Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5442
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Ardila Rodriguez, Ricardo. | - |
dc.date.accessioned | 2022-12-15T15:27:25Z | - |
dc.date.available | 2020-09-22 | - |
dc.date.available | 2022-12-15T15:27:25Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Ardila Rodríguez, R. (2020). Estudio de las propiedades, diseño y aplicación del zirconio como alternativa de uso en prótesis articulares [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5442 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5442 | - |
dc.description | El autor no proporciona la información sobre este ítem. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 47 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Estudio de las propiedades, diseño y aplicación del zirconio como alternativa de uso en prótesis articulares. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2020-06-22 | - |
dc.relation.references | Galvan, R., F., Barranco, V., Galvan, J. C., Batlle, Sebastian FeliuFajardo, S., & García. (2016). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, i(tourism), 13. https://doi.org/http://dx.doi.org/10.5772/5735 | es_CO |
dc.relation.references | Abi, C. B., Emrullahoǧlu, O. F., & Said, G. (2013). Microstructure and mechanical properties of MgO-stabilized ZrO2-Al2O3 dental composites. Journal of the Mechanical Behavior of Biomedical Materials, 18, 123–131. https://doi.org/10.1016/j.jmbbm.2012.11.007 | es_CO |
dc.relation.references | Aboushelib, M. N., Osman, E., Jansen, I., Everts, V., & Feilzer, A. J. (2013). Influence of a Nanoporous Zirconia Implant Surface of on Cell Viability of Human Osteoblasts. Journal of Prosthodontics, 22(3), 190–195. https://doi.org/10.1111/j.1532-849X.2012.00920.x | es_CO |
dc.relation.references | Affatato, S., Ruggiero, A., De Mattia, J. S., & Taddei, P. (2016). Does metal transfer affect the tribological behaviour of femoral heads? Roughness and phase transformation analyses on retrieved zirconia and Biolox® Delta composites. Composites Part B: Engineering, 92, 290–298. https://doi.org/10.1016/j.compositesb.2016.02.020 | es_CO |
dc.relation.references | Affatato, S., Traina, F., Ruggeri, O., & Toni, A. (2011). Wear of Metal-on-Metal Hip Bearings: Metallurgical Considerations after Hip Simulator Studies. The International Journal of Artificial Organs, 34(12), 1155–1164. https://doi.org/10.5301/ijao.5000065 | es_CO |
dc.relation.references | Aherwar, A., K Singh, A., & Patnaik, A. (2015). Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3(1), 23–43. https://doi.org/10.3934/bioeng.2016.1.23 | es_CO |
dc.relation.references | Ahmad, S., Kumar, V., Ramanand, K. B., & Rao, N. M. (2012). Probing protein stability and proteolytic resistance by loop scanning: A comprehensive mutational analysis. Protein Science, 21(3), 433–446. https://doi.org/10.1002/pro.2029 | es_CO |
dc.relation.references | Almeida, P. J., Silva, C. L., Alves, J. L., Silva, F. S., Martins, R. C., & Sampaio Fernandes, J. (2016). Comparative analysis of the wear of titanium/titanium and titanium/zirconia interfaces in implant/abutment assemblies after thermocycling and mechanical loading. Revista Portuguesa de Estomatologia, Medicina Dentaria e Cirurgia Maxilofacial, 57(4), 207–214. https://doi.org/10.1016/j.rpemd.2016.07.002 | es_CO |
dc.relation.references | Amat, N. F., Muchtar, A., Amril, M. S., Ghazali, M. J., & Yahaya, N. (2019). Effect of sintering 39 temperature on the aging resistance and mechanical properties of monolithic zirconia. Journal of Materials Research and Technology, 8(1), 1092–1101. https://doi.org/10.1016/j.jmrt.2018.07.017 | es_CO |
dc.relation.references | Anand, G., Sharma, S., Dutta, A. K., Kumar, S. K., & Belfort, G. (2010). Conformational transitions of adsorbed proteins on surfaces of varying polarity. Langmuir, 26(13), 10803– 10811. https://doi.org/10.1021/la1006132 | es_CO |
dc.relation.references | Batal, A., Sammons, R., & Dimov, S. (2019). Response of Saos-2 osteoblast-like cells to laser surface texturing, sandblasting and hydroxyapatite coating on CoCrMo alloy surfaces. Materials Science and Engineering C, 98(January), 1005–1013. https://doi.org/10.1016/j.msec.2019.01.067 | es_CO |
dc.relation.references | Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annual Review of Chemical and Biomolecular Engineering, 2(1), 403–430. https://doi.org/10.1146/annurev-chembioeng-061010-114257 | es_CO |
dc.relation.references | Best, S. M., Porter, A. E., Thian, E. S., & Huang, J. (2008). Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 28(7), 1319–1327. https://doi.org/10.1016/j.jeurceramsoc.2007.12.001 | es_CO |
dc.relation.references | Butterfield, T. A., Best, T. M., & Merrick, M. A. (2006). The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. Journal of Athletic Training, 41(4), 457–465. | es_CO |
dc.relation.references | C. PICONI1, G. M. F. M. E. B. D. P. (2003). Alumina and zirconia ceramics in jointreplacements. | es_CO |
dc.relation.references | Choi, S. H., Ryu, J. H., Kwon, J. S., Kim, J. E., Cha, J. Y., Lee, K. J., Yu, H. S., Choi, E. H., Kim, K. M., & Hwang, C. J. (2019). Effect of wet storage on the bioactivity of ultraviolet light- and non-thermal atmospheric pressure plasma-treated titanium and zirconia implant surfaces. Materials Science and Engineering C, 105(August), 110049. https://doi.org/10.1016/j.msec.2019.110049 | es_CO |
dc.relation.references | Chrcanovic, B. R., Leão, N. L. C., & Martins, M. D. (2013). Influence of different acid etchings on the superficial characteristics of Ti Sandblasted with Al2O3. Materials Research, 16(5), 1006–1014. https://doi.org/10.1590/S1516-14392013005000067 | es_CO |
dc.relation.references | Cooper, D. M. L., Kawalilak, C. E., Harrison, K., Johnston, B. D., & Johnston, J. D. (2016). Cortical Bone Porosity: What Is It, Why Is It Important, and How Can We Detect It? 40 Current Osteoporosis Reports, 14(5), 187–198. https://doi.org/10.1007/s11914-016-0319-y | es_CO |
dc.relation.references | Crouzier, T., Sailhan, F., Becquart, P., Guillot, R., Logeart-Avramoglou, D., & Picart, C. (2011). The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials, 32(30), 7543–7554. https://doi.org/10.1016/j.biomaterials.2011.06.062 | es_CO |
dc.relation.references | Dorozhkin, S. V. (2015). Calcium orthophosphate bioceramics. Ceramics International, 41(10), 13913–13966. https://doi.org/10.1016/j.ceramint.2015.08.004 | es_CO |
dc.relation.references | Fábio GONÇALVES, E. P. D. T. M. C. R. T. R. V. Z. A. Z. J. M. G. (2009). Clinical and Histopathological Analysis of Intramucosal Zirconia Inserts used for Improving Maxillary Denture Retention. 20(2), 149–145 | es_CO |
dc.relation.references | Faia-Torres, A. B., Guimond-Lischer, S., Rottmar, M., Charnley, M., Goren, T., Maniura-Weber, K., Spencer, N. D., Reis, R. L., Textor, M., & Neves, N. M. (2014). Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials, 35(33), 9023–9032. https://doi.org/10.1016/j.biomaterials.2014.07.015 | es_CO |
dc.relation.references | Florencio-Silva, R. (2015). Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Immuno-Analyse et Biologie Specialisee, 7(6), 17–24. https://doi.org/10.1016/S0923-2532(05)80182-6 | es_CO |
dc.relation.references | Futoshi Komine, M. B. B. and H. M. (2010). Current status of zirconia-based fixed restorations. Oral Science, 52(4), 531–539. | es_CO |
dc.relation.references | Gehrke, S. A., & Cícero, P. (2013). Analysis of Bone Tissue Healing around Titanium Implant Surface Treated with Tio Sandblasted after Three and Six Weeks Used Different Histological Methods – a Study in Rabbits. 1, 1–7. https://doi.org/0.7237/sjmct/150 | es_CO |
dc.relation.references | Ginebra, M.-P., Espanol, M., Maazouz, Y., Bergez, V., & Pastorino, D. (2018). Bioceramics and bone healing. EFORT Open Reviews, 3(5), 173–183. https://doi.org/10.1302/2058- 5241.3.170056 | es_CO |
dc.relation.references | Guazzato, M., Albakry, M., Ringer, S. P., & Swain, M. V. (2004). Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dental Materials, 20(5), 449–456. https://doi.org/10.1016/j.dental.2003.05.002 | es_CO |
dc.relation.references | Harianawala, H., Kheur, M., & Bal, A. (2016). Biocompatibility of Zirconia. J Adv Med Dent Scie Res, 4(3), 35–39. | es_CO |
dc.relation.references | Hashmi, S. (2014). Comprehensive Materials Processing. Elsevier Science | es_CO |
dc.relation.references | Ji, Y., Zhang, X. D., Wang, X. C., Che, Z. C., Yu, X. M., & Yang, H. Z. (2013). Zirconia bioceramics as all-ceramics crowns material: A review. Reviews on Advanced Materials Science, 34(1), 72–78. | es_CO |
dc.relation.references | Jodati, H., Yılmaz, B., & Evis, Z. (2020). A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International, 46(10), 15725– 15739. https://doi.org/10.1016/j.ceramint.2020.03.192 | es_CO |
dc.relation.references | Kamalian, R., Yazdanpanah, A., Moztarzadeh, F., Ravarian, R., Moztarzadeh, Z., Tahmasbi, M., & Mozafari, M. (2012). Synthesis and characterization of bioactive glass/forsterite nanocomposites for bone and dental implants. Ceramics - Silikaty, 56(4), 331–340. | es_CO |
dc.relation.references | Kargozar, S, Hamzehlou, S., & Baino, F. (2018). 14 - Effects of the biological environment on ceramics: Degradation, cell response, and in vivo behavior. In S. Thomas, P. Balakrishnan, & M. S. B. T.-F. B. C. Sreekala (Eds.), Woodhead Publishing Series in Biomaterials (pp. 407–437). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08- 102203-0.00014-7 | es_CO |
dc.relation.references | Kargozar, Saeid, Ramakrishna, S., & Mozafari, M. (2019). Chemistry of biomaterials: future prospects. Current Opinion in Biomedical Engineering, 10, 181–190. https://doi.org/10.1016/j.cobme.2019.07.003 | es_CO |
dc.relation.references | Kehoe, S., & Eng, B. (2008). Optimisation of Hydroxyapatite ( HAp ) for Orthopaedic Application via the Chemical Precipitation Technique By. Rheology, September. | es_CO |
dc.relation.references | Khayat, W., Chebib, N., Finkelman, M., Khayat, S., & Ali, A. (2018). Effect of grinding and polishing on roughness and strength of zirconia. Journal of Prosthetic Dentistry, 119(4), 626–631. https://doi.org/10.1016/j.prosdent.2017.04.003 | es_CO |
dc.relation.references | Kim, T., See, C. W., Li, X., & Zhu, D. (2020). Orthopedic Implants and Devices for Bone Fractures and Defects: Past, Present and Perspective. Engineered Regeneration, 1(April), 6– 18. https://doi.org/10.1016/j.engreg.2020.05.003 | es_CO |
dc.relation.references | KIMURA, Y., MATSUZAKA, K., YOSHINARI, M., & INOUE, T. (2012). Initial attachment of human oral keratinocytes cultured on zirconia or titanium. Dental Materials Journal, advpub. https://doi.org/10.4012/dmj.2011-189 | es_CO |
dc.relation.references | Klopfleisch, R. (2016). Macrophage reaction against biomaterials in the mouse model – Phenotypes, functions and markers. Acta Biomaterialia, 43, 3–13. https://doi.org/10.1016/j.actbio.2016.07.003 | es_CO |
dc.relation.references | Kobune, K., Miura, T., Sato, T., Yotsuya, M., & Yoshinari, M. (2014). Influence of plasma and ultraviolet treatment of zirconia on initial attachment of human oral keratinocytes: Expressions of laminin γ2 and integrin β4. Dental Materials Journal, 33(5), 696–704. https://doi.org/10.4012/dmj.2014-087 | es_CO |
dc.relation.references | Kohli, N., Ho, S., Brown, S. J., Sawadkar, P., Sharma, V., Snow, M., & García-Gareta, E. (2018). Bone remodelling in vitro: Where are we headed?: -A review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro. Bone, 110, 38–46. https://doi.org/10.1016/j.bone.2018.01.015 | es_CO |
dc.relation.references | Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13(3), 159–175. https://doi.org/10.1038/nri3399 | es_CO |
dc.relation.references | Kono, M., Aita, H., Ichioka, Y., Kado, T., Endo, K., & Koshino, H. (2015). NaOCL-mediated biofunctionalization enhances bone-titanium integration. Dental Materials Journal, 34(4), 537–544. https://doi.org/10.4012/dmj.2015-010 | es_CO |
dc.relation.references | Korfage, A., Raghoebar, G. M., Meijer, H. J. A., & Vissink, A. (2018). Patients’ expectations of oral implants: A systematic review. European Journal of Oral Implantology, 11, s65–s76 | es_CO |
dc.relation.references | Lennartz, A., Dohmen, A., Bishti, S., Fischer, H., & Wolfart, S. (2018). Retrievability of implant-supported zirconia restorations cemented on zirconia abutments. Journal of Prosthetic Dentistry, 120(5), 740–746. https://doi.org/10.1016/j.prosdent.2018.01.011 | es_CO |
dc.relation.references | Liu, X. H., Wu, L., Ai, H. J., Han, Y., & Hu, Y. (2015). Cytocompatibility and early osseointegration of nanoTiO2-modified Ti-24 Nb-4 Zr-7.9 Sn surfaces. Materials Science and Engineering C, 48, 256–262. https://doi.org/10.1016/j.msec.2014.12.011 | es_CO |
dc.relation.references | Luttikhuizen, D. T., Harmsen, M. C., & Luyn, M. J. A. Van. (2006). Cellular and Molecular Dynamics in the Foreign Body Reaction. Tissue Engineering, 12(7), 1955–1970. https://doi.org/10.1089/ten.2006.12.1955 | es_CO |
dc.relation.references | Ma, L., & Rainforth, W. M. (2010). A study of Biolox® delta subject to water lubricated reciprocating wear. Tribology International, 43(10), 1872–1881. https://doi.org/10.1016/j.triboint.2010.03.001 | es_CO |
dc.relation.references | Mai, R., Kunert-Keil, C., Grafe, A., Gedrange, T., Lauer, G., Dominiak, M., & Gredes, T. (2012). Histological behaviour of zirconia implants: An experiment in rats. Annals of Anatomy, 194(6), 561–566. https://doi.org/10.1016/j.aanat.2012.09.004 | es_CO |
dc.relation.references | Marrella, A., Lee, T. Y., Lee, D. H., Karuthedom, S., Syla, D., Chawla, A., Khademhosseini, A., & Jang, H. L. (2018). Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Materials Today, 21(4), 362–376. https://doi.org/10.1016/j.mattod.2017.10.005 | es_CO |
dc.relation.references | Masciandaro, S., Torrell, M., Leone, P., & Tarancón, A. (2019). Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications. Journal of the European Ceramic Society, 39(1), 9–16. https://doi.org/10.1016/j.jeurceramsoc.2017.11.033 | es_CO |
dc.relation.references | Murakami, T., Takemoto, S., Nishiyama, N., & Aida, M. (2017). Zirconia surface modification by a novel zirconia bonding system and its adhesion mechanism. Dental Materials, 33(12), 1371–1380. https://doi.org/10.1016/j.dental.2017.09.001 | es_CO |
dc.relation.references | Naglieri, V., Palmero, P., Montanaro, L., & Chevalier, J. (2013). Elaboration of alumina-zirconia composites: Role of the zirconia content on the microstructure and mechanical properties. Materials, 6(5), 2090–2102. https://doi.org/10.3390/ma6052090 | es_CO |
dc.relation.references | Nothdurft, F. P., Fontana, D., Ruppenthal, S., May, A., Aktas, C., Mehraein, Y., Lipp, P., & Kaestner, L. (2015). Differential Behavior of Fibroblasts and Epithelial Cells on Structured Implant Abutment Materials: A Comparison of Materials and Surface Topographies. Clinical Implant Dentistry and Related Research, 17(6), 1237–1249. https://doi.org/10.1111/cid.12253 | es_CO |
dc.relation.references | O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X | es_CO |
dc.relation.references | Oh, S., Oh, N., Appleford, M., & Ong, J. L. (2006). Bioceramics for Tissue Engineering Applications – A Review. American Journal of Biochemistry and Biotechnology, 2(2), 49–56. https://doi.org/10.3844/ajbbsp.2006.49.56 | es_CO |
dc.relation.references | Okada, M., Taketa, H., Torii, Y., Irie, M., & Matsumoto, T. (2019). Optimal sandblasting conditions for conventional-type yttria-stabilized tetragonal zirconia polycrystals. Dental Materials, 35(1), 169–175. https://doi.org/10.1016/j.dental.2018.11.009 | es_CO |
dc.relation.references | Ouberai, M. M., Xu, K., & Welland, M. E. (2014). Effect of the interplay between protein and surface on the properties of adsorbed protein layers. Biomaterials, 35(24), 6157–6163. https://doi.org/10.1016/j.biomaterials.2014.04.012 | es_CO |
dc.relation.references | Pae, A., Lee, H., Noh, K., & Woo, Y. H. (2014). Cell attachment and proliferation of bone 44 marrow-derived osteoblast on zirconia of various surface treatment. Journal of Advanced Prosthodontics, 6(2), 96–102. https://doi.org/10.4047/jap.2014.6.2.96 | es_CO |
dc.relation.references | Pardun, K., Treccani, L., Volkmann, E., Streckbein, P., Heiss, C., Destri, G. L., Marletta, G., & Rezwan, K. (2015). Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential. Materials Science and Engineering C, 48, 337–346. https://doi.org/10.1016/j.msec.2014.12.031 | es_CO |
dc.relation.references | iconi, C., & Maccauro, G. (1999). Zirconia as a ceramic biomaterial. In Biomaterials (Vol. 20). | es_CO |
dc.relation.references | Pobloth, A.-M., Mersiowsky, M. J., Kliemt, L., Schell, H., Dienelt, A., Pfitzner, B. M., Burgkart, R., Detsch, R., Wulsten, D., Boccaccini, A. R., & Duda, G. N. (2019). Bioactive coating of zirconia toughened alumina ceramic implants improves cancellous osseointegration. Scientific Reports, 9(1), 16692. https://doi.org/10.1038/s41598-019-53094-5 | es_CO |
dc.relation.references | Prokip, V., Lozanov, V., Morozova, N., & Baklanova, N. (2019). The zirconia-based interfacial coatings on SiC fibers obtained by different chemical methods. Materials Today: Proceedings, 19, 1861–1864. https://doi.org/10.1016/j.matpr.2019.07.028 | es_CO |
dc.relation.references | Rahmati, M., & Mozafari, M. (2018). A critical review on the cellular and molecular interactions at the interface of zirconia-based biomaterials. Ceramics International, 44(14), 16137– 16149. https://doi.org/10.1016/j.ceramint.2018.06.196 | es_CO |
dc.relation.references | Reinsch, H., Waitschat, S., Chavan, S. M., Lillerud, K. P., & Stock, N. (2016). A Facile “Green” Route for Scalable Batch Production and Continuous Synthesis of Zirconium MOFs. European Journal of Inorganic Chemistry, 2016(27), 4490–4498. https://doi.org/10.1002/ejic.201600295 | es_CO |
dc.relation.references | Rnjak-Kovacina, J., Tang, F., Whitelock, J. M., & Lord, M. S. (2016). Silk biomaterials functionalized with recombinant domain V of human perlecan modulate endothelial cell and platelet interactions for vascular applications. Colloids and Surfaces B: Biointerfaces, 148, 130–138. https://doi.org/10.1016/j.colsurfb.2016.08.039 | es_CO |
dc.relation.references | Sadowsky, S. J. (2020). Has zirconia made a material difference in implant prosthodontics? A review. Dental Materials, 36(1), 1–8. https://doi.org/10.1016/j.dental.2019.08.100 | es_CO |
dc.relation.references | Safioti, L. M., Kotsakis, G. A., Pozhitkov, A. E., Chung, W. O., & Daubert, D. M. (2017). Increased Levels of Dissolved Titanium Are Associated With Peri-Implantitis – A Cross Sectional Study. Journal of Periodontology, 88(5), 436–442. https://doi.org/10.1902/jop.2016.16052 | es_CO |
dc.relation.references | Saptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 11(1), 1–12. https://doi.org/10.1186/1477-3155-11-26 | es_CO |
dc.relation.references | Sartoretto, S. C., Alves, A. T. N. N., Resende, R. F. B., Calasans-Maia, J., Granjeiro, J. M., & Calasans-Maia, M. D. (2015). Early osseointegration driven by the surface chemistry and wettability of dental implants. Journal of Applied Oral Science, 23(3), 272–278. https://doi.org/10.1590/1678-775720140483 | es_CO |
dc.relation.references | Schulz, G. E., & Schirmer, R. H. (2013). Principles of Protein Structure. Springer New York. | es_CO |
dc.relation.references | Sheikh, Z., Brooks, P. J., Barzilay, O., Fine, N., & Glogauer, M. (2015). Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials, 8(9), 5671–5701. https://doi.org/10.3390/ma8095269 | es_CO |
dc.relation.references | Soon, G., Pingguan-Murphy, B., Lai, K. W., & Akbar, S. A. (2016). Review of zirconia-based bioceramic: Surface modification and cellular response. Ceramics International, 42(11), 12543–12555. https://doi.org/10.1016/j.ceramint.2016.05.077 | es_CO |
dc.relation.references | Szott, L. M., & Horbett, T. A. (2011). Protein interactions with surfaces: Cellular responses, complement activation, and newer methods. Current Opinion in Chemical Biology, 15(5), 677–682. https://doi.org/10.1016/j.cbpa.2011.04.021 | es_CO |
dc.relation.references | Tana, F., De Giglio, E., Cometa, S., D’Agostino, A., Serafini, A., Variola, F., Bono, N., Chiesa, R., & De Nardo, L. (2019). Ca-doped zirconia mesoporous coatings for biomedical applications: A physicochemical and biological investigation. Journal of the European Ceramic Society, 40(11), 3698–3706. https://doi.org/10.1016/j.jeurceramsoc.2019.10.02 | es_CO |
dc.relation.references | Tokar, E., Polat, S., & Ozturk, C. (2019). Repair bond strength of composite to Er,Cr:YSGG laser irradiated zirconia and porcelain surfaces. Biomedical Journal, 42(3), 193–199. https://doi.org/10.1016/j.bj.2019.02.001 | es_CO |
dc.relation.references | Trindade, R., Albrektsson, T., Tengvall, P., & Wennerberg, A. (2016). Foreign Body Reaction to Biomaterials: On Mechanisms for Buildup and Breakdown of Osseointegration. Clinical Implant Dentistry and Related Research, 18(1), 192–203. https://doi.org/10.1111/cid.1227 | es_CO |
dc.relation.references | Tuna, T., Wein, M., Swain, M., Fischer, J., & Att, W. (2015). Influence of ultraviolet photofunctionalization on the surface characteristics of zirconia-based dental implant materials. Dental Materials, 31(2), e14–e24. https://doi.org/10.1016/j.dental.2014.10.008 | es_CO |
dc.relation.references | Valenti, M. (2006). The Metal-Free Approach to Restorative Treatment Planning. In 46 EUROPEAN JOURNAL OF ESTHETIC DENTISTRY (Vol. 1). | es_CO |
dc.relation.references | Vladkova, T. G. (2013). Surface Engineering of Polymeric Biomaterials. Smithers Information Limited. | es_CO |
dc.relation.references | Vogler, E. A. (2012). Protein adsorption in three dimensions. Biomaterials, 33(5), 1201–1237. https://doi.org/10.1016/j.biomaterials.2011.10.059 | es_CO |
dc.relation.references | Wang, K., Zhou, C., Hong, Y., & Zhang, X. (2012). A review of protein adsorption on bioceramics. Interface Focus, 2(3), 259–277. https://doi.org/10.1098/rsfs.2012.0012 | es_CO |
dc.relation.references | Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2(4), 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007 | es_CO |
dc.relation.references | Wu, C., & Chang, J. (2012). Mesoporous bioactive glasses: Structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus, 2(3), 292– 306. https://doi.org/10.1098/rsfs.2011.0121 | es_CO |
dc.relation.references | Yasuno, K., Kakura, K., Taniguchi, Y., Yamaguchi, Y., & Kido, H. (2014). Zirconia implants with laser surface treatment: Peri-implant bone response and enhancement of osseointegration. Journal of Hard Tissue Biology, 23(1), 93–100. https://doi.org/10.2485/jhtb.23.93 | es_CO |
dc.relation.references | Yu, C., Zhuang, J., Dong, L., Cheng, K., & Weng, W. (2017). Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films. Colloids and Surfaces B: Biointerfaces, 156, 213–220. https://doi.org/10.1016/j.colsurfb.2017.05.011 | es_CO |
dc.relation.references | Zhang, C. Q., Si, G., Duan, Y., Lyu, Y., Keatley, D. A., & Chan, D. K. C. (2016). The effects of mindfulness training on beginners’ skill acquisition in dart throwing: A randomized controlled trial. Psychology of Sport and Exercise, 22, 279–285. https://doi.org/10.1016/j.psychsport.2015.09.005 | es_CO |
dc.relation.references | Zhang, J., Liu, W., Schnitzler, V., Tancret, F., & Bouler, J. M. (2014). Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia, 10(3), 1035–1049. https://doi.org/10.1016/j.actbio.2013.11.001 | es_CO |
dc.relation.references | Zhang, W., Chai, H., & Diao, G. (2019). Highly porous cyclodextrin functionalized nanofibrous 47 membrane by acid etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582(January), 123907. https://doi.org/10.1016/j.colsurfa.2019.123907 | es_CO |
dc.relation.references | Zucuni, C. P., Dapieve, K. S., Rippe, M. P., Pereira, G. K. R., Bottino, M. C., & Valandro, L. F. (2019). Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding. Journal of the Mechanical Behavior of Biomedical Materials, 93(January), 222–229. https://doi.org/10.1016/j.jmbbm.2019.02.01 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Ardila_2020_TG.pdf | Ardila_2020_TG | 532,76 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.