Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5251
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Rodríguez Gasca, Juan Pablo. | - |
dc.date.accessioned | 2022-12-09T17:59:35Z | - |
dc.date.available | 2019-11-01 | - |
dc.date.available | 2022-12-09T17:59:35Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Rodríguez Gasca, J. P. (2019). Desarrollo de un framework de MTConnect para monitoreamiento remoto de máquinas de manufactura aditiva RepRap vía Internet [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5251 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5251 | - |
dc.description | El estándar MTConnect proporciona un puente para llevar los recursos de fabricación física en red a los entornos de fabricación en la nube. Sin embargo, hacer que los equipos de fabricación heredados cumplan con esta nueva norma sigue siendo una tarea difícil. De hecho, con respecto a los procesos de fabricación aditiva, este problema se encuentra en una etapa incipiente. Para abordar el problema, este trabajo presenta un marco compatible con MTConnect para el acceso a datos de planta y el monitoreo de las máquinas de fabricación aditiva RepRap basadas en los controladores de tecnología abierta Arduino. Se incorporó un canal de comunicación basado en el protocolo TCP / IP que utiliza un módulo Ethernet en el sistema de la máquina para ampliar las funcionalidades de las impresoras 3D RepRap para conectarse a Internet. También se desarrolló una aplicación de cliente web para validar el sistema mediante la supervisión de la máquina en tiempo real a través de Internet. La solución MTConnect propuesta permite recuperar datos de la posición de los ejes, la temperatura de la cabecera, la temperatura del extremo caliente, la extrusión de material y el tiempo transcurrido desde la aplicación web, lo que demuestra la viabilidad de operar en entornos de fabricación de nubes. | es_CO |
dc.description.abstract | The MTConnect standard provides a bridge to bring networked physical manufacturing resources to cloud manufacturing environments. However, making legacy manufacturing equipment compliant with this new standard is still a difficult task. Indeed, regarding the additive manufacturing processes, this issue is in an incipient stage. To address the issue, this work introduces an MTConnect-compliant framework for shopfloor data access and monitoring of RepRap additive manufacturing machines based on Arduino open technology controllers. A communication channel based on TCP/IP protocol using an Ethernet module was incorporated into the machine system to extend the functionalities of RepRap 3D printers to connect to the Internet. Two MTConnect implementation architectures named Type 1 and Type 2 were proposed. A web-client application was also developed to validate the system by performing real-time machine monitoring over the Internet. The proposed MTConnect solution allows retrieving data of axes position, headbed temperature, hotend temperature, material extrusion, current layer and elapsed time from the web application, demonstrating feasibility to operate in cloud manufacturing environments. | es_CO |
dc.format.extent | 64 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona- Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Desarrollo de un framework de MTConnect para monitoreamiento remoto de máquinas de manufactura aditiva RepRap vía Internet. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2019-08-01 | - |
dc.relation.references | R. Y. Zhong, X. Xu, E. lotz, and S. T. ewman, “Intelligent Manufacturing in the Context of Industry 4.0: A Review,” Engineering, vol. 3, no. 5, pp. 616–630, Oct. 2017. | es_CO |
dc.relation.references | C. Liu and X. Xu, “Cyber-physical Machine Tool – The Era of Machine Tool 4.0,” Procedia CIRP, vol. 63, pp. 70–75, 2017. | es_CO |
dc.relation.references | A. ijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, and P. Warndorf, “Improving Machine Tool Interoperability Using Standardized Interface Protocols: MTConnect,” in Proceedings of 2008 ISFA 2008 International Symposium on Flexible Automation, 2008, pp. 1–6. | es_CO |
dc.relation.references | J. Moilanen and T. adén, “ D printing community and emerging practices of peer production,” First Monday, vol. 18, no. 8, Aug. 2013. | es_CO |
dc.relation.references | A. C. Gil, Como elaborar projetos de pesquisa, 6th ed. São Paulo, 2017. | es_CO |
dc.relation.references | . agermann, W. Wahister, and J. elbig, “Recommendations for implementing the strategic initiative I DUSTRIE 4.0: Final report of the Industrie 4.0 Working roup,” 2013. | es_CO |
dc.relation.references | M. ankel and B. Rexroth, “The Reference Architectural Model Industrie 4.0 (RAMI 4.0),” ZVEI, pp. 1–2, 2015. | es_CO |
dc.relation.references | S. A. Coons, “An outline of the requirements for a computer-aided design system,” in Proceedings of the May 21-23, 1963, spring joint computer conference on - AFIPS ’63 (Spring), 1963, p. 299. | es_CO |
dc.relation.references | A. A. Tseng, S. P. olluri, and P. Radhakrishnan, “A C C machining system for education,” J. Manuf. Syst., vol. 8, no. 3, pp. 207–214, Jan. 1989. | es_CO |
dc.relation.references | X. Xu, Integrating Advanced Computer-Aided Design, Manufacturing, and Numerical Control. IGI Global, 2009. | es_CO |
dc.relation.references | D. LE ATIU , M. T EILER, . DRA OS, and . SMARSLY, “A Categorical Approach Towards Metamodeling Cyber-physical Systems,” in Structural Health Monitoring 2017, 2017 | es_CO |
dc.relation.references | T. Fitz, M. Theiler, and . Smarsly, “A metamodel for cyber-physical systems,” Adv. Eng. Informatics, vol. 41, p. 100930, Aug. 2019. | es_CO |
dc.relation.references | J. Wan, “Advances in Cyber-Physical Systems Research,” KSII Trans. Internet Inf. Syst., vol. 5, no. 11, 2011. | es_CO |
dc.relation.references | J. Shi, J. Wan, H. Yan, and . Suo, “A survey of Cyber-Physical Systems,” in 2011 International Conference on Wireless Communications and Signal Processing (WCSP), 2011, pp. 1–6. | es_CO |
dc.relation.references | J. Lee, B. Bagheri, and H.-A. ao, “A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18–23, Jan. 2015. | es_CO |
dc.relation.references | E. Rodriguez and A. J. Alvares, “A STEP-NC implementation approach for additive manufacturing,” Procedia Manuf., vol. 1, no. 1, pp. 1–8, 2019. | es_CO |
dc.relation.references | R. Bonnard, J.-Y. Hascoët, P. Mognol, and I. Stroud, “STEP-NC digital thread for additive manufacturing: data model, implementation and validation,” Int. J. Comput. Integr. Manuf., vol. 31, no. 11, pp. 1141–1160, Nov. 2018. | es_CO |
dc.relation.references | S. LLC, “Senvol database,” Acesado: 17/02/2018, 2018. [Online]. Available: http://senvol.com/database/ | es_CO |
dc.relation.references | S. egi, S. Dhiman, and R. . Sharma, “Basics, Applications and Future of Additive Manufacturing Technologies: a Review,” J. Manuf. Technol. Res., vol. 5, no. 1–2, pp. 75– 96, 2016 | es_CO |
dc.relation.references | I. / ASTM52900-15, “Standard Terminology for Additive Manufacturing – General Principles – Terminology,” ASTM Int., 2015 | es_CO |
dc.relation.references | S. S. Crump and I. Stratasys, “APPARATUS A D MET OD FOR CREATI THREE-DIME SIO AL OBJECTS,” no. 19, 19 9. | es_CO |
dc.relation.references | K. S. Boparai, R. Singh, and H. Singh, “Development of rapid tooling using fused deposition modeling: a review,” Rapid Prototyp. J., vol. 22, no. 2, pp. 281–299, 2016. | es_CO |
dc.relation.references | O. A. Mohamed, S. . Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv. Manuf., vol. 3, no. 1, pp. 42–53, 2015. | es_CO |
dc.relation.references | S. Kondoh, T. Tateno, Y. Kishita, H. Komoto, and S. Fukushige, “The Potential} of {Additive} {Manufacturing} {Technology} for {Realizing} a {Sustainable} {Society},” in Sustainability {Through} {Innovation} in {Product} {Life} {Cycle} {Design}, M. Matsumoto, K. Masui, S. Fukushige, and S. Kondoh, Eds. Springer Singapore, 2017, pp. 475–486. | es_CO |
dc.relation.references | E. Rodriguez, A. J. Alvares, and C. I. Jaimes, “Conceptual design and dimensional optimization of the linear delta robot with single legs for additive manufacturing,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., p. 095965181983691, Mar. 2019. | es_CO |
dc.relation.references | E. de J. Cortés Torres, E. Rodriguez, C. I. Riano Jaimes, R. Bonnard, and C. A. Peña Cortés, “Enfoque sobre o Desenvolvimento de um Robô com Arquitetura Paralela 5R para Manufatura Aditiva,” in Anais do IX Congresso Brasileiro de Engenharia de Fabricação, 2017 | es_CO |
dc.relation.references | J. P. Rodriguez, C. Pena, and E. Rodriguez, “Atlas codeSender: a Graphical User Interface for Control of a Robotics Additive Manufacturing Platform,” in 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018, pp. 671–676. | es_CO |
dc.relation.references | S. Atluru, S. . uang, and J. P. Snyder, “A smart machine supervisory system framework,” Int. J. Adv. Manuf. Technol., vol. 58, no. 5–8, pp. 563–572, Jan. 2012. | es_CO |
dc.relation.references | B. Edrington, B. Zhao, A. Hansel, M. Mori, and M. Fujishima, “Machine Monitoring System Based on MTConnect Technology,” Procedia CIRP, vol. 22, pp. 92–97, 2014. | es_CO |
dc.relation.references | S. Chen, C. Yin, and X. Li, “Implementation of MTConnect in Machine Monitoring System for C Cs,” in 2017 5th International Conference on Enterprise Systems (ES), 2017, pp. 70–75. | es_CO |
dc.relation.references | . Chen, Y. Yin, and Z. Yin, “Energy consumption monitoring system design of workshop processing equipment based on MTConnect,” Proc. - 2017 2nd Int. Conf. Inf. Syst. Eng. ICISE 2017, vol. 2017–Janua, pp. 64–68, 2017 | es_CO |
dc.relation.references | Y. Xiao, Q. Liu, J. Wang, P. Sun, and Q. Liu, “Design and application of energy consumption acquisition system based on MtConnect,” Proc. 2018 IEEE Int. Conf. Mechatronics Autom. ICMA 2018, pp. 1376–1381, 2018. | es_CO |
dc.relation.references | C. Deng, R. uo, C. Liu, R. Y. Zhong, and X. Xu, “Data cleansing for energy-saving: a case of Cyber-Physical Machine Tools health monitoring system,” Int. J. Prod. Res., vol. 56, no. 1–2, pp. 1000–1015, 2018. | es_CO |
dc.relation.references | ISO10303-2 , “Industrial automation systems and integration -- Product data representation and exchange -- Part 238: Application protocol: Application interpreted model for computerized numerical controllers,” 2007. | es_CO |
dc.relation.references | ISO 14649-1, “Industrial automation systems and integration - Physical device control - Data model for computerized numerical controllers - Part 1: Overview and fundamental principles.,” 200 . | es_CO |
dc.relation.references | S. J. Shin, J. Woo, D. B. im, S. umaraguru, and S. Rachuri, “Developing a virtual machining model to generate MTConnect machine-monitoring data from STEP- C,” Int. J. Prod. Res., vol. 54, no. 15, pp. 4487–4505, 2016. | es_CO |
dc.relation.references | D. Lechevalier, S. J. Shin, S. Rachuri, S. Foufou, Y. T. Lee, and A. Bouras, “Simulating a virtual machining model in an agent-based model for advanced analytics,” J. Intell. Manuf., vol. 30, no. 4, pp. 1937–1955, 2019. | es_CO |
dc.relation.references | S. Tools, “Digital Thread for Manufacturing,” Available from https//www.steptools.com/sln/thread/, vol. Consulted:, 2018. | es_CO |
dc.relation.references | A. José Álvares, L. E. S. de Oliveira, and J. C. E. Ferreira, “Development of a Cyber- 59 Physical framework for monitoring and teleoperation of a CNC lathe based on MTconnect and OPC protocols,” Int. J. Comput. Integr. Manuf., vol. 31, no. 11, pp. 1049–1066, 2018. | es_CO |
dc.relation.references | Mtc. Institute and Makerbot, “makerbot agent,” Available on: https://github.com/mtconnect/makerbot_agent, 2015. | es_CO |
dc.relation.references | X. F. Liu and M. Cheng, “IMPLEME TATIO OF MTCO ECT FOR OPE SOURCE 3D PRI TERS I ,” in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2016, 2017, pp. 1–10. | es_CO |
dc.relation.references | X. F. Liu, M. R. Shahriar, S. M. N. Al Sunny, M. C. Leu, and L. u, “Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed,” J. Manuf. Syst., vol. 43, pp. 352–364, 2017. | es_CO |
dc.relation.references | L. Hu et al., “Modeling of Cloud-Based Digital Twins for Smart Manufacturing with MT Connect,” Procedia Manuf., vol. 26, pp. 1193–1203, 2018. | es_CO |
dc.relation.references | Stratasys, “Stratasys’ Introduces ew F900 Production D Printer with MTConnect Interface, Last access 14 12 201 ,” 201 . . | es_CO |
dc.relation.references | Y. Akao, Quality Function Deployment: Integrating Customer Requirements Into Product Design, 1st ed. Taylor & Francis, 2004. | es_CO |
dc.relation.references | C. G. Sørensen, R. N. Jørgensen, J. Maagaard, K. K. Bertelsen, L. Dalgaard, and M. ørremark, “Conceptual and user-centric design guidelines for a plant nursing robot,” Biosyst. Eng., vol. 105, no. 1, pp. 119–129, Jan. 2010 | es_CO |
dc.relation.references | S. Pertuz, C. Pena, and C. Riano, “RoboTender,” in 2014 III International Congress of Engineering Mechatronics and Automation (CIIMA), 2014, pp. 1–5. | es_CO |
dc.relation.references | X. F. Liu, “Software quality function deployment,” IEEE Potentials, vol. 19, no. 5, pp. 14–16, 2001. | es_CO |
dc.relation.references | Z. Sener and E. E. Karsak, “A decision model for setting target levels in software quality function deployment to respond to rapidly changing customer needs,” Concurr. Eng., vol. 20, no. 1, pp. 19–29, Mar. 2012. | es_CO |
dc.relation.references | L. Scalvenzi and P. A. Cauchick Miguel, “QFD aplicado ao desenvolvimento de software: priorização de requisitos do cliente em uma matriz de funções,” Exacta, vol. 14, no. 4, pp. 677–692, Dec. 2016. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Electrónica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Rodríguez_2019_TG.pdf | Rodríguez_2019_TG | 2,61 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.