• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5385
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorParada Jaimes, Luis José.-
    dc.date.accessioned2022-12-14T19:08:36Z-
    dc.date.available2020-09-22-
    dc.date.available2022-12-14T19:08:36Z-
    dc.date.issued2020-
    dc.identifier.citationParada Jaimes, L. J. (2020). Propiedades, aplicaciones más recientes y potenciales problemas del grafeno [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5385es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5385-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent58es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titlePropiedades, aplicaciones más recientes y potenciales problemas del grafeno.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-22-
    dc.relation.referencesAlami, A. H. (2020). Applications of Graphene for Energy Harvesting. In Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/b978- 0-12-803581-8.11738-2es_CO
    dc.relation.referencesAlekseenko, V., & Alekseenko, A. (2014). The abundances of chemical elements in urban soils. Journal of Geochemical Exploration, 147(PB), 245–249. https://doi.org/10.1016/j.gexplo.2014.08.003es_CO
    dc.relation.referencesAlessandri, M., Lizzo, G., Gualandi, C., Mangano, C., Giuliani, A., Focarete, M. L., & Calzà, L. (2014). Influence of biological matrix and artificial electrospun scaffolds on proliferation, differentiation and trophic factor synthesis of rat embryonic stem cells. Matrix Biology, 33, 68–76. https://doi.org/10.1016/j.matbio.2013.08.001es_CO
    dc.relation.referencesAli, A. A., Nazeer, A. A., Madkour, M., Bumajdad, A., & Al Sagheer, F. (2018). Novel supercapacitor electrodes based semiconductor nanoheterostructure of CdS/rGO/CeO2 as efficient candidates. Arabian Journal of Chemistry, 11(5), 692–699. https://doi.org/10.1016/j.arabjc.2018.03.010es_CO
    dc.relation.referencesAli, I., & Saleh, T. A. (2020). Zeolite-graphene composite as support for molybdenum-based catalysts and their hydrodesulfurization performance. Applied Catalysis A: General, 598, 117542. https://doi.org/10.1016/j.apcata.2020.117542es_CO
    dc.relation.referencesAn, W., Zhang, Y., Zhang, X., Li, K., Kang, Y., Akhtar, S., Sha, X., & Gao, L. (2018). Ocular toxicity of reduced graphene oxide or graphene oxide exposure in mouse eyes. Experimental Eye Research, 174(May), 59–69. https://doi.org/10.1016/j.exer.2018.05.024es_CO
    dc.relation.referencesAnirudhan, T. S., Chithra Sekhar, V., & Athira, V. S. (2020). Graphene oxide based functionalized chitosan polyelectrolyte nanocomposite for targeted and pH responsive drug delivery. International Journal of Biological Macromolecules, 150, 468–479. https://doi.org/10.1016/j.ijbiomac.2020.02.053es_CO
    dc.relation.referencesAskari, N., Askari, M. B., & Shafieipour, A. (2019). Investigation the molecular structure of novel graphene hybrid scaffold in nerve regeneration. Journal of Molecular Structure, 1186, 393–403. https://doi.org/10.1016/j.molstruc.2019.03.058es_CO
    dc.relation.referencesAval, N. A., Emadi, R., Valiani, A., Kharaziha, M., Karimipour, M., & Rahbarghazi, R. (2019). Nano-featured poly (lactide-co-glycolide)-graphene microribbons as a promising substrate for nerve tissue engineering. Composites Part B: Engineering, 173, 106863. https://doi.org/10.1016/j.compositesb.2019.05.074es_CO
    dc.relation.referencesAziz, A., Asif, M., Azeem, M., Ashraf, G., Wang, Z., Xiao, F., & Liu, H. (2019). Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Analytica Chimica Acta, 1047, 197–207. https://doi.org/10.1016/j.aca.2018.10.008es_CO
    dc.relation.referencesBacon, M., Bradley, S. J., & Nann, T. (2014). Graphene quantum dots. In Particle and Particle Systems Characterization (Vol. 31, Issue 4, pp. 415–428). Wiley-VCH Verlag. https://doi.org/10.1002/ppsc.201300252es_CO
    dc.relation.referencesTiwari, S. K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10–29. https://doi.org/10.1016/j.jsamd.2020.01.006es_CO
    dc.relation.referencesToh, S. Y., Loh, K. S., Kamarudin, S. K., & Daud, W. R. W. (2014). Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. In Chemical Engineering Journal (Vol. 251, Issue 1, pp. 422–434). Nature Publishing Group. https://doi.org/10.1016/j.cej.2014.04.004es_CO
    dc.relation.referencesWang, J., Cheng, Y., Chen, L., Zhu, T., Ye, K., Jia, C., Wang, H., Zhu, M., Fan, C., & Mo, X. (2019). In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 84, 98–113. https://doi.org/10.1016/j.actbio.2018.11.032es_CO
    dc.relation.referencesWang, Y., Jin, Y., & Jia, M. (2018). Ultralong Fe3O4 nanowires embedded graphene aerogel composite anodes for lithium ion batteries. Materials Letters, 228, 395–398. https://doi.org/10.1016/j.matlet.2018.06.077es_CO
    dc.relation.referencesWang, Z., Hu, H., Huang, L., Lin, F., Liu, S., Wu, T., Alharbi, N. S., Rabah, S. O., Lu, Y., & Wang, X. (2020). Graphene aerogel capsulated precipitants for high efficiency and rapid elimination of uranium from water. Chemical Engineering Journal, 396, 125272. https://doi.org/10.1016/j.cej.2020.125272es_CO
    dc.relation.referencesXu, Z., Wang, S., Li, Y., Wang, M., Shi, P., & Huang, X. (2014). Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Applied Materials and Interfaces, 6(19), 17268–17276. https://doi.org/10.1021/am505308fes_CO
    dc.relation.referencesYan, T., Zhang, H., Huang, D., Feng, S., Fujita, M., & Gao, X. D. (2017). Chitosan functionalized graphene oxide as a potential immunoadjuvant. Nanomaterials, 7(3), 59. https://doi.org/10.3390/nano7030059es_CO
    dc.relation.referencesYang, Y., Liu, R., Wu, J., Jiang, X., Cao, P., Hu, X., Pan, T., Qiu, C., Yang, J., Song, Y., Wu, D., & Su, Y. (2015). Bottom-up Fabrication of Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports, 5(1), 1–7. https://doi.org/10.1038/srep13480es_CO
    dc.relation.referencesYu, P., Bao, R. Y., Shi, X. J., Yang, W., & Yang, M. B. (2017). Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 155, 507–515. https://doi.org/10.1016/j.carbpol.2016.09.001es_CO
    dc.relation.referencesZambrano-Andazol, I., Vázquez, N., Chacón, M., Sánchez-Avila, R. M., Persinal, M., Blanco, C., González, Z., Menéndez, R., Sierra, M., Fernández-Vega, Á., Sánchez, T., Merayo Lloves, J., & Meana, Á. (2020). Reduced graphene oxide membranes in ocular regenerative medicine. Materials Science and Engineering: C, 111075. https://doi.org/10.1016/j.msec.2020.111075es_CO
    dc.relation.referencesBagheri, Z. S., Giles, E., El Sawi, I., Amleh, A., Schemitsch, E. H., Zdero, R., & Bougherara, H. (2015). Osteogenesis and cytotoxicity of a new Carbon Fiber/Flax/Epoxy composite material for bone fracture plate applications. Materials Science and Engineering C, 46, 435–442. https://doi.org/10.1016/j.msec.2014.10.042es_CO
    dc.relation.referencesZhang, H., Grüner, G., & Zhao, Y. (2013). Recent advancements of graphene in biomedicine. Journal of Materials Chemistry B, 1(20), 2542–2567. https://doi.org/10.1039/c3tb20405ges_CO
    dc.relation.referencesZhang, M., Zheng, H., Zhu, H., Xu, Z., Liu, R., Chen, J., Song, Q., Song, X., Wu, J., Zhang, C., & Cui, H. (2020). Graphene-wrapped MnO2 achieved by ultrasonic-assisted synthesis applicable for hybrid high-energy supercapacitors. Vacuum, 176, 109315. https://doi.org/10.1016/j.vacuum.2020.109315es_CO
    dc.relation.referencesZhu, C., Han, T. Y. J., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., & Worsley, M. A. (2015). Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 6(1), 1–8. https://doi.org/10.1038/ncomms7962es_CO
    dc.relation.referencesZhu, W., Lin, Y., Kang, W., Quan, H., Zhang, Y., Chang, M., Wang, K., Zhang, M., Zhang, W., Li, Z., Wei, H., Fan, T., Chen, D., & Hu, H. (2020). An aerogel adsorbent with bio inspired interfacial adhesion between graphene and MoS2 sheets for water treatment. Applied Surface Science, 512, 145717. https://doi.org/10.1016/j.apsusc.2020.145717es_CO
    dc.relation.referencesBahrami, S., Solouk, A., Mirzadeh, H., & Seifalian, A. M. (2019). Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites Part B: Engineering, 168, 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044es_CO
    dc.relation.referencesBaradaran, S., Moghaddam, E., Basirun, W. J., Mehrali, M., Sookhakian, M., Hamdi, M., Moghaddam, M. R. N., & Alias, Y. (2014). Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon, 69, 32–45. https://doi.org/10.1016/j.carbon.2013.11.054es_CO
    dc.relation.referencesBianco, A., Cheng, H. M., Enoki, T., Gogotsi, Y., Hurt, R. H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C. R., Tascon, J. M. D., & Zhang, J. (2013). All in the graphene family - A recommended nomenclature for two-dimensional carbon materials. In Carbon (Vol. 65, pp. 1–6). Elsevier Ltd. https://doi.org/10.1016/j.carbon.2013.08.038es_CO
    dc.relation.referencesBlandez, J. (2017). Grafeno Y Materiales Derivados Como Catalizadores Pseudohomogéneos En Reacciones Orgánicas. https://riunet.upv.es/bitstream/handle/10251/82695/Blandez - Grafeno y materiales derivados como catalizadores seudohomogéneos en reacciones orgánic....pdf?sequence=1&isAllowed=yes_CO
    dc.relation.referencesBonaccorso, F., Bartolotta, A., Coleman, J. N., & Backes, C. (2016). 2D-Crystal-Based Functional Inks. In Advanced Materials (Vol. 28, Issue 29, pp. 6136–6166). Wiley-VCH Verlag. https://doi.org/10.1002/adma.201506410es_CO
    dc.relation.referencesCao, X., Qi, D., Yin, S., Bu, J., Li, F., Goh, C. F., Zhang, S., & Chen, X. (2013). Ambient fabrication of large-area graphene films via a synchronous reduction and assembly strategy. Advanced Materials, 25(21), 2957–2962. https://doi.org/10.1002/adma.201300586es_CO
    dc.relation.referencesCarina, A. da S., Daniela, P., Hanna, H., & Manel, R. (2018). Revisión Sistemática sobre la toxicidad derivada de la exposición al Grafeno. MEDICINA y SEGURIDAD Del Trabajo, 64(250), 75–88. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465- 546X2018000100075es_CO
    dc.relation.referencesChauhan, D., Pooja, Nirbhaya, V., Srivastava, C. M., Chandra, R., & Kumar, S. (2020). Nanostructured transition metal chalcogenide embedded on reduced graphene oxide based highly efficient biosensor for cardiovascular disease detection. Microchemical Journal, 155, 104697. https://doi.org/10.1016/j.microc.2020.104697es_CO
    dc.relation.referencesChen, S., Jin, Z., Dai, L., Wu, H., Wang, J., Wang, L., Zhou, Z., Yang, L., & Gao, W. (2018). Aloperine induces apoptosis and inhibits invasion in MG-63 and U2OS human osteosarcoma cells. Biomedicine and Pharmacotherapy, 97, 45–52. https://doi.org/10.1016/j.biopha.2017.09.066es_CO
    dc.relation.referencesChen, X., Wu, B., & Liu, Y. (2016). Direct preparation of high quality graphene on dielectric substrates. In Chemical Society Reviews (Vol. 45, Issue 8, pp. 2057–2074). Royal Society of Chemistry. https://doi.org/10.1039/c5cs00542fes_CO
    dc.relation.referencesChen, Y., Hu, X., Sun, J., & Zhou, Q. (2016). Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology, 10(1), 42–52. https://doi.org/10.3109/17435390.2015.1005032es_CO
    dc.relation.referencesChihara, D., & Nance, J. (2012). An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation. Development (Cambridge), 139(14), 2547–2556. https://doi.org/10.1242/dev.079863es_CO
    dc.relation.referencesCient, R. (2018). Avances de la investigación científica en el grafeno. 2. https://doi.org/10.26820/reciamuc/2.(3).septiembre.2018.321-334es_CO
    dc.relation.referencesDasari Shareena, T. P., McShan, D., Dasmahapatra, A. K., & Tchounwou, P. B. (2018). A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. In Nano-Micro Letters (Vol. 10, Issue 3, pp. 1–34). SpringerOpen. https://doi.org/10.1007/s40820-018-0206-es_CO
    dc.relation.referencesDe Marchi, L., Pretti, C., Gabriel, B., Marques, P. A. A. P., Freitas, R., & Neto, V. (2018). An overview of graphene materials: Properties, applications and toxicity on aquatic environments. Science of the Total Environment, 631–632, 1440–1456. https://doi.org/10.1016/j.scitotenv.2018.03.132es_CO
    dc.relation.referencesDeng, L., Walker, C., & Xu, X. M. (2015). Schwann Cell-Mediated Axonal Regeneration in the Central Nervous System. In Neural Regeneration (pp. 337–349). Elsevier Inc. https://doi.org/10.1016/B978-0-12-801732-6.00022-es_CO
    dc.relation.referencesuch, M. C., Budinger, G. R. S., Liang, Y. T., Soberanes, S., Urich, D., Chiarella, S. E., Campochiaro, L. A., Gonzalez, A., Chandel, N. S., Hersam, M. C., & Mutlu, G. M. (2011). Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Letters, 11(12), 5201–5207. https://doi.org/10.1021/nl202515aes_CO
    dc.relation.referencesEl Achaby, M., Arrakhiz, F. E., Vaudreuil, S., El Kacem Qaiss, A., Bousmina, M., & Fassi Fehri, O. (2012). Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polymer Composites, 33(5), 733–744. https://doi.org/10.1002/pc.22198es_CO
    dc.relation.referencesFadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., Evariste, L., Gauthier, L., Koivisto, A. J., Vogel, U., Martín, C., Delogu, L. G., Buerki-Thurnherr, T., Wick, P., Beloin-Saint-Pierre, D., Hischier, R., Pelin, M., Candotto Carniel, F., Tretiach, M., … Bianco, A. (2018). Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. In ACS Nano (Vol. 12, Issue 11, pp. 10582–10620). https://doi.org/10.1021/acsnano.8b04758es_CO
    dc.relation.referencesFu, C., Liu, T., Li, L., Liu, H., Liang, Q., & Meng, X. (2014). Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials, 40, 23–31. https://doi.org/10.1016/j.biomaterials.2014.11.014es_CO
    dc.relation.referencesFujikawa, T., Petralia, R. S., Fitzgerald, T. S., Wang, Y. X., Millis, B., Morgado-Díaz, J. A., Kitamura, K., & Kachar, B. (2014). Localization of kainate receptors in inner and outer hair cell synapses. Hearing Research, 314, 20–32. https://doi.org/10.1016/j.heares.2014.05.001es_CO
    dc.relation.referencesGarcía, M. (2017). Grafeno: Biografia De Un Material. 35.es_CO
    dc.relation.referencesGarcía Mulero, A. (2019). Estudio de fotocatalizadores basados en grafenos con defectos para la producción de combustibles solares.es_CO
    dc.relation.referencesGinestra, P. (2019). Manufacturing of polycaprolactone - Graphene fibers for nerve tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 100, 103387. https://doi.org/10.1016/j.jmbbm.2019.103387es_CO
    dc.relation.referencesGoenka, S., Sant, V., & Sant, S. (2014). Graphene-based nanomaterials for drug delivery and tissue engineering. In Journal of Controlled Release (Vol. 173, Issue 1, pp. 75–88). Elsevier. https://doi.org/10.1016/j.jconrel.2013.10.01es_CO
    dc.relation.referencesGraphenea. (2020). Buy Graphene Products. https://www.graphenea.com/collections/graphene-productes_CO
    dc.relation.referencesGuo, X., & Mei, N. (2014). Assessment of the toxic potential of graphene family nanomaterials. In Journal of Food and Drug Analysis (Vol. 22, Issue 1, pp. 105–115). Elsevier Taiwan LLC. https://doi.org/10.1016/j.jfda.2014.01.009es_CO
    dc.relation.referencesGurunathan, S., Han, J. W., Abdal Dayem, A., Eppakayala, V., & Kim, J. H. (2012). Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 7, 5901–5914. https://doi.org/10.2147/IJN.S37397es_CO
    dc.relation.referencesH. Torres-Silva, J. L. L.-B. (2011). Aspectos quirales del grafeno Graphene chiral elements. Ingeniare. Revista Chilena de Ingeniería, 19, 67–75. https://doi.org/10.4067/S0718- 3305201100010000es_CO
    dc.relation.referencesHazen, R. M., Hemley, R. J., & Mangum, A. J. (2012). Carbon in Earth’s interior: Storage, cycling, and life. Eos, 93(2), 17–18. https://doi.org/10.1029/2012EO020001es_CO
    dc.relation.referencesHeidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Materials Science and Engineering C, 103, 109768. https://doi.org/10.1016/j.msec.2019.109768es_CO
    dc.relation.referencesHernandez, Y., Lotya, M., Rickard, D., Bergin, S. D., & Coleman, J. N. (2010). Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 26(5), 3208–3213. https://doi.org/10.1021/la903188aes_CO
    dc.relation.referencesHug Rojas, R. m. (2017). Obtencion De Materiales Con Estructura Tipo Grafeno Por Exfoliacion Mecanica Empleando El Metodo De “Ball Milling” Hug.es_CO
    dc.relation.referencesISO/TC 229, & IEC/TC113. (2017). SO/TS 80004-13:2017(en) Nanotechnologies — Vocabulary — Part 13: Graphene and related two-dimensional (2D) materials. https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-13:ed-1:v1:en:fig:1es_CO
    dc.relation.referencesJana, A., Scheer, E., & Polarz, S. (2017). Synthesis of graphene-transition metal oxide hybrid nanoparticles and their application in various fields. In Beilstein Journal of Nanotechnology (Vol. 8, Issue 1, pp. 688–714). Beilstein-Institut Zur Forderung der Chemischen Wissenschaften. https://doi.org/10.3762/bjnano.8.74es_CO
    dc.relation.referencesJeong, J. H., Lee, G. W., Kim, Y. H., Choi, Y. J., Roh, K. C., & Kim, K. B. (2019). A holey graphene-based hybrid supercapacitor. Chemical Engineering Journal, 378, 122126. https://doi.org/10.1016/j.cej.2019.122126es_CO
    dc.relation.referencesJian, Z., Wang, H., Liu, M., Chen, S., Wang, Z., Qian, W., Luo, G., & Xia, H. (2020). Polyurethane-modified graphene oxide composite bilayer wound dressing with long lasting antibacterial effect. Materials Science and Engineering C, 111, 110833. https://doi.org/10.1016/j.msec.2020.110833es_CO
    dc.relation.referencesJorge, C. (2016). Articulos de Ingeniería Mecanica . Volumen 2 ,. 2(November). https://doi.org/10.13140/RG.2.2.21678.92489es_CO
    dc.relation.referencesK S, N., & A H, C. N. (2012). Two-dimensional crystals-based heterostructures: materials with tailored properties Related content Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications L A Chernozatonskii and A A Artyukh-New directio. https://doi.org/10.1088/0031-8949/2012/T146/014006es_CO
    dc.relation.referencesKuila, T., Bose, S., Mishra, A. K., Khanra, P., Kim, N. H., & Lee, J. H. (2012). Chemical functionalization of graphene and its applications. In Progress in Materials Science (Vol. 57, Issue 7, pp. 1061–1105). Pergamon. https://doi.org/10.1016/j.pmatsci.2012.03.002es_CO
    dc.relation.referencesKumar, A., & Huei, C. (2013). Synthesis and Biomedical Applications of Graphene: Present and Future Trends. In Advances in Graphene Science. InTech. https://doi.org/10.5772/55728es_CO
    dc.relation.referencesLee, C. H., Chang, K. H., Park, K. T., Shin, H. S., & Kim, T. (2013). Bending resistance of girth-welded stainless steel circular hollow sections. Thin-Walled Structures, 73, 174– 184. https://doi.org/10.1016/j.tws.2013.08.002es_CO
    dc.relation.referencesLee, I., Bae, D. J., Lee, W. K., Yang, C. M., Cho, S. W., Nam, J., Lee, D. Y., Jang, A. R., Shin, H. S., Hwang, J. Y., Hong, S., & Kim, K. S. (2019). Rapid synthesis of graphene by chemical vapor deposition using liquefied petroleum gas as precursor. Carbon, 145, 462– 469. https://doi.org/10.1016/j.carbon.2019.01.004es_CO
    dc.relation.referencesLee, S., Park, W. K., Yoon, Y., Baek, B., Yoo, J. S., Kwon, S. Bin, Kim, D. H., Hong, Y. J., Kang, B. K., Yoon, D. H., & Yang, W. S. (2019). Quality improvement of fast-synthesized graphene films by rapid thermal chemical vapor deposition for mass production. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 242, 63–68. https://doi.org/10.1016/j.mseb.2019.03.004es_CO
    dc.relation.referencesLee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. (2019). Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 98(xxxx), 163–180. https://doi.org/10.1016/j.jtice.2018.10.028es_CO
    dc.relation.referencesLin, S., Ruan, J., & Wang, S. (2019). Biosynthesized of reduced graphene oxide nanosheets and its loading with paclitaxel for their anti cancer effect for treatment of lung cancer. Journal of Photochemistry and Photobiology B: Biology, 191, 13–17. https://doi.org/10.1016/j.jphotobiol.2018.11.015es_CO
    dc.relation.referencesLiu, F., Yang, D., Liu, Y., Cao, Q., Sun, Y., Wang, Q., & Tang, H. (2018). Improving dispersive property, biocompatibility and targeting gene transfection of graphene oxide by covalent attachment of polyamidoamine dendrimer and glycyrrhetinic acid. Colloids and Surfaces B: Biointerfaces, 171, 622–628. https://doi.org/10.1016/j.colsurfb.2018.07.067es_CO
    dc.relation.referencesLiu, J., Li, B. W., Tan, Y. Z., Giannakopoulos, A., Sanchez-Sanchez, C., Beljonne, D., Ruffieux, P., Fasel, R., Feng, X., & Müllen, K. (2015). Toward Cove-Edged Low Band Gap Graphene Nanoribbons. Journal of the American Chemical Society, 137(18), 6097– 6103. https://doi.org/10.1021/jacs.5b03017es_CO
    dc.relation.referencesLiu, S., Hu, M., Zeng, T. H., Wu, R., Jiang, R., Wei, J., Wang, L., Kong, J., & Chen, Y. (2012). Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir, 28(33), 12364–12372. https://doi.org/10.1021/la3023908es_CO
    dc.relation.referencesLogan, B. E., Rossi, R., Ragab, A., & Saikaly, P. E. (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 17(5), 307–319. https://doi.org/10.1038/s41579-019-0173-xes_CO
    dc.relation.referencesLomov, S. V., Gorbatikh, L., Houlle, M., Kotanjac, Ž., Koissin, V., Vallons, K., & Verpoest, I. (2011). Compression resistance and hysteresis of carbon fibre tows with grown carbon nanotubes/nanofibres. Composites Science and Technology, 71(15), 1746–1753. https://doi.org/10.1016/j.compscitech.2011.08.007es_CO
    dc.relation.referencesMa, M., Cheng, L., Zhao, A., Zhang, H., & Zhang, A. (2020). Pluronic-based graphene oxide methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagnosis and Photodynamic Therapy, 29, 101640. https://doi.org/10.1016/j.pdpdt.2019.101640es_CO
    dc.relation.referencesMaître, J. L., & Heisenberg, C. P. (2013). Three functions of cadherins in cell adhesion. In Current Biology (Vol. 23, Issue 14, pp. R626–R633). Cell Press. https://doi.org/10.1016/j.cub.2013.06.019es_CO
    dc.relation.referencesMauro, N., Scialabba, C., Agnello, S., Cavallaro, G., & Giammona, G. (2020). Folic acid functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery. Materials Science and Engineering C, 107, 110201. https://doi.org/10.1016/j.msec.2019.110201es_CO
    dc.relation.referencesMorotomi, T., Matsunaga, K., Kusuhara, H., Itani, Y., Nakao, H., Asamura, S., & Isogai, N. (2014). Long-term result of a biodegradable osteo-inductive copolymer for the treatment of orbital blowout fracture. Journal of Cranio-Maxillofacial Surgery, 42(5), 443–447. https://doi.org/10.1016/j.jcms.2013.05.039es_CO
    dc.relation.referencesMussa, Y., Ahmed, F., Abuhimd, H., Arsalan, M., & Alsharaeh, E. (2019). Enhanced Electrochemical performance at high temperature of Cobalt Oxide/Reduced Graphene Oxide Nanocomposites and its application in lithium-ion batteries. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-37032-5es_CO
    dc.relation.referencesNajafabadi, S. A. A., Mohammadi, A., & Kharazi, A. Z. (2020). Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing. Materials Science and Engineering C, 110899. https://doi.org/10.1016/j.msec.2020.110899es_CO
    dc.relation.referencesNarayanan, K. B., Park, G. T., & Han, S. S. (2020). Electrospun poly(vinyl alcohol)/reduced graphene oxide nanofibrous scaffolds for skin tissue engineering. Colloids and Surfaces B: Biointerfaces, 191, 110994. https://doi.org/10.1016/j.colsurfb.2020.110994es_CO
    dc.relation.referencesNi, M., Shi, X. L., Qu, Z. G., Jiang, H., Chen, Z. Q., & Hu, J. (2015). Epithelial mesenchymal transition of non-small-cell lung cancer cells A549 induced by SPHK1. Asian Pacific Journal of Tropical Medicine, 8(2), 142–146. https://doi.org/10.1016/S1995- 7645(14)60305-9es_CO
    dc.relation.referencesNie, W., Peng, C., Zhou, X., Chen, L., Wang, W., Zhang, Y., Ma, P. X., & He, C. (2017). Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano hydroxyapatite composites for bone tissue engineering. Carbon, 116, 325–337. https://doi.org/10.1016/j.carbon.2017.02.013es_CO
    dc.relation.referencesPark, E. J., Lee, G. H., Han, B. S., Lee, B. S., Lee, S., Cho, M. H., Kim, J. H., & Kim, D. W. (2014). Toxic response of graphene nanoplatelets in vivo and in vitro. Archives of Toxicology, 89(9), 1557–1568. https://doi.org/10.1007/s00204-014-1303-xes_CO
    dc.relation.referencesPark, H. J., Zhao, T. T., Lee, K. S., Lee, S. H., Shin, K. S., Park, K. H., Choi, H. S., & Lee, M. K. (2015). Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson’s disease rat models. Neurochemistry International, 83–84, 19–27. https://doi.org/10.1016/j.neuint.2015.01.003es_CO
    dc.relation.referencesPark, W. K., Yoon, Y., Song, Y. H., Choi, S. Y., Kim, S., Do, Y., Lee, J., Park, H., Yoon, D. H., & Yang, W. S. (2017). High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-16649-yes_CO
    dc.relation.referencesPoon, J., Batchelor-Mcauley, C., Tschulik, K., & Compton, R. G. (2015). Single graphene nanoplatelets: Capacitance, potential of zero charge and diffusion coefficient. Chemical Science, 6(5), 2869–2876. https://doi.org/10.1039/c5sc00623fes_CO
    dc.relation.referencesPourjavadi, A., Asgari, S., & Hosseini, S. H. (2020). Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs. Journal of Drug Delivery Science and Technology, 56, 101542. https://doi.org/10.1016/j.jddst.2020.101542es_CO
    dc.relation.referencesQin, E. C., Kandel, M. E., Liamas, E., Shah, T. B., Kim, C., Kaufman, C. D., Zhang, Z. J., Popescu, G., Gillette, M. U., Leckband, D. E., & Kong, H. (2019). Graphene oxide substrates with N-cadherin stimulates neuronal growth and intracellular transport. Acta Biomaterialia, 90, 412–423. https://doi.org/10.1016/j.actbio.2019.04.005es_CO
    dc.relation.referencesQiu, Z., Hu, J., Li, Z., Yang, X., Hu, J., You, Q., Bai, S., Mao, Y., Hua, D., & Yin, J. (2020). Graphene oxide-based nanocomposite enabled highly efficient targeted synergistic therapy for colorectal cancer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 593, 124585. https://doi.org/10.1016/j.colsurfa.2020.124585es_CO
    dc.relation.referencesQu, Y., Sun, F., He, F., Yu, C., Lv, J., Zhang, Q., Liang, D., Yu, C., Wang, J., Zhang, X., Xu, A., & Wu, J. (2019). Glycyrrhetinic acid-modified graphene oxide mediated siRNA delivery for enhanced liver-cancer targeting therapy. European Journal of Pharmaceutical Sciences, 139, 105036. https://doi.org/10.1016/j.ejps.2019.105036es_CO
    dc.relation.referencesRajitha, K., & Mohana, K. N. (2020). Application of modified graphene oxide – Polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium. Materials Chemistry and Physics, 241, 122050. https://doi.org/10.1016/j.matchemphys.2019.122050es_CO
    dc.relation.referencesRedondo-Obispo, C., Ripolles, T. S., Cortijo-Campos, S., Álvarez, A. L., Climent-Pascual, E., de Andrés, A., & Coya, C. (2020). Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT:PSS hole transport layer. Materials and Design, 191, 108587. https://doi.org/10.1016/j.matdes.2020.108587es_CO
    dc.relation.referencesRodrigo L. Barnes. (2017). Grafeno el material del futuro posibilidades. CienciAcierta. http://www.cienciacierta.uadec.mx/2017/06/28/grafeno-el-material-del-futuro-sintesis-y propiedades/es_CO
    dc.relation.referencesRodríguez, A. (2016). GRAFENO: SÍNTESIS, PROPIEDADES Y APLICACIONES BIOMÉDICAS.es_CO
    dc.relation.referencesRodríguez, I. N. H. (2016). REMOCIÓN DE CROMO Y PLOMO EMPLEANDO ÓXIDO DE GRAFENO COMO ADSORBENTE. June.es_CO
    dc.relation.referencesRomero, M., Polizzi, P., Chiodi, L., Robles, A., Rodríguez Heredia, S., & Gerpe, M. (2015). Metallothionein and lipid peroxidation as markers to assess health status of chronically oiled Magellanic penguins in Argentina. Acta Toxicológica Argentina, 23(1), 15–24.es_CO
    dc.relation.referencesSaleh, T. A., & AL-Hammadi, S. A. (2020). A novel catalyst of nickel-loaded graphene decorated on molybdenum-alumina for the HDS of liquid fuels. Chemical Engineering Journal, 125167. https://doi.org/10.1016/j.cej.2020.125167es_CO
    dc.relation.referencesSavage, N. (2012). Materials science: Super carbon. In Nature (Vol. 483, Issue 7389 SUPPL., pp. S30–S31). Nature Publishing Group. https://doi.org/10.1038/483S30aes_CO
    dc.relation.referencesShadjou, N., Hasanzadeh, M., & Khalilzadeh, B. (2018). Graphene based scaffolds on bone tissue engineering. In Bioengineered (Vol. 9, Issue 1, pp. 38–47). Taylor and Francis Inc. https://doi.org/10.1080/21655979.2017.1373539es_CO
    dc.relation.referencesShi, C., Zhang, G. Bin, & Yin, S. W. (2015). Effect of bortezomib on migration and invasion in cervical carcinoma HeLa cell. Asian Pacific Journal of Tropical Medicine, 8(6), 485– 488. https://doi.org/10.1016/j.apjtm.2015.05.004es_CO
    dc.relation.referencesShin, D. H., Kwak, G. Y., Kim, J. M., Jang, C. W., Choi, S. H., & Kim, K. J. (2019). Remarkable enhancement of stability in high-efficiency Si-quantum-dot heterojunction solar cells by employing bis(trifluoromethanesulfonyl)-amide as a dopant for graphene transparent conductive electrodes. Journal of Alloys and Compounds, 773, 913–918. https://doi.org/10.1016/j.jallcom.2018.09.289es_CO
    dc.relation.referencesSingh, A., Banerjee, S. L., Dhiman, V., Bhadada, S. K., Sarkar, P., Khamrai, M., Kumari, K., & Kundu, P. P. (2020). Fabrication of calcium hydroxyapatite incorporated polyurethane graphene oxide nanocomposite porous scaffolds from poly (ethylene terephthalate) waste: A green route toward bone tissue engineering. Polymer, 195, 122436. https://doi.org/10.1016/j.polymer.2020.122436es_CO
    dc.relation.referencesSouza, J. P., Baretta, J. F., Santos, F., Paino, I. M. M., & Zucolotto, V. (2017). Toxicological effects of graphene oxide on adult zebrafish (Danio rerio). Aquatic Toxicology, 186, 11– 18. https://doi.org/10.1016/j.aquatox.2017.02.017es_CO
    dc.relation.referencesSu, J., Du, Z., Xiao, L., Wei, F., Yang, Y., Li, M., Qiu, Y., Liu, J., Chen, J., & Xiao, Y. (2020). Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. Materials Science and Engineering C, 113, 110983. https://doi.org/10.1016/j.msec.2020.110983es_CO
    dc.relation.referencesSu, Y., Wang, N., Liu, B., Du, Y., Li, R., Meng, Y., Feng, Y., Shan, Z., & Meng, S. (2020). A phototheranostic nanoparticle for cancer therapy fabricated by BODIPY and graphene to realize photo-chemo synergistic therapy and fluorescence/photothermal imaging. Dyes and Pigments, 177, 108262. https://doi.org/10.1016/j.dyepig.2020.108262es_CO
    dc.relation.referencesSyama, S., & Mohanan, P. V. (2016). Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. International Journal of Biological Macromolecules, 86, 546–555. https://doi.org/10.1016/j.ijbiomac.2016.01.116es_CO
    dc.relation.referencesSyama, Santhakumar, Paul, W., Sabareeswaran, A., & Mohanan, P. V. (2017). Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials, 131, 121–130. https://doi.org/10.1016/j.biomaterials.2017.03.043es_CO
    dc.relation.referencesTalluri, B., Ghosh, S., Rao, G. R., & Thomas, T. (2019). Nanocomposites of digestively ripened copper oxide quantum dots and graphene oxide as a binder free battery-like supercapacitor electrode material. Electrochimica Acta, 321, 134709. https://doi.org/10.1016/j.electacta.2019.13470es_CO
    dc.relation.referencesTavakoli, M., Bakhtiari, S. S. E., & Karbasi, S. (2020). Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. International Journal of Biological Macromolecules, 149, 783–793. https://doi.org/10.1016/j.ijbiomac.2020.01.300es_CO
    dc.relation.referencesThiruppathi, A. R., Sidhureddy, B., Salverda, M., Wood, P. C., & Chen, A. (2020). Novel three dimensional N-doped interconnected reduced graphene oxide with superb capacitance for energy storage. Journal of Electroanalytical Chemistry, 113911. https://doi.org/10.1016/j.jelechem.2020.113911es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Parada_2020_TG.pdfParada_2020_TG791,46 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.