• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Please use this identifier to cite or link to this item: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5354
    Full metadata record
    DC FieldValueLanguage
    dc.contributor.authorMedina Mojica, Ingrid Yurley.-
    dc.date.accessioned2022-12-14T15:30:29Z-
    dc.date.available2020-09-22-
    dc.date.available2022-12-14T15:30:29Z-
    dc.date.issued2020-
    dc.identifier.citationMedina Mojica, I. Y. (2020). Las microalgas una alternativa para la remoción de materia orgánica de aguas residuales domésticas [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5354es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5354-
    dc.descriptionLa autora no proporciona la información sobre este ítem.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent46es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleLas microalgas una alternativa para la remoción de materia orgánica de aguas residuales domésticas.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-22-
    dc.relation.referencesAbdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005es_CO
    dc.relation.referencesAcién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina Grima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013–9022. https:/Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina Grima, E. (2016). Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013–9022. https://doi.org/10.1007/s00253-016-7835-/doi.org/10.1007/s00253-016-7835-es_CO
    dc.relation.referencesAlcántara, C., de Godos, I., & Muñoz, R. (2020). Wastewater treatment and biomass generation with algae. Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels, 229–254. https://doi.org/10.1016/b978-0-12-816204-0.00011-4es_CO
    dc.relation.referencesAllende, G., & Mendoza, A. (2018). Proyecto de un diseño de una planta de tratamiento de aguas residuales domésticas del Distrito de Lambayeque con el uso de un reactor UASB. http://repositorio.unprg.edu.pe/bitstream/handle/UNPRG/3424/BC-TES-TMP 2247.pdf?sequence=1&isAllowed=yes_CO
    dc.relation.referencesAnyanwu, R. C., Rodriguez, C., Durrant, A., & Olabi, A. G. (2018). Microalgae Cultivation Technologies. Reference Module in Materials Science and Materials Engineering, 1–23. https://doi.org/10.1016/b978-0-12-803581-8.09258-4es_CO
    dc.relation.referencesBanerjee, S., & Ramaswamy, S. (2017). Dynamic process model and economic analysis of microalgae cultivation in open raceway ponds. Algal Research, 26(November 2016), 330– 340. https://doi.org/10.1016/j.algal.2017.08.011es_CO
    dc.relation.referencesBarrantes, E., & Tapullima, R. (2018). Universidad nacional de ucayali. http://repositorio.unu.edu.pe/bitstream/handle/UNU/2305/000002149T.pdf?sequence=1 &isAllowed=es_CO
    dc.relation.referencesBarreiro, N. (2019). Caracterización de los consorcios microalgas-bacterias en el tratamiento de agua residual urbanaes_CO
    dc.relation.referencesCandela, R. (2016). Las microalgas y el tratamiento de aguas residuales: conceptos y aplicaciones. Una revisión bibliográfica (Issue June).es_CO
    dc.relation.referencesCartagena, J., & Malo, B. (2017). Evaluación del uso de la microalga Chorella vulgaris en la remoción de materia orgánica de las aguas residuales de la PTAR El Salitre a nivellaboratorio.es_CO
    dc.relation.referencesCheah, W. Y., Ling, T. C., Show, P. L., Juan, J. C., Chang, J. S., & Lee, D. J. (2016). Cultivation in wastewaters for energy: A microalgae platform. Applied Energy, 179, 609–625. https://doi.org/10.1016/j.apenergy.2016.07.015es_CO
    dc.relation.referencesChew, K. W., Chia, S. R., Show, P. L., Yap, Y. J., Ling, T. C., & Chang, J. S. (2018). Effects of water culture medium, cultivation systems and growth modes for microalgae cultivation: A review. Journal of the Taiwan Institute of Chemical Engineers, 91, 332– 344. https://doi.org/10.1016/j.jtice.2018.05.03es_CO
    dc.relation.referencesChoudhary, P., Assemany, P. P., Naaz, F., Bhattacharya, A., Castro, J. de S., Couto, E. de A. do C., Calijuri, M. L., Pant, K. K., & Malik, A. (2020). A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Science of the Total Environment, 726, 137961. https://doi.org/10.1016/j.scitotenv.2020.137961es_CO
    dc.relation.referencesCulebro, J. (2015). Cosechado de microalgas cultivadas en lagunas de alta carga para el tratamiento de aguas residuales: efecto del almidón sobre la floculación y la producción de biogás.es_CO
    dc.relation.referencesDe Jesus Raposo, M. F., De Morais, R. M. S. C., & De Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93(15), 479– 486. https://doi.org/10.1016/j.lfs.2013.08.002es_CO
    dc.relation.referencesDiniz, G. S., Silva, A. F., Araújo, O. Q. F., & Chaloub, R. M. (2017). The potential of microalgal biomass production for biotechnological purposes using wastewater resources. Journal of Applied Phycology, 29(2), 821–832. https://doi.org/10.1007/s10811-016-0976- 3es_CO
    dc.relation.referencesFerreira, G. F., Ríos Pinto, L. F., Maciel Filho, R., & Fregolente, L. V. (2019). A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renewable and Sustainable Energy Reviews, 109(July 2018), 448– 466. https://doi.org/10.1016/j.rser.2019.04.052es_CO
    dc.relation.referencesGonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403–415. https://doi.org/10.1016/j.algal.2016.11.008es_CO
    dc.relation.referencesGonzalez, E. G., de Carvalho, J. C., Aulestia, D. T. M., Gonzalez, O. I. M., & Soccol, C. R. (2020). Bioprospection of green microalgae native to Paraná, Brazil using a multi-criteria analysis: Potential for the production of lipids, proteins, and carotenoids. Bioresource Technology Reports, 10, 100398. https://doi.org/10.1016/j.biteb.2020.100398es_CO
    dc.relation.referencesGouveia, L., Graça, S., Sousa, C., Ambrosano, L., Ribeiro, B., Botrel, E. P., Neto, P. C., Ferreira, A. F., & Silva, C. M. (2016). Microalgae biomass production using wastewater: Treatment and costs. Scale-up considerations. Algal Research, 16, 167–176. https://doi.org/10.1016/j.algal.2016.03.010es_CO
    dc.relation.referencesGuldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203, 299–315. https://doi.org/10.1016/j.jenvman.2017.08.012es_CO
    dc.relation.referencesHernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de Biologia Marina y Oceanografia, 49(2), 157–173. https://doi.org/10.4067/S0718- 19572014000200001es_CO
    dc.relation.referencesJi, M. K., Abou-Shanab, R. A. I., Kim, S. H., Salama, E. S., Lee, S. H., Kabra, A. N., Lee, Y. S., Hong, S., & Jeon, B. H. (2013). Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecological Engineering, 58, 142–148. https://doi.org/10.1016/j.ecoleng.2013.06.020es_CO
    dc.relation.referencesKadir, W. N. A., Lam, M. K., Uemura, Y., Lim, J. W., & Lee, K. T. (2018). Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, 171(March), 1416–1429. https://doi.org/10.1016/j.enconman.2018.06.074es_CO
    dc.relation.referencesKumar, V., Nanda, M., Pruthi, V., Sharma, N., Vlaskin, M. S., & Tomar, M. S. (2020). Integration of wastewater valorization with microalgae for biofuel production. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels. Elsevier Inc. https://doi.org/10.1016/b978-0-12-817951-2.00018-3es_CO
    dc.relation.referencesLi, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., & Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144. https://doi.org/10.1016/j.biortech.2011.01.091es_CO
    dc.relation.referencesLopez, W. (2019). Evaluación de dos especies de microalgas para determinar la eficiencia de remocion de nutrientes de aguas residuales de la PTAR taboada del callao, Perú (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004es_CO
    dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 0631 de 2015 (p. 62).es_CO
    dc.relation.referencesMinisterio de desarrollo económico. (2000). Reglamento Técnico del sector de agua potable y saneamiento básico- RAS 2000. Titulo E-Tratamiento de aguas residuales. In Reglamento Técnico Del Sector De Agua Potable Y Saneamiento Basico. http://www.minvivienda.gov.co/Documents/ViceministerioAgua/010710_ras_titulo_e_. pdes_CO
    dc.relation.referencesMollina, Y. (2016). TRATAMIENTO BIOLÓGICO DE AGUAS RESIDUALES DEL LABORATORIO DE INVESTIGACIÓN, ANÁLISIS Y MONITOREO IAM-Q DE LA SECRETARÍA DEL AMBIENTE DEL DMQ.es_CO
    dc.relation.referencesMorales, M. del M. (2016). Tratamiento de aguas residuales con microalgas en reactores abiertos. Tesis Doctoral, 153. https://www.educacion.gob.es/teseo/imprimirFicheroTesis.do?idFichero=r00YhW0Jlss %3Des_CO
    dc.relation.referencesOropeza García, N. (2006). Lodos residuales : estabilización y manejo. Caos Conciencia, 1(figura 1), 51–58es_CO
    dc.relation.referencesRawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025es_CO
    dc.relation.referencesRizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92(March 2017), 394–404. https://doi.org/10.1016/j.rser.2018.04.034es_CO
    dc.relation.referencesRojas, R., & Mendoza, L. (2012). Utilizacion de biosolidos para la recuperacion energetica en México. Scielo, 7(2), 74–94.es_CO
    dc.relation.referencesRozo, A. (2016). Evaluación de la respuesta al incremento simultáneo de la carga hidráulica y la carga orgánica en humedales de flujo vertical para tratamiento de aguas residuales domésticas bajo condiciones tropicales.es_CO
    dc.relation.referencesRussel, M., Meixue, Q., Alam, M. A., Lifen, L., Daroch, M., Blaszczak-Boxe, C., & Kumar Gupta, G. (2020). Investigating the potentiality of Scenedesmus obliquus and Acinetobacter pittii partnership system and their effects on nutrients removal from synthetic domestic wastewater. Bioresource Technology, 299, 122571. https://doi.org/10.1016/j.biortech.2019.122571es_CO
    dc.relation.referencesSamorì, G., Samorì, C., Guerrini, F., & Pistocchi, R. (2013). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Research, 47(2), 791– 801. https://doi.org/10.1016/j.watres.2012.11.006es_CO
    dc.relation.referencesSchneider, R. de C. de S., de Moura Lima, M., Hoeltz, M., de Farias Neves, F., John, D. K., & de Azevedo, A. (2018). Life cycle assessment of microalgae production in a raceway pond with alternative culture media. Algal Research, 32(April), 280–292. https://doi.org/10.1016/j.algal.2018.04.012es_CO
    dc.relation.referencesShahid, A., Malik, S., Zhu, H., Xu, J., Nawaz, M. Z., Nawaz, S., Asraful Alam, M., & Mehmood, M. A. (2020). Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Science of the Total Environment, 704, 135303. https://doi.org/10.1016/j.scitotenv.2019.13530es_CO
    dc.relation.referencesSistema Unico de Información de Servicios publicos domicioliarios (2020). Recuperado de http://www.sui.gov.co/webes_CO
    dc.relation.referencesSoriano, P. (2014). Planta demostración de depuración de aguas residuales con microalgas.es_CO
    dc.relation.referencesUmamaheswari, J., & Shanthakumar, S. (2019). Phycoremediation of paddy-soaked wastewater by indigenous microalgae in open and closed culture system. Journal of Environmental Management, 243(March), 435–443. https://doi.org/10.1016/j.jenvman.2019.05.023es_CO
    dc.relation.referencesVillacrez, H. (2018). Eficacia de un coagulante a base de aloe vera para el tratamiento primario de aguas residuales domésticas. Moyobamba, 2018.es_CO
    dc.relation.referencesViswanaathan, S., & Sudhakar, M. P. (2019). Microalgae: Potential agents for co2 mitigation and bioremediation of wastewaters. In New and Future Developments in Microbial Biotechnology and Bioengineering: Microbes in Soil, Crop and Environmental Sustainability. Elsevier B.V. https://doi.org/10.1016/B978-0-12-818258-1.00008-es_CO
    dc.relation.referencesWu, Y. H., Hu, H. Y., Yu, Y., Zhang, T. Y., Zhu, S. F., Zhuang, L. L., Zhang, X., & Lu, Y. (2014). Microalgal species for sustainable biomass/lipid production using wastewater as resource: A review. Renewable and Sustainable Energy Reviews, 33, 675–688. https://doi.org/10.1016/j.rser.2014.02.02es_CO
    dc.relation.referencesYousuf, A. (2020). Fundamentals of Microalgae Cultivation. In Microalgae Cultivation for Biofuels Production. Elsevier Inc. https://doi.org/10.1016/b978-0-12-817536-1.00001-1es_CO
    dc.relation.referencesZhuang, L. L., Li, M., & Hao Ngo, H. (2020). Non-suspended microalgae cultivation for wastewater refinery and biomass production. Bioresource Technology, 308, 123320. https://doi.org/10.1016/j.biortech.2020.123320es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Appears in Collections:Ingeniería Química

    Files in This Item:
    File Description SizeFormat 
    Medina_2020_TG.pdfMedina_2020_TG1,03 MBAdobe PDFView/Open


    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.