiedades, diseño y aplicación del zirconio como alternativa de uso en prótesis articulares [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5442es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5442-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent47es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleEstudio de las propiedades, diseño y aplicación del zirconio como alternativa de uso en prótesis articulares.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-22-
    dc.relation.referencesGalvan, R., F., Barranco, V., Galvan, J. C., Batlle, Sebastian FeliuFajardo, S., & García. (2016). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, i(tourism), 13. https://doi.org/http://dx.doi.org/10.5772/5735es_CO
    dc.relation.referencesAbi, C. B., Emrullahoǧlu, O. F., & Said, G. (2013). Microstructure and mechanical properties of MgO-stabilized ZrO2-Al2O3 dental composites. Journal of the Mechanical Behavior of Biomedical Materials, 18, 123–131. https://doi.org/10.1016/j.jmbbm.2012.11.007es_CO
    dc.relation.referencesAboushelib, M. N., Osman, E., Jansen, I., Everts, V., & Feilzer, A. J. (2013). Influence of a Nanoporous Zirconia Implant Surface of on Cell Viability of Human Osteoblasts. Journal of Prosthodontics, 22(3), 190–195. https://doi.org/10.1111/j.1532-849X.2012.00920.xes_CO
    dc.relation.referencesAffatato, S., Ruggiero, A., De Mattia, J. S., & Taddei, P. (2016). Does metal transfer affect the tribological behaviour of femoral heads? Roughness and phase transformation analyses on retrieved zirconia and Biolox® Delta composites. Composites Part B: Engineering, 92, 290–298. https://doi.org/10.1016/j.compositesb.2016.02.020es_CO
    dc.relation.referencesAffatato, S., Traina, F., Ruggeri, O., & Toni, A. (2011). Wear of Metal-on-Metal Hip Bearings: Metallurgical Considerations after Hip Simulator Studies. The International Journal of Artificial Organs, 34(12), 1155–1164. https://doi.org/10.5301/ijao.5000065es_CO
    dc.relation.referencesAherwar, A., K Singh, A., & Patnaik, A. (2015). Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3(1), 23–43. https://doi.org/10.3934/bioeng.2016.1.23es_CO
    dc.relation.referencesAhmad, S., Kumar, V., Ramanand, K. B., & Rao, N. M. (2012). Probing protein stability and proteolytic resistance by loop scanning: A comprehensive mutational analysis. Protein Science, 21(3), 433–446. https://doi.org/10.1002/pro.2029es_CO
    dc.relation.referencesAlmeida, P. J., Silva, C. L., Alves, J. L., Silva, F. S., Martins, R. C., & Sampaio Fernandes, J. (2016). Comparative analysis of the wear of titanium/titanium and titanium/zirconia interfaces in implant/abutment assemblies after thermocycling and mechanical loading. Revista Portuguesa de Estomatologia, Medicina Dentaria e Cirurgia Maxilofacial, 57(4), 207–214. https://doi.org/10.1016/j.rpemd.2016.07.002es_CO
    dc.relation.referencesAmat, N. F., Muchtar, A., Amril, M. S., Ghazali, M. J., & Yahaya, N. (2019). Effect of sintering 39 temperature on the aging resistance and mechanical properties of monolithic zirconia. Journal of Materials Research and Technology, 8(1), 1092–1101. https://doi.org/10.1016/j.jmrt.2018.07.017es_CO
    dc.relation.referencesAnand, G., Sharma, S., Dutta, A. K., Kumar, S. K., & Belfort, G. (2010). Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir, 26(13), 10803– 10811. https://doi.org/10.1021/la1006132es_CO
    dc.relation.referencesBatal, A., Sammons, R., & Dimov, S. (2019). Response of Saos-2 osteoblast-like cells to laser surface texturing, sandblasting and hydroxyapatite coating on CoCrMo alloy surfaces. Materials Science and Engineering C, 98(January), 1005–1013. https://doi.org/10.1016/j.msec.2019.01.067es_CO
    dc.relation.referencesBerthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annual Review of Chemical and Biomolecular Engineering, 2(1), 403–430. https://doi.org/10.1146/annurev-chembioeng-061010-114257es_CO
    dc.relation.referencesBest, S. M., Porter, A. E., Thian, E. S., & Huang, J. (2008). Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 28(7), 1319–1327. https://doi.org/10.1016/j.jeurceramsoc.2007.12.001es_CO
    dc.relation.referencesButterfield, T. A., Best, T. M., & Merrick, M. A. (2006). The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. Journal of Athletic Training, 41(4), 457–465.es_CO
    dc.relation.referencesC. PICONI1, G. M. F. M. E. B. D. P. (2003). Alumina and zirconia ceramics in jointreplacements.es_CO
    dc.relation.referencesChoi, S. H., Ryu, J. H., Kwon, J. S., Kim, J. E., Cha, J. Y., Lee, K. J., Yu, H. S., Choi, E. H., Kim, K. M., & Hwang, C. J. (2019). Effect of wet storage on the bioactivity of ultraviolet light- and non-thermal atmospheric pressure plasma-treated titanium and zirconia implant surfaces. Materials Science and Engineering C, 105(August), 110049. https://doi.org/10.1016/j.msec.2019.110049es_CO
    dc.relation.referencesChrcanovic, B. R., Leão, N. L. C., & Martins, M. D. (2013). Influence of different acid etchings on the superficial characteristics of Ti Sandblasted with Al2O3. Materials Research, 16(5), 1006–1014. https://doi.org/10.1590/S1516-14392013005000067es_CO
    dc.relation.referencesCooper, D. M. L., Kawalilak, C. E., Harrison, K., Johnston, B. D., & Johnston, J. D. (2016). Cortical Bone Porosity: What Is It, Why Is It Important, and How Can We Detect It? 40 Current Osteoporosis Reports, 14(5), 187–198. https://doi.org/10.1007/s11914-016-0319-yes_CO
    dc.relation.referencesCrouzier, T., Sailhan, F., Becquart, P., Guillot, R., Logeart-Avramoglou, D., & Picart, C. (2011). The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials, 32(30), 7543–7554. https://doi.org/10.1016/j.biomaterials.2011.06.062es_CO
    dc.relation.referencesDorozhkin, S. V. (2015). Calcium orthophosphate bioceramics. Ceramics International, 41(10), 13913–13966. https://doi.org/10.1016/j.ceramint.2015.08.004es_CO
    dc.relation.referencesFábio GONÇALVES, E. P. D. T. M. C. R. T. R. V. Z. A. Z. J. M. G. (2009). Clinical and Histopathological Analysis of Intramucosal Zirconia Inserts used for Improving Maxillary Denture Retention. 20(2), 149–145es_CO
    dc.relation.referencesFaia-Torres, A. B., Guimond-Lischer, S., Rottmar, M., Charnley, M., Goren, T., Maniura-Weber, K., Spencer, N. D., Reis, R. L., Textor, M., & Neves, N. M. (2014). Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials, 35(33), 9023–9032. https://doi.org/10.1016/j.biomaterials.2014.07.015es_CO
    dc.relation.referencesFlorencio-Silva, R. (2015). Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Immuno-Analyse et Biologie Specialisee, 7(6), 17–24. https://doi.org/10.1016/S0923-2532(05)80182-6es_CO
    dc.relation.referencesFutoshi Komine, M. B. B. and H. M. (2010). Current status of zirconia-based fixed restorations. Oral Science, 52(4), 531–539.es_CO
    dc.relation.referencesGehrke, S. A., & Cícero, P. (2013). Analysis of Bone Tissue Healing around Titanium Implant Surface Treated with Tio Sandblasted after Three and Six Weeks Used Different Histological Methods – a Study in Rabbits. 1, 1–7. https://doi.org/0.7237/sjmct/150es_CO
    dc.relation.referencesGinebra, M.-P., Espanol, M., Maazouz, Y., Bergez, V., & Pastorino, D. (2018). Bioceramics and bone healing. EFORT Open Reviews, 3(5), 173–183. https://doi.org/10.1302/2058- 5241.3.170056es_CO
    dc.relation.referencesGuazzato, M., Albakry, M., Ringer, S. P., & Swain, M. V. (2004). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dental Materials, 20(5), 449–456. https://doi.org/10.1016/j.dental.2003.05.002es_CO
    dc.relation.referencesHarianawala, H., Kheur, M., & Bal, A. (2016). Biocompatibility of Zirconia. J Adv Med Dent Scie Res, 4(3), 35–39.es_CO
    dc.relation.referencesHashmi, S. (2014). Comprehensive Materials Processing. Elsevier Sciencees_CO
    dc.relation.referencesJi, Y., Zhang, X. D., Wang, X. C., Che, Z. C., Yu, X. M., & Yang, H. Z. (2013). Zirconia bioceramics as all-ceramics crowns material: A review. Reviews on Advanced Materials Science, 34(1), 72–78.es_CO
    dc.relation.referencesJodati, H., Yılmaz, B., & Evis, Z. (2020). A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International, 46(10), 15725– 15739. https://doi.org/10.1016/j.ceramint.2020.03.192es_CO
    dc.relation.referencesKamalian, R., Yazdanpanah, A., Moztarzadeh, F., Ravarian, R., Moztarzadeh, Z., Tahmasbi, M., & Mozafari, M. (2012). Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants. Ceramics - Silikaty, 56(4), 331–340.es_CO
    dc.relation.referencesKargozar, S, Hamzehlou, S., & Baino, F. (2018). 14 - Effects of the biological environment on ceramics: Degradation, cell response, and in vivo behavior. In S. Thomas, P. Balakrishnan, & M. S. B. T.-F. B. C. Sreekala (Eds.), Woodhead Publishing Series in Biomaterials (pp. 407–437). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08- 102203-0.00014-7es_CO
    dc.relation.referencesKargozar, Saeid, Ramakrishna, S., & Mozafari, M. (2019). Chemistry of biomaterials: future prospects. Current Opinion in Biomedical Engineering, 10, 181–190. https://doi.org/10.1016/j.cobme.2019.07.003es_CO
    dc.relation.referencesKehoe, S., & Eng, B. (2008). Optimisation of Hydroxyapatite ( HAp ) for Orthopaedic Application via the Chemical Precipitation Technique By. Rheology, September.es_CO
    dc.relation.referencesKhayat, W., Chebib, N., Finkelman, M., Khayat, S., & Ali, A. (2018). Effect of grinding and polishing on roughness and strength of zirconia. Journal of Prosthetic Dentistry, 119(4), 626–631. https://doi.org/10.1016/j.prosdent.2017.04.003es_CO
    dc.relation.referencesKim, T., See, C. W., Li, X., & Zhu, D. (2020). Orthopedic Implants and Devices for Bone Fractures and Defects: Past, Present and Perspective. Engineered Regeneration, 1(April), 6– 18. https://doi.org/10.1016/j.engreg.2020.05.003es_CO
    dc.relation.referencesKIMURA, Y., MATSUZAKA, K., YOSHINARI, M., & INOUE, T. (2012). Initial attachment of human oral keratinocytes cultured on zirconia or titanium. Dental Materials Journal, advpub. https://doi.org/10.4012/dmj.2011-189es_CO
    dc.relation.referencesKlopfleisch, R. (2016). Macrophage reaction against biomaterials in the mouse model – Phenotypes, functions and markers. Acta Biomaterialia, 43, 3–13. https://doi.org/10.1016/j.actbio.2016.07.003es_CO
    dc.relation.referencesKobune, K., Miura, T., Sato, T., Yotsuya, M., & Yoshinari, M. (2014). Influence of plasma and ultraviolet treatment of zirconia on initial attachment of human oral keratinocytes: Expressions of laminin γ2 and integrin β4. Dental Materials Journal, 33(5), 696–704. https://doi.org/10.4012/dmj.2014-087es_CO
    dc.relation.referencesKohli, N., Ho, S., Brown, S. J., Sawadkar, P., Sharma, V., Snow, M., & García-Gareta, E. (2018). Bone remodelling in vitro: Where are we headed?: -A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro. Bone, 110, 38–46. https://doi.org/10.1016/j.bone.2018.01.015es_CO
    dc.relation.referencesKolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13(3), 159–175. https://doi.org/10.1038/nri3399es_CO
    dc.relation.referencesKono, M., Aita, H., Ichioka, Y., Kado, T., Endo, K., & Koshino, H. (2015). NaOCL-mediated biofunctionalization enhances bone-titanium integration. Dental Materials Journal, 34(4), 537–544. https://doi.org/10.4012/dmj.2015-010es_CO
    dc.relation.referencesKorfage, A., Raghoebar, G. M., Meijer, H. J. A., & Vissink, A. (2018). Patients’ expectations of oral implants: A systematic review. European Journal of Oral Implantology, 11, s65–s76es_CO
    dc.relation.referencesLennartz, A., Dohmen, A., Bishti, S., Fischer, H., & Wolfart, S. (2018). Retrievability of implant-supported zirconia restorations cemented on zirconia abutments. Journal of Prosthetic Dentistry, 120(5), 740–746. https://doi.org/10.1016/j.prosdent.2018.01.011es_CO
    dc.relation.referencesLiu, X. H., Wu, L., Ai, H. J., Han, Y., & Hu, Y. (2015). Cytocompatibility and early osseointegration of nanoTiO2-modified Ti-24 Nb-4 Zr-7.9 Sn surfaces. Materials Science and Engineering C, 48, 256–262. https://doi.org/10.1016/j.msec.2014.12.011es_CO
    dc.relation.referencesLuttikhuizen, D. T., Harmsen, M. C., & Luyn, M. J. A. Van. (2006). Cellular and Molecular Dynamics in the Foreign Body Reaction. Tissue Engineering, 12(7), 1955–1970. https://doi.org/10.1089/ten.2006.12.1955es_CO
    dc.relation.referencesMa, L., & Rainforth, W. M. (2010). A study of Biolox® delta subject to water lubricated reciprocating wear. Tribology International, 43(10), 1872–1881. https://doi.org/10.1016/j.triboint.2010.03.001es_CO
    dc.relation.referencesMai, R., Kunert-Keil, C., Grafe, A., Gedrange, T., Lauer, G., Dominiak, M., & Gredes, T. (2012). Histological behaviour of zirconia implants: An experiment in rats. Annals of Anatomy, 194(6), 561–566. https://doi.org/10.1016/j.aanat.2012.09.004es_CO
    dc.relation.referencesMarrella, A., Lee, T. Y., Lee, D. H., Karuthedom, S., Syla, D., Chawla, A., Khademhosseini, A., & Jang, H. L. (2018). Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Materials Today, 21(4), 362–376. https://doi.org/10.1016/j.mattod.2017.10.005es_CO
    dc.relation.referencesMasciandaro, S., Torrell, M., Leone, P., & Tarancón, A. (2019). Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications. Journal of the European Ceramic Society, 39(1), 9–16. https://doi.org/10.1016/j.jeurceramsoc.2017.11.033es_CO
    dc.relation.referencesMurakami, T., Takemoto, S., Nishiyama, N., & Aida, M. (2017). Zirconia surface modification by a novel zirconia bonding system and its adhesion mechanism. Dental Materials, 33(12), 1371–1380. https://doi.org/10.1016/j.dental.2017.09.001es_CO
    dc.relation.referencesNaglieri, V., Palmero, P., Montanaro, L., & Chevalier, J. (2013). Elaboration of alumina-zirconia composites: Role of the zirconia content on the microstructure and mechanical properties. Materials, 6(5), 2090–2102. https://doi.org/10.3390/ma6052090es_CO
    dc.relation.referencesNothdurft, F. P., Fontana, D., Ruppenthal, S., May, A., Aktas, C., Mehraein, Y., Lipp, P., & Kaestner, L. (2015). Differential Behavior of Fibroblasts and Epithelial Cells on Structured Implant Abutment Materials: A Comparison of Materials and Surface Topographies. Clinical Implant Dentistry and Related Research, 17(6), 1237–1249. https://doi.org/10.1111/cid.12253es_CO
    dc.relation.referencesO’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-Xes_CO
    dc.relation.referencesOh, S., Oh, N., Appleford, M., & Ong, J. L. (2006). Bioceramics for Tissue Engineering Applications – A Review. American Journal of Biochemistry and Biotechnology, 2(2), 49–56. https://doi.org/10.3844/ajbbsp.2006.49.56es_CO
    dc.relation.referencesOkada, M., Taketa, H., Torii, Y., Irie, M., & Matsumoto, T. (2019). Optimal sandblasting conditions for conventional-type yttria-stabilized tetragonal zirconia polycrystals. Dental Materials, 35(1), 169–175. https://doi.org/10.1016/j.dental.2018.11.009es_CO
    dc.relation.referencesOuberai, M. M., Xu, K., & Welland, M. E. (2014). Effect of the interplay between protein and surface on the properties of adsorbed protein layers. Biomaterials, 35(24), 6157–6163. https://doi.org/10.1016/j.biomaterials.2014.04.012es_CO
    dc.relation.referencesPae, A., Lee, H., Noh, K., & Woo, Y. H. (2014). Cell attachment and proliferation of bone 44 marrow-derived osteoblast on zirconia of various surface treatment. Journal of Advanced Prosthodontics, 6(2), 96–102. https://doi.org/10.4047/jap.2014.6.2.96es_CO
    dc.relation.referencesPardun, K., Treccani, L., Volkmann, E., Streckbein, P., Heiss, C., Destri, G. L., Marletta, G., & Rezwan, K. (2015). Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential. Materials Science and Engineering C, 48, 337–346. https://doi.org/10.1016/j.msec.2014.12.031es_CO
    dc.relation.referencesiconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. In Biomaterials (Vol. 20).es_CO
    dc.relation.referencesPobloth, A.-M., Mersiowsky, M. J., Kliemt, L., Schell, H., Dienelt, A., Pfitzner, B. M., Burgkart, R., Detsch, R., Wulsten, D., Boccaccini, A. R., & Duda, G. N. (2019). Bioactive coating of zirconia toughened alumina ceramic implants improves cancellous osseointegration. Scientific Reports, 9(1), 16692. https://doi.org/10.1038/s41598-019-53094-5es_CO
    dc.relation.referencesProkip, V., Lozanov, V., Morozova, N., & Baklanova, N. (2019). The zirconia-based interfacial coatings on SiC fibers obtained by different chemical methods. Materials Today: Proceedings, 19, 1861–1864. https://doi.org/10.1016/j.matpr.2019.07.028es_CO
    dc.relation.referencesRahmati, M., & Mozafari, M. (2018). A critical review on the cellular and molecular interactions at the interface of zirconia-based biomaterials. Ceramics International, 44(14), 16137– 16149. https://doi.org/10.1016/j.ceramint.2018.06.196es_CO
    dc.relation.referencesReinsch, H., Waitschat, S., Chavan, S. M., Lillerud, K. P., & Stock, N. (2016). A Facile “Green” Route for Scalable Batch Production and Continuous Synthesis of Zirconium MOFs. European Journal of Inorganic Chemistry, 2016(27), 4490–4498. https://doi.org/10.1002/ejic.201600295es_CO
    dc.relation.referencesRnjak-Kovacina, J., Tang, F., Whitelock, J. M., & Lord, M. S. (2016). Silk biomaterials functionalized with recombinant domain V of human perlecan modulate endothelial cell and platelet interactions for vascular applications. Colloids and Surfaces B: Biointerfaces, 148, 130–138. https://doi.org/10.1016/j.colsurfb.2016.08.039es_CO
    dc.relation.referencesSadowsky, S. J. (2020). Has zirconia made a material difference in implant prosthodontics? A review. Dental Materials, 36(1), 1–8. https://doi.org/10.1016/j.dental.2019.08.100es_CO
    dc.relation.referencesSafioti, L. M., Kotsakis, G. A., Pozhitkov, A. E., Chung, W. O., & Daubert, D. M. (2017). Increased Levels of Dissolved Titanium Are Associated With Peri-Implantitis – A Cross Sectional Study. Journal of Periodontology, 88(5), 436–442. https://doi.org/10.1902/jop.2016.16052es_CO
    dc.relation.referencesSaptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 11(1), 1–12. https://doi.org/10.1186/1477-3155-11-26es_CO
    dc.relation.referencesSartoretto, S. C., Alves, A. T. N. N., Resende, R. F. B., Calasans-Maia, J., Granjeiro, J. M., & Calasans-Maia, M. D. (2015). Early osseointegration driven by the surface chemistry and wettability of dental implants. Journal of Applied Oral Science, 23(3), 272–278. https://doi.org/10.1590/1678-775720140483es_CO
    dc.relation.referencesSchulz, G. E., & Schirmer, R. H. (2013). Principles of Protein Structure. Springer New York.es_CO
    dc.relation.referencesSheikh, Z., Brooks, P. J., Barzilay, O., Fine, N., & Glogauer, M. (2015). Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials, 8(9), 5671–5701. https://doi.org/10.3390/ma8095269es_CO
    dc.relation.referencesSoon, G., Pingguan-Murphy, B., Lai, K. W., & Akbar, S. A. (2016). Review of zirconia-based bioceramic: Surface modification and cellular response. Ceramics International, 42(11), 12543–12555. https://doi.org/10.1016/j.ceramint.2016.05.077es_CO
    dc.relation.referencesSzott, L. M., & Horbett, T. A. (2011). Protein interactions with surfaces: Cellular responses, complement activation, and newer methods. Current Opinion in Chemical Biology, 15(5), 677–682. https://doi.org/10.1016/j.cbpa.2011.04.021es_CO
    dc.relation.referencesTana, F., De Giglio, E., Cometa, S., D’Agostino, A., Serafini, A., Variola, F., Bono, N., Chiesa, R., & De Nardo, L. (2019). Ca-doped zirconia mesoporous coatings for biomedical applications: A physicochemical and biological investigation. Journal of the European Ceramic Society, 40(11), 3698–3706. https://doi.org/10.1016/j.jeurceramsoc.2019.10.02es_CO
    dc.relation.referencesTokar, E., Polat, S., & Ozturk, C. (2019). Repair bond strength of composite to Er,Cr:YSGG laser irradiated zirconia and porcelain surfaces. Biomedical Journal, 42(3), 193–199. https://doi.org/10.1016/j.bj.2019.02.001es_CO
    dc.relation.referencesTrindade, R., Albrektsson, T., Tengvall, P., & Wennerberg, A. (2016). Foreign Body Reaction to Biomaterials: On Mechanisms for Buildup and Breakdown of Osseointegration. Clinical Implant Dentistry and Related Research, 18(1), 192–203. https://doi.org/10.1111/cid.1227es_CO
    dc.relation.referencesTuna, T., Wein, M., Swain, M., Fischer, J., & Att, W. (2015). Influence of ultraviolet photofunctionalization on the surface characteristics of zirconia-based dental implant materials. Dental Materials, 31(2), e14–e24. https://doi.org/10.1016/j.dental.2014.10.008es_CO
    dc.relation.referencesValenti, M. (2006). The Metal-Free Approach to Restorative Treatment Planning. In 46 EUROPEAN JOURNAL OF ESTHETIC DENTISTRY (Vol. 1).es_CO
    dc.relation.referencesVladkova, T. G. (2013). Surface Engineering of Polymeric Biomaterials. Smithers Information Limited.es_CO
    dc.relation.referencesVogler, E. A. (2012). Protein adsorption in three dimensions. Biomaterials, 33(5), 1201–1237. https://doi.org/10.1016/j.biomaterials.2011.10.059es_CO
    dc.relation.referencesWang, K., Zhou, C., Hong, Y., & Zhang, X. (2012). A review of protein adsorption on bioceramics. Interface Focus, 2(3), 259–277. https://doi.org/10.1098/rsfs.2012.0012es_CO
    dc.relation.referencesWang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2(4), 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007es_CO
    dc.relation.referencesWu, C., & Chang, J. (2012). Mesoporous bioactive glasses: Structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus, 2(3), 292– 306. https://doi.org/10.1098/rsfs.2011.0121es_CO
    dc.relation.referencesYasuno, K., Kakura, K., Taniguchi, Y., Yamaguchi, Y., & Kido, H. (2014). Zirconia implants with laser surface treatment: Peri-implant bone response and enhancement of osseointegration. Journal of Hard Tissue Biology, 23(1), 93–100. https://doi.org/10.2485/jhtb.23.93es_CO
    dc.relation.referencesYu, C., Zhuang, J., Dong, L., Cheng, K., & Weng, W. (2017). Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films. Colloids and Surfaces B: Biointerfaces, 156, 213–220. https://doi.org/10.1016/j.colsurfb.2017.05.011es_CO
    dc.relation.referencesZhang, C. Q., Si, G., Duan, Y., Lyu, Y., Keatley, D. A., & Chan, D. K. C. (2016). The effects of mindfulness training on beginners’ skill acquisition in dart throwing: A randomized controlled trial. Psychology of Sport and Exercise, 22, 279–285. https://doi.org/10.1016/j.psychsport.2015.09.005es_CO
    dc.relation.referencesZhang, J., Liu, W., Schnitzler, V., Tancret, F., & Bouler, J. M. (2014). Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia, 10(3), 1035–1049. https://doi.org/10.1016/j.actbio.2013.11.001es_CO
    dc.relation.referencesZhang, W., Chai, H., & Diao, G. (2019). Highly porous cyclodextrin functionalized nanofibrous 47 membrane by acid etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582(January), 123907. https://doi.org/10.1016/j.colsurfa.2019.123907es_CO
    dc.relation.referencesZucuni, C. P., Dapieve, K. S., Rippe, M. P., Pereira, G. K. R., Bottino, M. C., & Valandro, L. F. (2019). Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding. Journal of the Mechanical Behavior of Biomedical Materials, 93(January), 222–229. https://doi.org/10.1016/j.jmbbm.2019.02.01es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Ardila_2020_TG.pdfArdila_2020_TG532,76 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.