• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5372
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorVillamizar Villamizar, Jessyka Andrea.-
    dc.date.accessioned2022-12-14T16:33:07Z-
    dc.date.available2021-03-21-
    dc.date.available2022-12-14T16:33:07Z-
    dc.date.issued2021-
    dc.identifier.citationVillamizar Villamizar, J. A. (2020). Comparación del rendimiento y la eficiencia de los líquidos iónicos y de los disolventes orgánicos convencionales usados como solventes para la separación de compuestos aromáticos en la Industria Petroquímica [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5372es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5372-
    dc.descriptionLa autora no proporciona la información sobre este ítem.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent49es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleComparación del rendimiento y la eficiencia de los líquidos iónicos y de los disolventes orgánicos convencionales usados como solventes para la separación de compuestos aromáticos en la Industria Petroquímica.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-12-21-
    dc.relation.referencesAl-jimaz, A. S., Fandary, M. S., Alkhaldi, K. H. A. E., & Al-kandary, J. A. (2007). Extraction of Aromatics from Middle Distillate Using N -Methyl-2-pyrrolidone: Experimente, modeling, and optimization. 5686–5696.es_CO
    dc.relation.referencesAl, G. M. J., Ibrahim, M., Mutalib, A., Azmi, M., Leveque, J., & Muhammad, N. (2016). Liquid-Liquid extraction of aromatics and sulfur compounds from base oil using ionic liquids. Journal of Environmental Chemical Engineering, 4(4), 4786–4793. https://doi.org/10.1016/j.jece.2016.11.011es_CO
    dc.relation.referencesAlonso, D. A., Baeza, A., Chinchilla, R., Gómez, C., Guillena, G., Marset, X., … Saavedra, B. (2018). Mezclas eutécticas como alternativa sostenible a los disolventes convencionales en Química Orgánica.es_CO
    dc.relation.referencesArce, A.; Earle, M. J.; Rodrı´guez, H.; Seddon, K. R.; Soto, A. (2010). Isomer effect in the separation of octane and xylenes using the ionic liquid 1-ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide. Fluid Phase Equilib., 180–186.es_CO
    dc.relation.referencesBustillo-lecompte, C. F., Kakar, D., & Mehrvar, M. (2018). Photochemical treatment of benzene , toluene , ethylbenzene , and xylenes ( BTEX ) in aqueous solutions using advanced oxidation processes : Towards a cleaner production in the petroleum re fi ning and petrochemical industries. Journal of Cleaner Production, 186, 609–617. https://doi.org/10.1016/j.jclepro.2018.03.135es_CO
    dc.relation.referencesCanales, R. I., & Brennecke, J. F. (2016). Comparison of Ionic Liquids to Conventional Organic Solvents for Extraction of Aromatics from Aliphatics. Journal of Chemical & Engineering Data. https://doi.org/10.1021/acs.jced.6b00077es_CO
    dc.relation.referencesDinh, M., Gilak, S., & Pham, A. L. (2020). Treatment of sulfolane in groundwater : A critical review. Journal of Environmental Management, 263(February), 110385. https://doi.org/10.1016/j.jenvman.2020.110385es_CO
    dc.relation.referencesDominguez, I. (2012). Aplicación de los líquidos iónicos en la separación de los compuestos aromáticoses_CO
    dc.relation.referencesFernández, E., & Vidal, L. (2014). Chapter 3 - Liquid-Phase Extraction and Microextraction. In Ionic Liquids in Separation Technology. https://doi.org/10.1016/B978-0-444-63257- 9.00003-1es_CO
    dc.relation.referencesFranck, H. G., & Stadelhofer, J. W. (1988). Industrial Aromatic Chemistry (Springer-Verlag, Ed.).es_CO
    dc.relation.referencesGarcía, S., Larriba, M., García, J., Torrecilla, J. S., & Rodríguez, F. (2012a). Alkylsulfate based ionic liquids in the liquid- liquid extraction of aromatic hydrocarbons. J Chem Thermodynamics, 45, 68–74. https://doi.org/10.1016/j.jct.2011.09.009es_CO
    dc.relation.referencesGarcía, S., Larriba, M., García, J., Torrecilla, J. S., & Rodríguez, F. (2012b). Liquid – liquid extraction of toluene from n -heptane using binary mixtures of N -butylpyridinium tetrafluoroborate and N -butylpyridinium bis ( trifluoromethylsulfonyl ) imide ionic liquids. Chemical Engineering Journal, 180, 210–215. https://doi.org/10.1016/j.cej.2011.11.069es_CO
    dc.relation.referencesGarcía, S., Larriba, M., Torrecilla, S., & Rodríguez, F. (2011). Sulfonate-Based Ionic Liquids in the Liquid À Liquid Extraction of Aromatic Hydrocarbons. 3188–3193.es_CO
    dc.relation.referencesGarcía Sanchez, S. (2012). Extracción de hidrocarburos aromáticos de fracciones de petróleo utilizando mezclas de líquidos iónicos como disolvente. Universidad Complutense de Madrid.es_CO
    dc.relation.referencesGhandi, K. (2018). A Review of Ionic Liquids , Their Limits and Applications. (May). https://doi.org/10.4236/gsc.2014.41008es_CO
    dc.relation.referencesGooch, J. W. (2011). Aromatic Hydrocarbon. In J. W. Gooch (Ed.), Encyclopedic Dictionary of Polymers (pp. 47–48). https://doi.org/10.1007/978-1-4419-6247-8_791es_CO
    dc.relation.referencesHansmeier, A. R. (2010). Ionic Liquids as Alternative Solvents for Aromatics Extraction. Technische Universiteit Eindhoven, (2010). https://doi.org/10.6100/IR675398es_CO
    dc.relation.referencesKato, R., & Gmehling, J. (2004). Activity coefficients at infinite dilution of various solutes in the ionic liquids [MMIM]+[CH3SO4]-, [MMIM]+[CH3- OC2H4SO4]-, [MMIM]+[(CH3)2PO4]-, [C5H5NC2H5]+[(CF3SO2)2N]- and [C5H5NH]+[C2H5OC2H4OSO3]-. Fluid Phase Equilib., 37–44.es_CO
    dc.relation.referencesLarriba, M., Navarro, P., Delgado-mellado, N., Stanisci, V., García, J., & Rodríguez, F. (2017). Extraction of aromatic hydrocarbons from pyrolysis gasoline using tetrathiocyanatocobaltate-based ionic liquids : Experimental study and simulation. Fuel Processing Technology, 159, 96–110. https://doi.org/10.1016/j.fuproc.2017.01.027es_CO
    dc.relation.referencesLarriba, M., Navarro, P., García, J., & Rodríguez, F. (2013). Selective extraction of toluene from n -heptane using [emim][SCN] and [bmim][SCN] ionic liquids as solvents. THE JOURNAL OF CHEMICAL THERMODYNAMICS, 1–6. https://doi.org/10.1016/j.jct.2013.11.005es_CO
    dc.relation.referencesLarriba, M., Navarro, P., González, E. J., García, J., & Rodríguez, F. (2015a). Dearomatization of pyrolysis gasolines from mild and severe cracking by liquid – liquid extraction using a binary mixture of [4empy][Tf 2 N] and [emim][DCA] ionic liquids. Fuel Processing Technology, 137, 269–282. https://doi.org/10.1016/j.fuproc.2015.03.00es_CO
    dc.relation.referencesLarriba, M., Riva, J. De, Navarro, P., Moreno, D., Delgado-Mellado, N., García, J., … Palomar, J. (2018). COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[ 4empy ][ NTf 2 ] + [ emim ][ DCA ]} ionic liquid mixture. Separation and Purification Technology, 190(June 2017), 211–227. https://doi.org/10.1016/j.seppur.2017.08.062es_CO
    dc.relation.referencesLei, Z. (2017). Introduction: Ionic Liquids. https://doi.org/10.1021/acs.chemrev.7b00246es_CO
    dc.relation.referencesLenoir, D., Schramm, K., & Lalah, J. O. (2020). Green Chemistry : Some important forerunners and current issues. Sustainable Chemistry and Pharmacy, 18(September), 100313. https://doi.org/10.1016/j.scp.2020.100313es_CO
    dc.relation.referencesLeusch, F., Bartkow, M., & Water, S. (2010). A short primer on benzene , toluene , ethylbenzene and xylenes ( BTEX ) in the environment and in hydraulic fracturing fluidses_CO
    dc.relation.referencesLubben, M. J., Canales, R. I., Lyu, Y., Held, C., Gonzalez-miquel, M., Stadtherr, M. A., & Brennecke, J. F. (2020). Promising Thiolanium Ionic Liquid for Extraction of Aromatics from Aliphatics: Experiments and Modeling. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/acs.iecr.0c02292es_CO
    dc.relation.referencesMarco, B. A. De, Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., Regina, H., & Salgado, N. (2019). Evolution of green chemistry and its multidimensional impacts : A review. Saudi Pharmaceutical Journal, 27(1), 1–8. https://doi.org/10.1016/j.jsps.2018.07.011es_CO
    dc.relation.referencesMeindersma, G., Hansmeier, A. R., & Haan, A. B. de. (2010). Ionic Liquids for Aromatics Extraction. Present Status and Future Outlook. 7530–7540.es_CO
    dc.relation.referencesMeindersma G., W., & De Haan, A. B. (2012). Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture. 55(8), 1488– 1499. https://doi.org/10.1007/s11426-012-4630-xes_CO
    dc.relation.referencesMeindersma G., W., Galán Sánchez, L. M., Hansmeier, A. R., & De Haan, A. B. (2007). Application of Task-specific Ionic Liquids for Intensified Separations. Monastshefte Für Chemie Chemical Monthly, 1136, 1125–1136. https://doi.org/10.1007/s00706-007-0757-es_CO
    dc.relation.referencesMeindersma, G. W., & Haan, A. B. De. (2008). Conceptual process design for aromatic / aliphatic separation with ionic liquids. 6, 745–752. https://doi.org/10.1016/j.cherd.2008.02.016es_CO
    dc.relation.referencesNavarro, P. (2017). Fraccionamiento del extracto de la separación de aromáticos de gasolinas y naftas con líquidos iónicoses_CO
    dc.relation.referencesPena‐Pereira, F., & Namieśnik, J. (2014). Ionic Liquids and Deep Eutectic Mixtures: Sustainable Solvents for Extraction Processes. ChemSusChem, 7(7), 1784–1800. Retrieved from https://doi.org/10.1002/cssc.20130119es_CO
    dc.relation.referencesShah, A., Baral, N. R., & Manandhar, A. (2016). Chapter Four - Technoeconomic Analysis and Life Cycle Assessment of Bioenergy Systems. Advances in Bioenergy, Volumen 1, 189–247.es_CO
    dc.relation.referencesSpringer. (2016). Ionic Liquids for Better Separation Processes (H. Rodríguez, Ed.).es_CO
    dc.relation.referencesSun, X., Luo, H., Dai, S. (2012). Ionic liquids-based extraction : A promising strategy for the advanced nuclear fuel cycle. Chemical Reviews, 2100–2128. https://doi.org/10.1021/cr200193xes_CO
    dc.relation.referencesThyssenKrupp Industrial Solutions. (2014). World Market Leader in Aromatics Extraction.es_CO
    dc.relation.referencesTilstam, U. (2012). Sulfolane: A Versatile Dipolar Aprotic Solvent.es_CO
    dc.relation.referencesWade, L. G. (2012). Química Orgánica (Séptima Ed; PERSON, Ed.).es_CO
    dc.relation.referencesWauquier, J.-P. (2000). CRUDE OIL PETROLEUM PROCESS FLOWSHEETS (Editions TCHNIP, Ed.).es_CO
    dc.relation.referencesWerner, S., Haumann, M., & Wasserscheid, P. (2010). Ionic liquids in chemical engineering. Annual Review of Chemical and Biomolecular Engineering, 1, 203–230. Retrieved from //doi.org/10.1146/annurev-chembioeng-073009-100915es_CO
    dc.relation.referencesZhao, H. (2010). Physics and Chemistry of Liquids : An Review : Current studies on some physical properties of ionic liquids. (August 2013), 37–41. https://doi.org/10.1080/00319103100011731es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Villamizar_2020_TG.pdfVillamizar_2020_TG1,41 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.