Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5385
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Parada Jaimes, Luis José. | - |
dc.date.accessioned | 2022-12-14T19:08:36Z | - |
dc.date.available | 2020-09-22 | - |
dc.date.available | 2022-12-14T19:08:36Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Parada Jaimes, L. J. (2020). Propiedades, aplicaciones más recientes y potenciales problemas del grafeno [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5385 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5385 | - |
dc.description | El autor no proporciona la información sobre este ítem. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 58 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Propiedades, aplicaciones más recientes y potenciales problemas del grafeno. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2020-06-22 | - |
dc.relation.references | Alami, A. H. (2020). Applications of Graphene for Energy Harvesting. In Reference Module in Materials Science and Materials Engineering. Elsevier. https://doi.org/10.1016/b978- 0-12-803581-8.11738-2 | es_CO |
dc.relation.references | Alekseenko, V., & Alekseenko, A. (2014). The abundances of chemical elements in urban soils. Journal of Geochemical Exploration, 147(PB), 245–249. https://doi.org/10.1016/j.gexplo.2014.08.003 | es_CO |
dc.relation.references | Alessandri, M., Lizzo, G., Gualandi, C., Mangano, C., Giuliani, A., Focarete, M. L., & Calzà, L. (2014). Influence of biological matrix and artificial electrospun scaffolds on proliferation, differentiation and trophic factor synthesis of rat embryonic stem cells. Matrix Biology, 33, 68–76. https://doi.org/10.1016/j.matbio.2013.08.001 | es_CO |
dc.relation.references | Ali, A. A., Nazeer, A. A., Madkour, M., Bumajdad, A., & Al Sagheer, F. (2018). Novel supercapacitor electrodes based semiconductor nanoheterostructure of CdS/rGO/CeO2 as efficient candidates. Arabian Journal of Chemistry, 11(5), 692–699. https://doi.org/10.1016/j.arabjc.2018.03.010 | es_CO |
dc.relation.references | Ali, I., & Saleh, T. A. (2020). Zeolite-graphene composite as support for molybdenum-based catalysts and their hydrodesulfurization performance. Applied Catalysis A: General, 598, 117542. https://doi.org/10.1016/j.apcata.2020.117542 | es_CO |
dc.relation.references | An, W., Zhang, Y., Zhang, X., Li, K., Kang, Y., Akhtar, S., Sha, X., & Gao, L. (2018). Ocular toxicity of reduced graphene oxide or graphene oxide exposure in mouse eyes. Experimental Eye Research, 174(May), 59–69. https://doi.org/10.1016/j.exer.2018.05.024 | es_CO |
dc.relation.references | Anirudhan, T. S., Chithra Sekhar, V., & Athira, V. S. (2020). Graphene oxide based functionalized chitosan polyelectrolyte nanocomposite for targeted and pH responsive drug delivery. International Journal of Biological Macromolecules, 150, 468–479. https://doi.org/10.1016/j.ijbiomac.2020.02.053 | es_CO |
dc.relation.references | Askari, N., Askari, M. B., & Shafieipour, A. (2019). Investigation the molecular structure of novel graphene hybrid scaffold in nerve regeneration. Journal of Molecular Structure, 1186, 393–403. https://doi.org/10.1016/j.molstruc.2019.03.058 | es_CO |
dc.relation.references | Aval, N. A., Emadi, R., Valiani, A., Kharaziha, M., Karimipour, M., & Rahbarghazi, R. (2019). Nano-featured poly (lactide-co-glycolide)-graphene microribbons as a promising substrate for nerve tissue engineering. Composites Part B: Engineering, 173, 106863. https://doi.org/10.1016/j.compositesb.2019.05.074 | es_CO |
dc.relation.references | Aziz, A., Asif, M., Azeem, M., Ashraf, G., Wang, Z., Xiao, F., & Liu, H. (2019). Self-stacking of exfoliated charged nanosheets of LDHs and graphene as biosensor with real-time tracking of dopamine from live cells. Analytica Chimica Acta, 1047, 197–207. https://doi.org/10.1016/j.aca.2018.10.008 | es_CO |
dc.relation.references | Bacon, M., Bradley, S. J., & Nann, T. (2014). Graphene quantum dots. In Particle and Particle Systems Characterization (Vol. 31, Issue 4, pp. 415–428). Wiley-VCH Verlag. https://doi.org/10.1002/ppsc.201300252 | es_CO |
dc.relation.references | Tiwari, S. K., Sahoo, S., Wang, N., & Huczko, A. (2020). Graphene research and their outputs: Status and prospect. Journal of Science: Advanced Materials and Devices, 5(1), 10–29. https://doi.org/10.1016/j.jsamd.2020.01.006 | es_CO |
dc.relation.references | Toh, S. Y., Loh, K. S., Kamarudin, S. K., & Daud, W. R. W. (2014). Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. In Chemical Engineering Journal (Vol. 251, Issue 1, pp. 422–434). Nature Publishing Group. https://doi.org/10.1016/j.cej.2014.04.004 | es_CO |
dc.relation.references | Wang, J., Cheng, Y., Chen, L., Zhu, T., Ye, K., Jia, C., Wang, H., Zhu, M., Fan, C., & Mo, X. (2019). In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 84, 98–113. https://doi.org/10.1016/j.actbio.2018.11.032 | es_CO |
dc.relation.references | Wang, Y., Jin, Y., & Jia, M. (2018). Ultralong Fe3O4 nanowires embedded graphene aerogel composite anodes for lithium ion batteries. Materials Letters, 228, 395–398. https://doi.org/10.1016/j.matlet.2018.06.077 | es_CO |
dc.relation.references | Wang, Z., Hu, H., Huang, L., Lin, F., Liu, S., Wu, T., Alharbi, N. S., Rabah, S. O., Lu, Y., & Wang, X. (2020). Graphene aerogel capsulated precipitants for high efficiency and rapid elimination of uranium from water. Chemical Engineering Journal, 396, 125272. https://doi.org/10.1016/j.cej.2020.125272 | es_CO |
dc.relation.references | Xu, Z., Wang, S., Li, Y., Wang, M., Shi, P., & Huang, X. (2014). Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Applied Materials and Interfaces, 6(19), 17268–17276. https://doi.org/10.1021/am505308f | es_CO |
dc.relation.references | Yan, T., Zhang, H., Huang, D., Feng, S., Fujita, M., & Gao, X. D. (2017). Chitosan functionalized graphene oxide as a potential immunoadjuvant. Nanomaterials, 7(3), 59. https://doi.org/10.3390/nano7030059 | es_CO |
dc.relation.references | Yang, Y., Liu, R., Wu, J., Jiang, X., Cao, P., Hu, X., Pan, T., Qiu, C., Yang, J., Song, Y., Wu, D., & Su, Y. (2015). Bottom-up Fabrication of Graphene on Silicon/Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports, 5(1), 1–7. https://doi.org/10.1038/srep13480 | es_CO |
dc.relation.references | Yu, P., Bao, R. Y., Shi, X. J., Yang, W., & Yang, M. B. (2017). Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 155, 507–515. https://doi.org/10.1016/j.carbpol.2016.09.001 | es_CO |
dc.relation.references | Zambrano-Andazol, I., Vázquez, N., Chacón, M., Sánchez-Avila, R. M., Persinal, M., Blanco, C., González, Z., Menéndez, R., Sierra, M., Fernández-Vega, Á., Sánchez, T., Merayo Lloves, J., & Meana, Á. (2020). Reduced graphene oxide membranes in ocular regenerative medicine. Materials Science and Engineering: C, 111075. https://doi.org/10.1016/j.msec.2020.111075 | es_CO |
dc.relation.references | Bagheri, Z. S., Giles, E., El Sawi, I., Amleh, A., Schemitsch, E. H., Zdero, R., & Bougherara, H. (2015). Osteogenesis and cytotoxicity of a new Carbon Fiber/Flax/Epoxy composite material for bone fracture plate applications. Materials Science and Engineering C, 46, 435–442. https://doi.org/10.1016/j.msec.2014.10.042 | es_CO |
dc.relation.references | Zhang, H., Grüner, G., & Zhao, Y. (2013). Recent advancements of graphene in biomedicine. Journal of Materials Chemistry B, 1(20), 2542–2567. https://doi.org/10.1039/c3tb20405g | es_CO |
dc.relation.references | Zhang, M., Zheng, H., Zhu, H., Xu, Z., Liu, R., Chen, J., Song, Q., Song, X., Wu, J., Zhang, C., & Cui, H. (2020). Graphene-wrapped MnO2 achieved by ultrasonic-assisted synthesis applicable for hybrid high-energy supercapacitors. Vacuum, 176, 109315. https://doi.org/10.1016/j.vacuum.2020.109315 | es_CO |
dc.relation.references | Zhu, C., Han, T. Y. J., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., & Worsley, M. A. (2015). Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 6(1), 1–8. https://doi.org/10.1038/ncomms7962 | es_CO |
dc.relation.references | Zhu, W., Lin, Y., Kang, W., Quan, H., Zhang, Y., Chang, M., Wang, K., Zhang, M., Zhang, W., Li, Z., Wei, H., Fan, T., Chen, D., & Hu, H. (2020). An aerogel adsorbent with bio inspired interfacial adhesion between graphene and MoS2 sheets for water treatment. Applied Surface Science, 512, 145717. https://doi.org/10.1016/j.apsusc.2020.145717 | es_CO |
dc.relation.references | Bahrami, S., Solouk, A., Mirzadeh, H., & Seifalian, A. M. (2019). Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites Part B: Engineering, 168, 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044 | es_CO |
dc.relation.references | Baradaran, S., Moghaddam, E., Basirun, W. J., Mehrali, M., Sookhakian, M., Hamdi, M., Moghaddam, M. R. N., & Alias, Y. (2014). Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon, 69, 32–45. https://doi.org/10.1016/j.carbon.2013.11.054 | es_CO |
dc.relation.references | Bianco, A., Cheng, H. M., Enoki, T., Gogotsi, Y., Hurt, R. H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C. R., Tascon, J. M. D., & Zhang, J. (2013). All in the graphene family - A recommended nomenclature for two-dimensional carbon materials. In Carbon (Vol. 65, pp. 1–6). Elsevier Ltd. https://doi.org/10.1016/j.carbon.2013.08.038 | es_CO |
dc.relation.references | Blandez, J. (2017). Grafeno Y Materiales Derivados Como Catalizadores Pseudohomogéneos En Reacciones Orgánicas. https://riunet.upv.es/bitstream/handle/10251/82695/Blandez - Grafeno y materiales derivados como catalizadores seudohomogéneos en reacciones orgánic....pdf?sequence=1&isAllowed=y | es_CO |
dc.relation.references | Bonaccorso, F., Bartolotta, A., Coleman, J. N., & Backes, C. (2016). 2D-Crystal-Based Functional Inks. In Advanced Materials (Vol. 28, Issue 29, pp. 6136–6166). Wiley-VCH Verlag. https://doi.org/10.1002/adma.201506410 | es_CO |
dc.relation.references | Cao, X., Qi, D., Yin, S., Bu, J., Li, F., Goh, C. F., Zhang, S., & Chen, X. (2013). Ambient fabrication of large-area graphene films via a synchronous reduction and assembly strategy. Advanced Materials, 25(21), 2957–2962. https://doi.org/10.1002/adma.201300586 | es_CO |
dc.relation.references | Carina, A. da S., Daniela, P., Hanna, H., & Manel, R. (2018). Revisión Sistemática sobre la toxicidad derivada de la exposición al Grafeno. MEDICINA y SEGURIDAD Del Trabajo, 64(250), 75–88. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465- 546X2018000100075 | es_CO |
dc.relation.references | Chauhan, D., Pooja, Nirbhaya, V., Srivastava, C. M., Chandra, R., & Kumar, S. (2020). Nanostructured transition metal chalcogenide embedded on reduced graphene oxide based highly efficient biosensor for cardiovascular disease detection. Microchemical Journal, 155, 104697. https://doi.org/10.1016/j.microc.2020.104697 | es_CO |
dc.relation.references | Chen, S., Jin, Z., Dai, L., Wu, H., Wang, J., Wang, L., Zhou, Z., Yang, L., & Gao, W. (2018). Aloperine induces apoptosis and inhibits invasion in MG-63 and U2OS human osteosarcoma cells. Biomedicine and Pharmacotherapy, 97, 45–52. https://doi.org/10.1016/j.biopha.2017.09.066 | es_CO |
dc.relation.references | Chen, X., Wu, B., & Liu, Y. (2016). Direct preparation of high quality graphene on dielectric substrates. In Chemical Society Reviews (Vol. 45, Issue 8, pp. 2057–2074). Royal Society of Chemistry. https://doi.org/10.1039/c5cs00542f | es_CO |
dc.relation.references | Chen, Y., Hu, X., Sun, J., & Zhou, Q. (2016). Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology, 10(1), 42–52. https://doi.org/10.3109/17435390.2015.1005032 | es_CO |
dc.relation.references | Chihara, D., & Nance, J. (2012). An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation. Development (Cambridge), 139(14), 2547–2556. https://doi.org/10.1242/dev.079863 | es_CO |
dc.relation.references | Cient, R. (2018). Avances de la investigación científica en el grafeno. 2. https://doi.org/10.26820/reciamuc/2.(3).septiembre.2018.321-334 | es_CO |
dc.relation.references | Dasari Shareena, T. P., McShan, D., Dasmahapatra, A. K., & Tchounwou, P. B. (2018). A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. In Nano-Micro Letters (Vol. 10, Issue 3, pp. 1–34). SpringerOpen. https://doi.org/10.1007/s40820-018-0206- | es_CO |
dc.relation.references | De Marchi, L., Pretti, C., Gabriel, B., Marques, P. A. A. P., Freitas, R., & Neto, V. (2018). An overview of graphene materials: Properties, applications and toxicity on aquatic environments. Science of the Total Environment, 631–632, 1440–1456. https://doi.org/10.1016/j.scitotenv.2018.03.132 | es_CO |
dc.relation.references | Deng, L., Walker, C., & Xu, X. M. (2015). Schwann Cell-Mediated Axonal Regeneration in the Central Nervous System. In Neural Regeneration (pp. 337–349). Elsevier Inc. https://doi.org/10.1016/B978-0-12-801732-6.00022- | es_CO |
dc.relation.references | uch, M. C., Budinger, G. R. S., Liang, Y. T., Soberanes, S., Urich, D., Chiarella, S. E., Campochiaro, L. A., Gonzalez, A., Chandel, N. S., Hersam, M. C., & Mutlu, G. M. (2011). Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Letters, 11(12), 5201–5207. https://doi.org/10.1021/nl202515a | es_CO |
dc.relation.references | El Achaby, M., Arrakhiz, F. E., Vaudreuil, S., El Kacem Qaiss, A., Bousmina, M., & Fassi Fehri, O. (2012). Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polymer Composites, 33(5), 733–744. https://doi.org/10.1002/pc.22198 | es_CO |
dc.relation.references | Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., Evariste, L., Gauthier, L., Koivisto, A. J., Vogel, U., Martín, C., Delogu, L. G., Buerki-Thurnherr, T., Wick, P., Beloin-Saint-Pierre, D., Hischier, R., Pelin, M., Candotto Carniel, F., Tretiach, M., … Bianco, A. (2018). Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. In ACS Nano (Vol. 12, Issue 11, pp. 10582–10620). https://doi.org/10.1021/acsnano.8b04758 | es_CO |
dc.relation.references | Fu, C., Liu, T., Li, L., Liu, H., Liang, Q., & Meng, X. (2014). Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials, 40, 23–31. https://doi.org/10.1016/j.biomaterials.2014.11.014 | es_CO |
dc.relation.references | Fujikawa, T., Petralia, R. S., Fitzgerald, T. S., Wang, Y. X., Millis, B., Morgado-Díaz, J. A., Kitamura, K., & Kachar, B. (2014). Localization of kainate receptors in inner and outer hair cell synapses. Hearing Research, 314, 20–32. https://doi.org/10.1016/j.heares.2014.05.001 | es_CO |
dc.relation.references | García, M. (2017). Grafeno: Biografia De Un Material. 35. | es_CO |
dc.relation.references | García Mulero, A. (2019). Estudio de fotocatalizadores basados en grafenos con defectos para la producción de combustibles solares. | es_CO |
dc.relation.references | Ginestra, P. (2019). Manufacturing of polycaprolactone - Graphene fibers for nerve tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 100, 103387. https://doi.org/10.1016/j.jmbbm.2019.103387 | es_CO |
dc.relation.references | Goenka, S., Sant, V., & Sant, S. (2014). Graphene-based nanomaterials for drug delivery and tissue engineering. In Journal of Controlled Release (Vol. 173, Issue 1, pp. 75–88). Elsevier. https://doi.org/10.1016/j.jconrel.2013.10.01 | es_CO |
dc.relation.references | Graphenea. (2020). Buy Graphene Products. https://www.graphenea.com/collections/graphene-product | es_CO |
dc.relation.references | Guo, X., & Mei, N. (2014). Assessment of the toxic potential of graphene family nanomaterials. In Journal of Food and Drug Analysis (Vol. 22, Issue 1, pp. 105–115). Elsevier Taiwan LLC. https://doi.org/10.1016/j.jfda.2014.01.009 | es_CO |
dc.relation.references | Gurunathan, S., Han, J. W., Abdal Dayem, A., Eppakayala, V., & Kim, J. H. (2012). Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 7, 5901–5914. https://doi.org/10.2147/IJN.S37397 | es_CO |
dc.relation.references | H. Torres-Silva, J. L. L.-B. (2011). Aspectos quirales del grafeno Graphene chiral elements. Ingeniare. Revista Chilena de Ingeniería, 19, 67–75. https://doi.org/10.4067/S0718- 3305201100010000 | es_CO |
dc.relation.references | Hazen, R. M., Hemley, R. J., & Mangum, A. J. (2012). Carbon in Earth’s interior: Storage, cycling, and life. Eos, 93(2), 17–18. https://doi.org/10.1029/2012EO020001 | es_CO |
dc.relation.references | Heidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Materials Science and Engineering C, 103, 109768. https://doi.org/10.1016/j.msec.2019.109768 | es_CO |
dc.relation.references | Hernandez, Y., Lotya, M., Rickard, D., Bergin, S. D., & Coleman, J. N. (2010). Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 26(5), 3208–3213. https://doi.org/10.1021/la903188a | es_CO |
dc.relation.references | Hug Rojas, R. m. (2017). Obtencion De Materiales Con Estructura Tipo Grafeno Por Exfoliacion Mecanica Empleando El Metodo De “Ball Milling” Hug. | es_CO |
dc.relation.references | ISO/TC 229, & IEC/TC113. (2017). SO/TS 80004-13:2017(en) Nanotechnologies — Vocabulary — Part 13: Graphene and related two-dimensional (2D) materials. https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-13:ed-1:v1:en:fig:1 | es_CO |
dc.relation.references | Jana, A., Scheer, E., & Polarz, S. (2017). Synthesis of graphene-transition metal oxide hybrid nanoparticles and their application in various fields. In Beilstein Journal of Nanotechnology (Vol. 8, Issue 1, pp. 688–714). Beilstein-Institut Zur Forderung der Chemischen Wissenschaften. https://doi.org/10.3762/bjnano.8.74 | es_CO |
dc.relation.references | Jeong, J. H., Lee, G. W., Kim, Y. H., Choi, Y. J., Roh, K. C., & Kim, K. B. (2019). A holey graphene-based hybrid supercapacitor. Chemical Engineering Journal, 378, 122126. https://doi.org/10.1016/j.cej.2019.122126 | es_CO |
dc.relation.references | Jian, Z., Wang, H., Liu, M., Chen, S., Wang, Z., Qian, W., Luo, G., & Xia, H. (2020). Polyurethane-modified graphene oxide composite bilayer wound dressing with long lasting antibacterial effect. Materials Science and Engineering C, 111, 110833. https://doi.org/10.1016/j.msec.2020.110833 | es_CO |
dc.relation.references | Jorge, C. (2016). Articulos de Ingeniería Mecanica . Volumen 2 ,. 2(November). https://doi.org/10.13140/RG.2.2.21678.92489 | es_CO |
dc.relation.references | K S, N., & A H, C. N. (2012). Two-dimensional crystals-based heterostructures: materials with tailored properties Related content Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties, and applications L A Chernozatonskii and A A Artyukh-New directio. https://doi.org/10.1088/0031-8949/2012/T146/014006 | es_CO |
dc.relation.references | Kuila, T., Bose, S., Mishra, A. K., Khanra, P., Kim, N. H., & Lee, J. H. (2012). Chemical functionalization of graphene and its applications. In Progress in Materials Science (Vol. 57, Issue 7, pp. 1061–1105). Pergamon. https://doi.org/10.1016/j.pmatsci.2012.03.002 | es_CO |
dc.relation.references | Kumar, A., & Huei, C. (2013). Synthesis and Biomedical Applications of Graphene: Present and Future Trends. In Advances in Graphene Science. InTech. https://doi.org/10.5772/55728 | es_CO |
dc.relation.references | Lee, C. H., Chang, K. H., Park, K. T., Shin, H. S., & Kim, T. (2013). Bending resistance of girth-welded stainless steel circular hollow sections. Thin-Walled Structures, 73, 174– 184. https://doi.org/10.1016/j.tws.2013.08.002 | es_CO |
dc.relation.references | Lee, I., Bae, D. J., Lee, W. K., Yang, C. M., Cho, S. W., Nam, J., Lee, D. Y., Jang, A. R., Shin, H. S., Hwang, J. Y., Hong, S., & Kim, K. S. (2019). Rapid synthesis of graphene by chemical vapor deposition using liquefied petroleum gas as precursor. Carbon, 145, 462– 469. https://doi.org/10.1016/j.carbon.2019.01.004 | es_CO |
dc.relation.references | Lee, S., Park, W. K., Yoon, Y., Baek, B., Yoo, J. S., Kwon, S. Bin, Kim, D. H., Hong, Y. J., Kang, B. K., Yoon, D. H., & Yang, W. S. (2019). Quality improvement of fast-synthesized graphene films by rapid thermal chemical vapor deposition for mass production. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 242, 63–68. https://doi.org/10.1016/j.mseb.2019.03.004 | es_CO |
dc.relation.references | Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. (2019). Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 98(xxxx), 163–180. https://doi.org/10.1016/j.jtice.2018.10.028 | es_CO |
dc.relation.references | Lin, S., Ruan, J., & Wang, S. (2019). Biosynthesized of reduced graphene oxide nanosheets and its loading with paclitaxel for their anti cancer effect for treatment of lung cancer. Journal of Photochemistry and Photobiology B: Biology, 191, 13–17. https://doi.org/10.1016/j.jphotobiol.2018.11.015 | es_CO |
dc.relation.references | Liu, F., Yang, D., Liu, Y., Cao, Q., Sun, Y., Wang, Q., & Tang, H. (2018). Improving dispersive property, biocompatibility and targeting gene transfection of graphene oxide by covalent attachment of polyamidoamine dendrimer and glycyrrhetinic acid. Colloids and Surfaces B: Biointerfaces, 171, 622–628. https://doi.org/10.1016/j.colsurfb.2018.07.067 | es_CO |
dc.relation.references | Liu, J., Li, B. W., Tan, Y. Z., Giannakopoulos, A., Sanchez-Sanchez, C., Beljonne, D., Ruffieux, P., Fasel, R., Feng, X., & Müllen, K. (2015). Toward Cove-Edged Low Band Gap Graphene Nanoribbons. Journal of the American Chemical Society, 137(18), 6097– 6103. https://doi.org/10.1021/jacs.5b03017 | es_CO |
dc.relation.references | Liu, S., Hu, M., Zeng, T. H., Wu, R., Jiang, R., Wei, J., Wang, L., Kong, J., & Chen, Y. (2012). Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir, 28(33), 12364–12372. https://doi.org/10.1021/la3023908 | es_CO |
dc.relation.references | Logan, B. E., Rossi, R., Ragab, A., & Saikaly, P. E. (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 17(5), 307–319. https://doi.org/10.1038/s41579-019-0173-x | es_CO |
dc.relation.references | Lomov, S. V., Gorbatikh, L., Houlle, M., Kotanjac, Ž., Koissin, V., Vallons, K., & Verpoest, I. (2011). Compression resistance and hysteresis of carbon fibre tows with grown carbon nanotubes/nanofibres. Composites Science and Technology, 71(15), 1746–1753. https://doi.org/10.1016/j.compscitech.2011.08.007 | es_CO |
dc.relation.references | Ma, M., Cheng, L., Zhao, A., Zhang, H., & Zhang, A. (2020). Pluronic-based graphene oxide methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagnosis and Photodynamic Therapy, 29, 101640. https://doi.org/10.1016/j.pdpdt.2019.101640 | es_CO |
dc.relation.references | Maître, J. L., & Heisenberg, C. P. (2013). Three functions of cadherins in cell adhesion. In Current Biology (Vol. 23, Issue 14, pp. R626–R633). Cell Press. https://doi.org/10.1016/j.cub.2013.06.019 | es_CO |
dc.relation.references | Mauro, N., Scialabba, C., Agnello, S., Cavallaro, G., & Giammona, G. (2020). Folic acid functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery. Materials Science and Engineering C, 107, 110201. https://doi.org/10.1016/j.msec.2019.110201 | es_CO |
dc.relation.references | Morotomi, T., Matsunaga, K., Kusuhara, H., Itani, Y., Nakao, H., Asamura, S., & Isogai, N. (2014). Long-term result of a biodegradable osteo-inductive copolymer for the treatment of orbital blowout fracture. Journal of Cranio-Maxillofacial Surgery, 42(5), 443–447. https://doi.org/10.1016/j.jcms.2013.05.039 | es_CO |
dc.relation.references | Mussa, Y., Ahmed, F., Abuhimd, H., Arsalan, M., & Alsharaeh, E. (2019). Enhanced Electrochemical performance at high temperature of Cobalt Oxide/Reduced Graphene Oxide Nanocomposites and its application in lithium-ion batteries. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-37032-5 | es_CO |
dc.relation.references | Najafabadi, S. A. A., Mohammadi, A., & Kharazi, A. Z. (2020). Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing. Materials Science and Engineering C, 110899. https://doi.org/10.1016/j.msec.2020.110899 | es_CO |
dc.relation.references | Narayanan, K. B., Park, G. T., & Han, S. S. (2020). Electrospun poly(vinyl alcohol)/reduced graphene oxide nanofibrous scaffolds for skin tissue engineering. Colloids and Surfaces B: Biointerfaces, 191, 110994. https://doi.org/10.1016/j.colsurfb.2020.110994 | es_CO |
dc.relation.references | Ni, M., Shi, X. L., Qu, Z. G., Jiang, H., Chen, Z. Q., & Hu, J. (2015). Epithelial mesenchymal transition of non-small-cell lung cancer cells A549 induced by SPHK1. Asian Pacific Journal of Tropical Medicine, 8(2), 142–146. https://doi.org/10.1016/S1995- 7645(14)60305-9 | es_CO |
dc.relation.references | Nie, W., Peng, C., Zhou, X., Chen, L., Wang, W., Zhang, Y., Ma, P. X., & He, C. (2017). Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano hydroxyapatite composites for bone tissue engineering. Carbon, 116, 325–337. https://doi.org/10.1016/j.carbon.2017.02.013 | es_CO |
dc.relation.references | Park, E. J., Lee, G. H., Han, B. S., Lee, B. S., Lee, S., Cho, M. H., Kim, J. H., & Kim, D. W. (2014). Toxic response of graphene nanoplatelets in vivo and in vitro. Archives of Toxicology, 89(9), 1557–1568. https://doi.org/10.1007/s00204-014-1303-x | es_CO |
dc.relation.references | Park, H. J., Zhao, T. T., Lee, K. S., Lee, S. H., Shin, K. S., Park, K. H., Choi, H. S., & Lee, M. K. (2015). Effects of (-)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson’s disease rat models. Neurochemistry International, 83–84, 19–27. https://doi.org/10.1016/j.neuint.2015.01.003 | es_CO |
dc.relation.references | Park, W. K., Yoon, Y., Song, Y. H., Choi, S. Y., Kim, S., Do, Y., Lee, J., Park, H., Yoon, D. H., & Yang, W. S. (2017). High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-16649-y | es_CO |
dc.relation.references | Poon, J., Batchelor-Mcauley, C., Tschulik, K., & Compton, R. G. (2015). Single graphene nanoplatelets: Capacitance, potential of zero charge and diffusion coefficient. Chemical Science, 6(5), 2869–2876. https://doi.org/10.1039/c5sc00623f | es_CO |
dc.relation.references | Pourjavadi, A., Asgari, S., & Hosseini, S. H. (2020). Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs. Journal of Drug Delivery Science and Technology, 56, 101542. https://doi.org/10.1016/j.jddst.2020.101542 | es_CO |
dc.relation.references | Qin, E. C., Kandel, M. E., Liamas, E., Shah, T. B., Kim, C., Kaufman, C. D., Zhang, Z. J., Popescu, G., Gillette, M. U., Leckband, D. E., & Kong, H. (2019). Graphene oxide substrates with N-cadherin stimulates neuronal growth and intracellular transport. Acta Biomaterialia, 90, 412–423. https://doi.org/10.1016/j.actbio.2019.04.005 | es_CO |
dc.relation.references | Qiu, Z., Hu, J., Li, Z., Yang, X., Hu, J., You, Q., Bai, S., Mao, Y., Hua, D., & Yin, J. (2020). Graphene oxide-based nanocomposite enabled highly efficient targeted synergistic therapy for colorectal cancer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 593, 124585. https://doi.org/10.1016/j.colsurfa.2020.124585 | es_CO |
dc.relation.references | Qu, Y., Sun, F., He, F., Yu, C., Lv, J., Zhang, Q., Liang, D., Yu, C., Wang, J., Zhang, X., Xu, A., & Wu, J. (2019). Glycyrrhetinic acid-modified graphene oxide mediated siRNA delivery for enhanced liver-cancer targeting therapy. European Journal of Pharmaceutical Sciences, 139, 105036. https://doi.org/10.1016/j.ejps.2019.105036 | es_CO |
dc.relation.references | Rajitha, K., & Mohana, K. N. (2020). Application of modified graphene oxide – Polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium. Materials Chemistry and Physics, 241, 122050. https://doi.org/10.1016/j.matchemphys.2019.122050 | es_CO |
dc.relation.references | Redondo-Obispo, C., Ripolles, T. S., Cortijo-Campos, S., Álvarez, A. L., Climent-Pascual, E., de Andrés, A., & Coya, C. (2020). Enhanced stability and efficiency in inverted perovskite solar cells through graphene doping of PEDOT:PSS hole transport layer. Materials and Design, 191, 108587. https://doi.org/10.1016/j.matdes.2020.108587 | es_CO |
dc.relation.references | Rodrigo L. Barnes. (2017). Grafeno el material del futuro posibilidades. CienciAcierta. http://www.cienciacierta.uadec.mx/2017/06/28/grafeno-el-material-del-futuro-sintesis-y propiedades/ | es_CO |
dc.relation.references | Rodríguez, A. (2016). GRAFENO: SÍNTESIS, PROPIEDADES Y APLICACIONES BIOMÉDICAS. | es_CO |
dc.relation.references | Rodríguez, I. N. H. (2016). REMOCIÓN DE CROMO Y PLOMO EMPLEANDO ÓXIDO DE GRAFENO COMO ADSORBENTE. June. | es_CO |
dc.relation.references | Romero, M., Polizzi, P., Chiodi, L., Robles, A., Rodríguez Heredia, S., & Gerpe, M. (2015). Metallothionein and lipid peroxidation as markers to assess health status of chronically oiled Magellanic penguins in Argentina. Acta Toxicológica Argentina, 23(1), 15–24. | es_CO |
dc.relation.references | Saleh, T. A., & AL-Hammadi, S. A. (2020). A novel catalyst of nickel-loaded graphene decorated on molybdenum-alumina for the HDS of liquid fuels. Chemical Engineering Journal, 125167. https://doi.org/10.1016/j.cej.2020.125167 | es_CO |
dc.relation.references | Savage, N. (2012). Materials science: Super carbon. In Nature (Vol. 483, Issue 7389 SUPPL., pp. S30–S31). Nature Publishing Group. https://doi.org/10.1038/483S30a | es_CO |
dc.relation.references | Shadjou, N., Hasanzadeh, M., & Khalilzadeh, B. (2018). Graphene based scaffolds on bone tissue engineering. In Bioengineered (Vol. 9, Issue 1, pp. 38–47). Taylor and Francis Inc. https://doi.org/10.1080/21655979.2017.1373539 | es_CO |
dc.relation.references | Shi, C., Zhang, G. Bin, & Yin, S. W. (2015). Effect of bortezomib on migration and invasion in cervical carcinoma HeLa cell. Asian Pacific Journal of Tropical Medicine, 8(6), 485– 488. https://doi.org/10.1016/j.apjtm.2015.05.004 | es_CO |
dc.relation.references | Shin, D. H., Kwak, G. Y., Kim, J. M., Jang, C. W., Choi, S. H., & Kim, K. J. (2019). Remarkable enhancement of stability in high-efficiency Si-quantum-dot heterojunction solar cells by employing bis(trifluoromethanesulfonyl)-amide as a dopant for graphene transparent conductive electrodes. Journal of Alloys and Compounds, 773, 913–918. https://doi.org/10.1016/j.jallcom.2018.09.289 | es_CO |
dc.relation.references | Singh, A., Banerjee, S. L., Dhiman, V., Bhadada, S. K., Sarkar, P., Khamrai, M., Kumari, K., & Kundu, P. P. (2020). Fabrication of calcium hydroxyapatite incorporated polyurethane graphene oxide nanocomposite porous scaffolds from poly (ethylene terephthalate) waste: A green route toward bone tissue engineering. Polymer, 195, 122436. https://doi.org/10.1016/j.polymer.2020.122436 | es_CO |
dc.relation.references | Souza, J. P., Baretta, J. F., Santos, F., Paino, I. M. M., & Zucolotto, V. (2017). Toxicological effects of graphene oxide on adult zebrafish (Danio rerio). Aquatic Toxicology, 186, 11– 18. https://doi.org/10.1016/j.aquatox.2017.02.017 | es_CO |
dc.relation.references | Su, J., Du, Z., Xiao, L., Wei, F., Yang, Y., Li, M., Qiu, Y., Liu, J., Chen, J., & Xiao, Y. (2020). Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. Materials Science and Engineering C, 113, 110983. https://doi.org/10.1016/j.msec.2020.110983 | es_CO |
dc.relation.references | Su, Y., Wang, N., Liu, B., Du, Y., Li, R., Meng, Y., Feng, Y., Shan, Z., & Meng, S. (2020). A phototheranostic nanoparticle for cancer therapy fabricated by BODIPY and graphene to realize photo-chemo synergistic therapy and fluorescence/photothermal imaging. Dyes and Pigments, 177, 108262. https://doi.org/10.1016/j.dyepig.2020.108262 | es_CO |
dc.relation.references | Syama, S., & Mohanan, P. V. (2016). Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. International Journal of Biological Macromolecules, 86, 546–555. https://doi.org/10.1016/j.ijbiomac.2016.01.116 | es_CO |
dc.relation.references | Syama, Santhakumar, Paul, W., Sabareeswaran, A., & Mohanan, P. V. (2017). Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials, 131, 121–130. https://doi.org/10.1016/j.biomaterials.2017.03.043 | es_CO |
dc.relation.references | Talluri, B., Ghosh, S., Rao, G. R., & Thomas, T. (2019). Nanocomposites of digestively ripened copper oxide quantum dots and graphene oxide as a binder free battery-like supercapacitor electrode material. Electrochimica Acta, 321, 134709. https://doi.org/10.1016/j.electacta.2019.13470 | es_CO |
dc.relation.references | Tavakoli, M., Bakhtiari, S. S. E., & Karbasi, S. (2020). Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation. International Journal of Biological Macromolecules, 149, 783–793. https://doi.org/10.1016/j.ijbiomac.2020.01.300 | es_CO |
dc.relation.references | Thiruppathi, A. R., Sidhureddy, B., Salverda, M., Wood, P. C., & Chen, A. (2020). Novel three dimensional N-doped interconnected reduced graphene oxide with superb capacitance for energy storage. Journal of Electroanalytical Chemistry, 113911. https://doi.org/10.1016/j.jelechem.2020.113911 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Parada_2020_TG.pdf | Parada_2020_TG | 791,46 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.