• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Electrónica
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5251
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorRodríguez Gasca, Juan Pablo.-
    dc.date.accessioned2022-12-09T17:59:35Z-
    dc.date.available2019-11-01-
    dc.date.available2022-12-09T17:59:35Z-
    dc.date.issued2020-
    dc.identifier.citationRodríguez Gasca, J. P. (2019). Desarrollo de un framework de MTConnect para monitoreamiento remoto de máquinas de manufactura aditiva RepRap vía Internet [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5251es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5251-
    dc.descriptionEl estándar MTConnect proporciona un puente para llevar los recursos de fabricación física en red a los entornos de fabricación en la nube. Sin embargo, hacer que los equipos de fabricación heredados cumplan con esta nueva norma sigue siendo una tarea difícil. De hecho, con respecto a los procesos de fabricación aditiva, este problema se encuentra en una etapa incipiente. Para abordar el problema, este trabajo presenta un marco compatible con MTConnect para el acceso a datos de planta y el monitoreo de las máquinas de fabricación aditiva RepRap basadas en los controladores de tecnología abierta Arduino. Se incorporó un canal de comunicación basado en el protocolo TCP / IP que utiliza un módulo Ethernet en el sistema de la máquina para ampliar las funcionalidades de las impresoras 3D RepRap para conectarse a Internet. También se desarrolló una aplicación de cliente web para validar el sistema mediante la supervisión de la máquina en tiempo real a través de Internet. La solución MTConnect propuesta permite recuperar datos de la posición de los ejes, la temperatura de la cabecera, la temperatura del extremo caliente, la extrusión de material y el tiempo transcurrido desde la aplicación web, lo que demuestra la viabilidad de operar en entornos de fabricación de nubes.es_CO
    dc.description.abstractThe MTConnect standard provides a bridge to bring networked physical manufacturing resources to cloud manufacturing environments. However, making legacy manufacturing equipment compliant with this new standard is still a difficult task. Indeed, regarding the additive manufacturing processes, this issue is in an incipient stage. To address the issue, this work introduces an MTConnect-compliant framework for shopfloor data access and monitoring of RepRap additive manufacturing machines based on Arduino open technology controllers. A communication channel based on TCP/IP protocol using an Ethernet module was incorporated into the machine system to extend the functionalities of RepRap 3D printers to connect to the Internet. Two MTConnect implementation architectures named Type 1 and Type 2 were proposed. A web-client application was also developed to validate the system by performing real-time machine monitoring over the Internet. The proposed MTConnect solution allows retrieving data of axes position, headbed temperature, hotend temperature, material extrusion, current layer and elapsed time from the web application, demonstrating feasibility to operate in cloud manufacturing environments.es_CO
    dc.format.extent64es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona- Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleDesarrollo de un framework de MTConnect para monitoreamiento remoto de máquinas de manufactura aditiva RepRap vía Internet.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-08-01-
    dc.relation.referencesR. Y. Zhong, X. Xu, E. lotz, and S. T. ewman, “Intelligent Manufacturing in the Context of Industry 4.0: A Review,” Engineering, vol. 3, no. 5, pp. 616–630, Oct. 2017.es_CO
    dc.relation.referencesC. Liu and X. Xu, “Cyber-physical Machine Tool – The Era of Machine Tool 4.0,” Procedia CIRP, vol. 63, pp. 70–75, 2017.es_CO
    dc.relation.referencesA. ijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, and P. Warndorf, “Improving Machine Tool Interoperability Using Standardized Interface Protocols: MTConnect,” in Proceedings of 2008 ISFA 2008 International Symposium on Flexible Automation, 2008, pp. 1–6.es_CO
    dc.relation.referencesJ. Moilanen and T. adén, “ D printing community and emerging practices of peer production,” First Monday, vol. 18, no. 8, Aug. 2013.es_CO
    dc.relation.referencesA. C. Gil, Como elaborar projetos de pesquisa, 6th ed. São Paulo, 2017.es_CO
    dc.relation.references. agermann, W. Wahister, and J. elbig, “Recommendations for implementing the strategic initiative I DUSTRIE 4.0: Final report of the Industrie 4.0 Working roup,” 2013.es_CO
    dc.relation.referencesM. ankel and B. Rexroth, “The Reference Architectural Model Industrie 4.0 (RAMI 4.0),” ZVEI, pp. 1–2, 2015.es_CO
    dc.relation.referencesS. A. Coons, “An outline of the requirements for a computer-aided design system,” in Proceedings of the May 21-23, 1963, spring joint computer conference on - AFIPS ’63 (Spring), 1963, p. 299.es_CO
    dc.relation.referencesA. A. Tseng, S. P. olluri, and P. Radhakrishnan, “A C C machining system for education,” J. Manuf. Syst., vol. 8, no. 3, pp. 207–214, Jan. 1989.es_CO
    dc.relation.referencesX. Xu, Integrating Advanced Computer-Aided Design, Manufacturing, and Numerical Control. IGI Global, 2009.es_CO
    dc.relation.referencesD. LE ATIU , M. T EILER, . DRA OS, and . SMARSLY, “A Categorical Approach Towards Metamodeling Cyber-physical Systems,” in Structural Health Monitoring 2017, 2017es_CO
    dc.relation.referencesT. Fitz, M. Theiler, and . Smarsly, “A metamodel for cyber-physical systems,” Adv. Eng. Informatics, vol. 41, p. 100930, Aug. 2019.es_CO
    dc.relation.referencesJ. Wan, “Advances in Cyber-Physical Systems Research,” KSII Trans. Internet Inf. Syst., vol. 5, no. 11, 2011.es_CO
    dc.relation.referencesJ. Shi, J. Wan, H. Yan, and . Suo, “A survey of Cyber-Physical Systems,” in 2011 International Conference on Wireless Communications and Signal Processing (WCSP), 2011, pp. 1–6.es_CO
    dc.relation.referencesJ. Lee, B. Bagheri, and H.-A. ao, “A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems,” Manuf. Lett., vol. 3, pp. 18–23, Jan. 2015.es_CO
    dc.relation.referencesE. Rodriguez and A. J. Alvares, “A STEP-NC implementation approach for additive manufacturing,” Procedia Manuf., vol. 1, no. 1, pp. 1–8, 2019.es_CO
    dc.relation.referencesR. Bonnard, J.-Y. Hascoët, P. Mognol, and I. Stroud, “STEP-NC digital thread for additive manufacturing: data model, implementation and validation,” Int. J. Comput. Integr. Manuf., vol. 31, no. 11, pp. 1141–1160, Nov. 2018.es_CO
    dc.relation.referencesS. LLC, “Senvol database,” Acesado: 17/02/2018, 2018. [Online]. Available: http://senvol.com/database/es_CO
    dc.relation.referencesS. egi, S. Dhiman, and R. . Sharma, “Basics, Applications and Future of Additive Manufacturing Technologies: a Review,” J. Manuf. Technol. Res., vol. 5, no. 1–2, pp. 75– 96, 2016es_CO
    dc.relation.referencesI. / ASTM52900-15, “Standard Terminology for Additive Manufacturing – General Principles – Terminology,” ASTM Int., 2015es_CO
    dc.relation.referencesS. S. Crump and I. Stratasys, “APPARATUS A D MET OD FOR CREATI THREE-DIME SIO AL OBJECTS,” no. 19, 19 9.es_CO
    dc.relation.referencesK. S. Boparai, R. Singh, and H. Singh, “Development of rapid tooling using fused deposition modeling: a review,” Rapid Prototyp. J., vol. 22, no. 2, pp. 281–299, 2016.es_CO
    dc.relation.referencesO. A. Mohamed, S. . Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv. Manuf., vol. 3, no. 1, pp. 42–53, 2015.es_CO
    dc.relation.referencesS. Kondoh, T. Tateno, Y. Kishita, H. Komoto, and S. Fukushige, “The Potential} of {Additive} {Manufacturing} {Technology} for {Realizing} a {Sustainable} {Society},” in Sustainability {Through} {Innovation} in {Product} {Life} {Cycle} {Design}, M. Matsumoto, K. Masui, S. Fukushige, and S. Kondoh, Eds. Springer Singapore, 2017, pp. 475–486.es_CO
    dc.relation.referencesE. Rodriguez, A. J. Alvares, and C. I. Jaimes, “Conceptual design and dimensional optimization of the linear delta robot with single legs for additive manufacturing,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., p. 095965181983691, Mar. 2019.es_CO
    dc.relation.referencesE. de J. Cortés Torres, E. Rodriguez, C. I. Riano Jaimes, R. Bonnard, and C. A. Peña Cortés, “Enfoque sobre o Desenvolvimento de um Robô com Arquitetura Paralela 5R para Manufatura Aditiva,” in Anais do IX Congresso Brasileiro de Engenharia de Fabricação, 2017es_CO
    dc.relation.referencesJ. P. Rodriguez, C. Pena, and E. Rodriguez, “Atlas codeSender: a Graphical User Interface for Control of a Robotics Additive Manufacturing Platform,” in 2018 IEEE International Conference on Mechatronics and Automation (ICMA), 2018, pp. 671–676.es_CO
    dc.relation.referencesS. Atluru, S. . uang, and J. P. Snyder, “A smart machine supervisory system framework,” Int. J. Adv. Manuf. Technol., vol. 58, no. 5–8, pp. 563–572, Jan. 2012.es_CO
    dc.relation.referencesB. Edrington, B. Zhao, A. Hansel, M. Mori, and M. Fujishima, “Machine Monitoring System Based on MTConnect Technology,” Procedia CIRP, vol. 22, pp. 92–97, 2014.es_CO
    dc.relation.referencesS. Chen, C. Yin, and X. Li, “Implementation of MTConnect in Machine Monitoring System for C Cs,” in 2017 5th International Conference on Enterprise Systems (ES), 2017, pp. 70–75.es_CO
    dc.relation.references. Chen, Y. Yin, and Z. Yin, “Energy consumption monitoring system design of workshop processing equipment based on MTConnect,” Proc. - 2017 2nd Int. Conf. Inf. Syst. Eng. ICISE 2017, vol. 2017–Janua, pp. 64–68, 2017es_CO
    dc.relation.referencesY. Xiao, Q. Liu, J. Wang, P. Sun, and Q. Liu, “Design and application of energy consumption acquisition system based on MtConnect,” Proc. 2018 IEEE Int. Conf. Mechatronics Autom. ICMA 2018, pp. 1376–1381, 2018.es_CO
    dc.relation.referencesC. Deng, R. uo, C. Liu, R. Y. Zhong, and X. Xu, “Data cleansing for energy-saving: a case of Cyber-Physical Machine Tools health monitoring system,” Int. J. Prod. Res., vol. 56, no. 1–2, pp. 1000–1015, 2018.es_CO
    dc.relation.referencesISO10303-2 , “Industrial automation systems and integration -- Product data representation and exchange -- Part 238: Application protocol: Application interpreted model for computerized numerical controllers,” 2007.es_CO
    dc.relation.referencesISO 14649-1, “Industrial automation systems and integration - Physical device control - Data model for computerized numerical controllers - Part 1: Overview and fundamental principles.,” 200 .es_CO
    dc.relation.referencesS. J. Shin, J. Woo, D. B. im, S. umaraguru, and S. Rachuri, “Developing a virtual machining model to generate MTConnect machine-monitoring data from STEP- C,” Int. J. Prod. Res., vol. 54, no. 15, pp. 4487–4505, 2016.es_CO
    dc.relation.referencesD. Lechevalier, S. J. Shin, S. Rachuri, S. Foufou, Y. T. Lee, and A. Bouras, “Simulating a virtual machining model in an agent-based model for advanced analytics,” J. Intell. Manuf., vol. 30, no. 4, pp. 1937–1955, 2019.es_CO
    dc.relation.referencesS. Tools, “Digital Thread for Manufacturing,” Available from https//www.steptools.com/sln/thread/, vol. Consulted:, 2018.es_CO
    dc.relation.referencesA. José Álvares, L. E. S. de Oliveira, and J. C. E. Ferreira, “Development of a Cyber- 59 Physical framework for monitoring and teleoperation of a CNC lathe based on MTconnect and OPC protocols,” Int. J. Comput. Integr. Manuf., vol. 31, no. 11, pp. 1049–1066, 2018.es_CO
    dc.relation.referencesMtc. Institute and Makerbot, “makerbot agent,” Available on: https://github.com/mtconnect/makerbot_agent, 2015.es_CO
    dc.relation.referencesX. F. Liu and M. Cheng, “IMPLEME TATIO OF MTCO ECT FOR OPE SOURCE 3D PRI TERS I ,” in Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2016, 2017, pp. 1–10.es_CO
    dc.relation.referencesX. F. Liu, M. R. Shahriar, S. M. N. Al Sunny, M. C. Leu, and L. u, “Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed,” J. Manuf. Syst., vol. 43, pp. 352–364, 2017.es_CO
    dc.relation.referencesL. Hu et al., “Modeling of Cloud-Based Digital Twins for Smart Manufacturing with MT Connect,” Procedia Manuf., vol. 26, pp. 1193–1203, 2018.es_CO
    dc.relation.referencesStratasys, “Stratasys’ Introduces ew F900 Production D Printer with MTConnect Interface, Last access 14 12 201 ,” 201 . .es_CO
    dc.relation.referencesY. Akao, Quality Function Deployment: Integrating Customer Requirements Into Product Design, 1st ed. Taylor & Francis, 2004.es_CO
    dc.relation.referencesC. G. Sørensen, R. N. Jørgensen, J. Maagaard, K. K. Bertelsen, L. Dalgaard, and M. ørremark, “Conceptual and user-centric design guidelines for a plant nursing robot,” Biosyst. Eng., vol. 105, no. 1, pp. 119–129, Jan. 2010es_CO
    dc.relation.referencesS. Pertuz, C. Pena, and C. Riano, “RoboTender,” in 2014 III International Congress of Engineering Mechatronics and Automation (CIIMA), 2014, pp. 1–5.es_CO
    dc.relation.referencesX. F. Liu, “Software quality function deployment,” IEEE Potentials, vol. 19, no. 5, pp. 14–16, 2001.es_CO
    dc.relation.referencesZ. Sener and E. E. Karsak, “A decision model for setting target levels in software quality function deployment to respond to rapidly changing customer needs,” Concurr. Eng., vol. 20, no. 1, pp. 19–29, Mar. 2012.es_CO
    dc.relation.referencesL. Scalvenzi and P. A. Cauchick Miguel, “QFD aplicado ao desenvolvimento de software: priorização de requisitos do cliente em uma matriz de funções,” Exacta, vol. 14, no. 4, pp. 677–692, Dec. 2016.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Electrónica

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Rodríguez_2019_TG.pdfRodríguez_2019_TG2,61 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.