• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5382
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGarcía Celis, Juan Camilo.-
    dc.date.accessioned2022-12-14T17:50:30Z-
    dc.date.available2020-09-19-
    dc.date.available2022-12-14T17:50:30Z-
    dc.date.issued2020-
    dc.identifier.citationGarcía Celis, J. C. (2020). Optimización del diseño de calderas de lecho fluidizado circulante mediante redes neuronales [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5382es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5382-
    dc.descriptionLa autora no proporciona la información sobre este ítem.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent44es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleOptimización del diseño de calderas de lecho fluidizado circulante mediante redes neuronales.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-19-
    dc.relation.referencesAracil, J. (2017). “Diseño de reactores de burbujeo para el tratamiento de aguas residuales mediante ozono caracterización física, análisis cinético y optimización con redes neuronales artificiales”. Universidad pontificia de Valenciaes_CO
    dc.relation.referencesArbildo López, Aurelio. (2011). “El control de procesos industriales y su influencia en el mantenimiento”. Ingeniería Industrial 29(029):35–49.es_CO
    dc.relation.referencesAygun, Hilmi, Hüseyin Demirel, y Mihai Cernat. (2012). “Control of the bed temperature of a circulating fluidized bed boiler by using particle swarm optimization”. Advances in Electrical and Computer Engineering 12(2):27–32.es_CO
    dc.relation.referencesBarrera Puigdollers, Cristina, Noelia Betoret Valls, Marisa Castelló Gómez, y Édgar Pérez Esteve. (2018). “Aspectos básicos relacionados con el funcionamiento de una caldera”. 1:9.es_CO
    dc.relation.referencesCasanova, Carlos, Giovanni Daián Rottoli, Esteban Schab, Anabella De Battista, Adrián Tournoud, Luciano Bracco, y Fernando Pereyra Rausch. (2019). “Optimización Multiobjetivo Difusa mediante Enjambre de Partículas aplicada al Problema del Próximo Lanzamiento”. Revista Electrónica Argentina-Brasil Tecnologías de la Información y la Comunicación 1(10).es_CO
    dc.relation.referencesChang, De Gong, y Yun Peng Ju. (2014). “Intelligent optimization of circulating fluidized bed boiler”. Applied Mechanics and Materials 614:580–83es_CO
    dc.relation.referencesChen, Bingji, Qiyue Xie, y Junyang Zhou. (2019). “Fuzzy Adaptive PID Control of Biomass Circulating Fluidized Bed Boiler”. Proceedings 2018 Chinese Automation Congress, CAC 2018 3795–3800es_CO
    dc.relation.referencesDuan, Lunbo, Haicheng Sun, Changsui Zhao, Wu Zhou, y Xiaoping Chen. (2014). “Coal combustion characteristics on an oxy-fuel circulating fluidized bed combustor with warm flue gas recycle”. Fuel 127:47–51es_CO
    dc.relation.referencesFang, Fang, Songyuan Yu, Le Wei, Yajuan Liu, y Jizhen Liu. (2020). “Data-driven control for combustion process of circulating fluidised bed boiler”. IET Cyber-Physical Systems: Theory and Applications 5(1):39–48.es_CO
    dc.relation.referencesFiras, Basim Ismail, Kee Wei Yeo, y Fazreen Ahmad Fuzi Noor. (2019). “Intelligent Prediction of Clinker Formation Condition for Steam Boiler Tubes Using Artificial Neural Network”. MATEC Web of Conferences 255:06007.es_CO
    dc.relation.referencesGuevara Ahuatzi, Luis Américo. (2010). “Integraciòn de una Caldera de Lecho Fluidizado Circulante Presurizada a un Ciclo Combinado”. Universidad Nacional Autónoma de Méxicoes_CO
    dc.relation.referencesGuo, Huifang, Fang Fang, y Jizhen Liu. (2015). “Data-driven-based bed temperature control of circulating fluidized bed units”. Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015 6411–16.es_CO
    dc.relation.referencesHaider, Zeeshan, Cheng Yin, Weidong Zhang, Lizong Zhang, Mohammad Yousaf, y Nasir Ali. (2016). “Enhanced feature selection method based on ANN and GA for coal boiler plants using real time Plant data”. Chinese Control Conference, CCC 2016-August:7115–19.es_CO
    dc.relation.referencesHavlena, V., y D. Pachner. (2009). “Model based control of the circulating fluidized bed boiler.” IFAC Proceedings Volumes 44–49.es_CO
    dc.relation.referencesHe, Peng, Linhui Lu, Xichui Liu, y Yiguo Li. (2017). “Multivariable constrained predictive control method based on MHE of circulating fluidized bed boiler unit”. Proceedings - 2017 Chinese Automation Congress, CAC 2017 2017-January:1727–32.es_CO
    dc.relation.referencesHengyan, Xia, Wang Lingmei, y Cheng Huahua. (2011). “The study of optimizing circulating fluidized bed boiler operational parameters based on neural network and genetic algorithm”. Proceedings - 4th International Conference on Intelligent Computation Technology and Automation, ICICTA 2011 1:287–90.es_CO
    dc.relation.referencesHu, Mengjie, Hujun Ling, y Dongxu Liu. (2015). “The application of LM-BP Neural Network in the Circulating Fluidized Bed Unit”. (Icmmcce 2015):2017–20es_CO
    dc.relation.referencesHuang, Zhong, Lei Deng, y Defu Che. (2020). “Development and technical progress in large scale circulating fluidized bed boiler in China”. Frontiers in Energy 1–16.es_CO
    dc.relation.referencesHujanen, Jussi. (2018). “COST OPTIMIZATION METHODS FOR FLUIDIZED BED BOILERS”. Lecturer Henrik Tolvanenes_CO
    dc.relation.referencesHultgren, Matias, Enso Ikonen, y Jeno Kovács. (2017). “Once-through Circulating Fluidized Bed Boiler Control Design with the Dynamic Relative Gain Array and Partial Relative Gain”. Industrial and Engineering Chemistry Research 56(48):14290–303.es_CO
    dc.relation.referencesHultgren, Matias, Enso Ikonen, y Jenö Kovács. (2017). “Integrated control and process design in CFB boiler design and control - application possibilities”. IFAC-PapersOnLine 50(1):1997–2004.es_CO
    dc.relation.referencesHultgren, Matias, Enso Ikonen, y Jenő Kovács. (2019). “Integrated control and process design for improved load changes in fluidized bed boiler steam path”. Chemical Engineering Science 199:164–78.es_CO
    dc.relation.referencesJia, Yizhe, y Genyuan Wei. (2018). “Design of advanced control experimental platform for main steam pressure based on Matlab”. IOP Conference Series: Materials Science and Engineering 392(6).es_CO
    dc.relation.referencesJurado, José Marcos, Roberto Muñiz Valencia, Angela Alcázar, Silvia Guillermina Ceballos Magaña, y Jorge González. (2016). “Ajustando datos químicos con Excel: Un tutorial práctico”. Educacion Quimica 27(1):21–29.es_CO
    dc.relation.referencesKamble, L. V., D. R. Pangavhane, y T. P. Singh. (2015). “Neural network optimization by comparing the performances of the training functions -Prediction of heat transfer from horizontal tube immersed in gas-solid fluidized bed”. International Journal of Heat and Mass Transfer 83:337–44es_CO
    dc.relation.referencesKazemzadeh Farizhandi, Amir Abbas Kazemzadeh. (2017). “Surrogate modeling applications in chemical and biomedical processes”. Nanyang Technological University.es_CO
    dc.relation.referencesKrzywanski, J., y W. Nowak. (2016). “Artificial Intelligence Treatment of SO2 Emissions from CFBC in Air and Oxygen-Enriched Conditions”. Journal of Energy Engineering 142(1):1–10.es_CO
    dc.relation.referenceszywański, Jaroslaw, y Wojciech Nowak. (2017). “Neurocomputing approach for the prediction of NOx emissions from CFBC in air-fired and oxygen-enriched atmospheres”. Journal of Power of Technologies 97:75–84.es_CO
    dc.relation.referencesKumar, Ramesh, M. C. Navindgi, y G. Srinivas. (2016). “Performance Guarantee Test Assessment of CFBC Boiler”. 3(7):414–21.es_CO
    dc.relation.referencesLi, Xia, Jianping Liu, y Peifeng Niu. (2020). “ Least Square Parallel Extreme Learning Machine for Modeling NO x Emission of a 300MW Circulating Fluidized Bed Boiler ”. IEEE Access 8:79619–36.es_CO
    dc.relation.referencesLi, Xia, Peifeng Niu, Guoqiang Li, y Jianping Liu. (2017). “An Adaptive Extreme Learning Machine for Modeling NOx Emission of a 300 MW Circulating Fluidized Bed Boiler”. Neural Processing Letters 46(2):643–62es_CO
    dc.relation.referencesLi, Xia, Peifeng Niu, y Jianping Liu. (2018). “Combustion optimization of a boiler based on the chaos and Lévy flight vortex search algorithm”. Applied Mathematical Modelling 58:3–18.es_CO
    dc.relation.referencesLi, Yaning, Xuelei Wang, y Jie Tan. (2016). “Introduction of Advanced Control Strategy for Coking Flue Gas Processing”. Proceedings - 2016 3rd International Conference on Information Science and Control Engineering, ICISCE 2016 1000–1005es_CO
    dc.relation.referencesLiu, Chaoying, Xueling Song, Zheying Song, y Qingqing Yan. (2013). “Study on PIDNN control of circulating fluidized bed boiler based on T-S model”. Journal of Computers (Finland) 8(8):2069–76.es_CO
    dc.relation.referencesLiukkonen, M., y T. Hiltunen. (2016). “Monitoring and analysis of air emissions based on condition models derived from process history”. Cogent Engineering 3(1).es_CO
    dc.relation.referencesLu, Linhui, Xichui Liu, Yiguo Li, y Jiong Shen. (2017). “Novel coordinated control method with coal-quality correction of circulating field bed boiler”. 3rd International Conference on Systems and Informatics, ICSAI 2016 (Icsai):171–77.es_CO
    dc.relation.referencesMa, Yunpeng, Peifeng Niu, Shanshan Yan, y Guoqiang Li. (2018). “A modified online sequential extreme learning machine for building circulation fluidized bed boiler’s NOx emission model”. Applied Mathematics and Computation 334:214–26es_CO
    dc.relation.referencesMa, Yunpeng, Peifeng Niu, Xinxin Zhang, y Guoqiang Li. (2017). “Research and application of quantum-inspired double parallel feed-forward neural network”. Knowledge-Based Systems 136:140–49es_CO
    dc.relation.referencesMirek, Paweł. (2011). “Designing of primary air nozzles for large-scale CFB boilers in a combined numerical-experimental approach”. Chemical Engineering and Processing: Process Intensification 50(7):694–701es_CO
    dc.relation.referencesNiu, Peifeng, Jinbai Li, Lingfang Chang, Xianchen Zhang, Rongyan Wang, y Guoqiang Li. (2019). “A Novel Flower Pollination Algorithm for Modeling the Boiler Thermal Efficiency”. Neural Processing Letters 49(2):737–59.es_CO
    dc.relation.referencesNiu, Peifeng, Yunfei Ma, Pengfei Li, y Yang Zhang. (2013). “Hybrid neural network in circulating fluidized bed boiler based on information fusion clustering control”. Neural Computing and Applications 23(7–8):1949–62es_CO
    dc.relation.referencesNiva, Laura, Enso Ikonen, y Jeno Kovacs. (2015). “Plant-wide control approach in a pilot CFB boiler”. 411–16.es_CO
    dc.relation.referencesNiva, Laura, Enso Ikonen, y Jenö Kovács. (2015). “Self-optimizing control structure design in oxy-fuel circulating fluidized bed combustion”. International Journal of Greenhouse Gas Control 43:93–107.es_CO
    dc.relation.referencesPáez Logreira, Heyder David, Ronald Zamora Musa, y José Bohórquez Pérez. (2015). “Programación de Controladores Lógicos (PLC) mediante Ladder y Lenguaje de Control Estructurado (SCL) en MATLAB”. Revista Facultad De Ingeniería 24(39):109.es_CO
    dc.relation.referencesPelusi, D., R. Mascella, L. Tallini, L. Vazquez, y D. Diaz. (2016). “Control of Drum Boiler dynamics via an optimized fuzzy controller”. International Journal of Simulation: Systems, Science and Technology 17(33):1–7.es_CO
    dc.relation.referencesResolución N° 909. Ministerio de ambiente, vivienda y desarrollo territorial, Bogotá, Colombia, 5 de junio de 2008.es_CO
    dc.relation.referencesRuiz Bermejo, José Antonio. (2013). “Análisis de la problemática e investigación de aspectos avanzados de la generación eléctrica con biomasa”. Universidad de la Rioja.es_CO
    dc.relation.referencesSantiso, Sergio Mier. (2013). “ANÁLISIS TERMODINÁMICO Y CÁLCULO BÁSICO DE LA CALDERA Y LA TORRE DE REFRIGERACIÓN DE LA CENTRAL TÉRMICA DE LA ROBLA – GRUPO I”. Universidad Carlos III de Madrid.es_CO
    dc.relation.referencesSavargave, Sangram Bhagwanrao, y Madhukar Jagannath Lengare. (2017). “Self-Adaptive firefly algorithm with neural network for design modelling and optimization of boiler plants”. Pp. 289–93 en Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2017.es_CO
    dc.relation.referencesSavargave, Sangram Bhagwanrao, y Madhukar Jagannath Lengare. (2018). “Modeling and Optimizing Boiler Design using Neural Network and Firefly Algorithm”. Journal of Intelligent Systems 27(3):393–412.es_CO
    dc.relation.referencesSinnott, Ray, y Gavin Towler. 2019. Diseño en ingeniería química. 5a ed. Barcelona: Revertees_CO
    dc.relation.referencesTello Maita, Josimar, y Agustín Marulanda Guerra. (2017). “Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión”. DYNA (Colombia) 84(202):102–11.es_CO
    dc.relation.referencesWaleed Hamed, Ahmed Eisa. (2017). “Prediction of the Generated Amount of Power From a Thermal Power Plant Using Data Mining”. Sudan University for Science and Technology.es_CO
    dc.relation.referencesWang, Chunlin, Yang Liu, Song Zheng, y Aipeng Jiang. (2018). “Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process”. Energy 153:149– 5es_CO
    dc.relation.referencesXue, Hong, y Han Pu. (2016). “An Improved BBO Algorithm and Its Application in PID Optimization of CFB Bed Temperature System”. Proceedings of the 5th International Conference on Designs for Learning 367:236–52.es_CO
    dc.relation.referencesYou, Haihui, Zengyi Ma, Yijun Tang, Yuelan Wang, Jianhua Yan, Mingjiang Ni, Kefa Cen, y Qunxing Huang. (2017). “Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators”. Waste Management 68:186–97es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    García_2020_TG.pdfGarcía_2020_TG558,36 kBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.