Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5132
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Aramendiz Joiro, Brenin Eduardo. | - |
dc.date.accessioned | 2022-12-05T19:31:28Z | - |
dc.date.available | 2019-06-22 | - |
dc.date.available | 2022-12-05T19:31:28Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Aramendiz Joiro, B. E. (2019). Dimensionamiento y simulación de una torre de absorción empacada en contracorriente para separación de co2 derivado de efluentes gaseosos industriales [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5132 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5132 | - |
dc.description | Actualmente el diseño de procesos y productos se centra no solamente en consideraciones de tipo económica sino también ambiental, originando una constelación de investigaciones que estudian con detalle los métodos de separación en la industria química que terminen por generar el mínimo impacto negativo posible al medio ambiente. Unos de estos temas centrales es la mitigación del dióxido de carbono (CO2) de los efluentes gaseosos industriales, como resultado de los procesos de combustión continua de combustibles fósiles, tales como el carbón, el petróleo y los gases naturales, que han causado el deterioro de la capa de ozono. Es por ello, que he focalizado todo mi tesón en investigar y sublevar la operación unitaria de absorción como proceso para la captura de CO2 mediante sistemas de lavado a base de líquidos iónicos y de esta manera proporcionar uno de los primeros materiales intelectuales sobre el dimensionamiento, diseño hidráulico y simulación de torres contactoras empacadas, que sean selectivas para la absorción de este gas de efecto invernadero. Dada la poca existencia de estudios sobre las aplicaciones potenciales de líquidos iónicos para la captura de CO2, la información generada en este trabajo permitirá comprender los mecanismos difusionales de transferencia de masa, el estudio hidrodinámico de columnas absorbedoras, la selección de empaques y el efecto de los flujos de las fases involucradas sobre la caída de presión en la eficiencia global de la absorción de CO2 con solventes basados en líquidos iónicos, a tal punto, que en el futuro, se contribuya de manera significativa a la búsqueda de alternativas medioambientales que minimicen los niveles de concentración de CO2 emitidos a la atmósfera derivada de las actividades humanas en el desarrollo de diversos procesos industriales. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 87 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Dimensionamiento y simulación de una torre de absorción empacada en contracorriente para separación de co2 derivado de efluentes gaseosos industriales. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2019-03-22 | - |
dc.relation.references | Aboudheir, A., Tontiwachwuthikul, P., & Idem, R. (2007). Applications of new absorption kinetics and vapor/liquid Equilibrium models to simulation of a pilot plant for carbon dioxide absorption into high CO2-loaded, concentrated monoethanolamine solutions. Proceedings of the 7th International Conference and Exhibition on Chemistry in Industry (CHEMINDIX 2007), 26-28 March 2007, Bahrain, 1–5. | es_CO |
dc.relation.references | Abu-Zahra, M. R. M., Abbas, Z., Singh, P., & Feron, P. (2013). Carbon Dioxide Post-Combustion Capture : Solvent Technologies Overview, Status and Future Directions. Materials and Processes for Energy: Communicating Current Research and Technological Developments, 923–934. | es_CO |
dc.relation.references | Aprilia J. (2011). Packed Hydraulic (Engineering Design Guideline) – KLM Technology Group (pp. 1-57). https: www.klmtechgroup.com | es_CO |
dc.relation.references | Aroonwilas, A., & Tontiwachwuthikul, P. (1998). Mass Transfer Coefficients and Correlation for CO2 Absorption into 2-Amino-2-methyl-1-propanol (AMP) Using Structured Packing. Industrial & Engineering Chemistry Research, 37(2), 569–575. https://doi.org/10.1021/ie970482w | es_CO |
dc.relation.references | Aroonwilas, A., Tontiwachwuthikul, P., & Chakma, A. (2001). Effects of operating and design parameters on CO2 absorption in columns with structured packings. Separation and Purification Technology, 24(3), 403–411. https://doi.org/10.1016/S1383-5866(01)00140-X | es_CO |
dc.relation.references | Babamohammadi, S., Shamiri, A., & Aroua, M. K. (2015). A review of CO2 capture by absorption in ionic liquid-based solvents. Reviews in Chemical Engineering, 31(4), 383–412. https://doi.org/10.1515/revce-2014-0032 | es_CO |
dc.relation.references | Benítez, J. (2009). Principles and Modern Applications of Mass Transfer Operations (pp. 219-236). USA: John Wiley & Sons. | es_CO |
dc.relation.references | Billet, R., & Schultes, M. (1991). Modelling of pressure drop in packed columns. Chemical Engineering & Technology, 14(2), 89–95. https://doi.org/10.1002/ceat.270140203 | es_CO |
dc.relation.references | Billet, R. (1995). Packed Towers in Processing and Environmental Technology (pp. 1- 359). USA: Wiley VCH | es_CO |
dc.relation.references | Billet, R., & Schultes, M. (1999). PREDICTION OF MASS TRANSFER COLUMNS WITH Updated Summary of the Calculation Method of, 77(September). | es_CO |
dc.relation.references | Blomen, E., Hendriks, C., & Neele, F. (2009). Capture technologies: Improvements and promising Dimensionamiento y simulación de una torre de absorción 75 developments. In Energy Procedia (Vol. 1, pp. 1505–1512). Elsevier. https://doi.org/10.1016/j.egypro.2009.01.197 | es_CO |
dc.relation.references | Bohringer, C. (2003). The Kyoto Protocol: A Review and Perspectives. Oxford Review of Economic Policy, 19(3), 451–466. https://doi.org/10.1093/oxrep/19.3.451 | es_CO |
dc.relation.references | Cadena, C., Anthony, J. L., Shah, J. K., Morrow, T. I., Brennecke, J. F., & Maginn, E. J. (2004). Why is CO2 so Soluble in Imidazolium-Based Ionic Liquids? Journal of the American Chemical Society, 126(16), 5300–5308. https://doi.org/10.1021/ja039615x | es_CO |
dc.relation.references | Chattopadhyay, P. (2007). Absorption, New Delhi: Asian Books Pvt. Ltd | es_CO |
dc.relation.references | deMontigny, D., Aboudheir, A., Tontiwachwuthikul, P., & Chakma, A. (2006). Modelling the Performance of a CO2 Absorber Containing Structured Packing. Industrial & Engineering Chemistry Research, 45(8), 2594–2600. https://doi.org/10.1021/ie050567u | es_CO |
dc.relation.references | Endres, F., & Zein El Abedin, S. (2006). Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 8(18), 2101. https://doi.org/10.1039/b600519p | es_CO |
dc.relation.references | Freire, M. G., Carvalho, P. J., Fernandes, A. M., Marrucho, I. M., Queimada, A. J., & Coutinho, J. A. P. (2007). Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect. Journal of Colloid and Interface Science, 314(2), 621–630. https://doi.org/10.1016/j.jcis.2007.06.003 | es_CO |
dc.relation.references | Green, D. W; Perry, R. H. (2008) Equipment for Distillation, Gas Absorption, Phase Dispersion, and Phase Separation;PERRY’S Chemical Engineers Handbook (pp. 1551-1679). EUA: McGraw-Hill. | es_CO |
dc.relation.references | Harris, K. R., Kanakubo, M., & Woolf, L. A. (2007). Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: Viscosity and density relationships in ionic liquids. Journal of Chemical and Engineering Data, 52(6), 2425–2430. https://doi.org/10.1021/je700370z | es_CO |
dc.relation.references | Henriques de Brito, M., Stockar, U. Von, Menendez Bartenger, A., Bomio, P., & Laso, M. (1994). Effective mass-transfer area in a pilot plant column equipped with structured packings and with ceramic rings. Industrial & Engineering Chemistry Research, 33(1987), 647–656. https://doi.org/10.1021/ie00027a023 | es_CO |
dc.relation.references | Heymes, F., Manno Demoustier, P., Charbit, F., Louis Fanlo, J., & Moulin, P. (2006). Hydrodynamics and mass transfer in a packed column: Case of toluene absorption with a viscous absorbent. Chemical Engineering Science, 61(15), 5094–5106. https://doi.org/10.1016/j.ces.2006.03.037 | es_CO |
dc.relation.references | Jayaraman, T. (2015). The Paris Agreement on Climate Change : Background , Analysis and Implicattions. Review of Agrarian Studies, 5(2), 42–59. http://ras .org.in/theparisagreementonclimatechange. | es_CO |
dc.relation.references | Kohl, A., & Nielsen, R. (1997). Gas Purification (pp. 1-186). USA: Gulf Publishing Company. Dimensionamiento y simulación de una torre de absorción 76 Lamprecht, S. M. (2010). Establishing a Facility to Measure Packed Column Hydrodynamics. (Master of Scencie in Engineering). Stellenbosch University, Stellenbosch, Sudáfrica. | es_CO |
dc.relation.references | Lamprecht, S. M. (2010). Establishing a Facility to Measure Packed Column Hydrodynamics. (Master of Scencie in Engineering). Stellenbosch University, Stellenbosch, Sudáfrica | es_CO |
dc.relation.references | Li, W., Zhao, X., Liu, B., & Tang, Z. (2014). Mass Transfer Coe ffi cients for CO2 Absorption into Aqueous Ammonia Using Structured Packing | es_CO |
dc.relation.references | Lin, C., & Chu, C. (2015). Mass transfer performance of rotating packed beds with blade packings in carbon dioxide absorption into sodium hydroxide solution. SEPARATION AND PURIFICATION TECHNOLOGY, 150, 196–203. https://doi.org/10.1016/j.seppur.2015.06.025 | es_CO |
dc.relation.references | Ma, T., Wang, J., Du, Z., Abdeltawab, A. A., Al-Enizi, A. M., Chen, X., & Yu, G. (2017). A process simulation study of CO2 capture by ionic liquids. International Journal of Greenhouse Gas Control, 58, 223–231. https://doi.org/10.1016/j.ijggc.2017.01.017 | es_CO |
dc.relation.references | McCabe, W; Smith, J., & Harriot, P. (2007). Operaciones Unitarias en Ingeniería Química (pp. 553-640). México: Mc Graw-Hill. | es_CO |
dc.relation.references | Maginn, E. J. (2005). Design and Evaluation of Ionic Liquids as Novel CO2 Absorbents. Report University of Notre Dame, 1–15. | es_CO |
dc.relation.references | Maxwell, J. A. (2013). Qualitative Research Design: An Interactive Approach (Applied Social Research Methods), 4453–4464. https://doi.org/10.1021/ie058003 | es_CO |
dc.relation.references | Onda, K., Takeuchi, H., & Okumoto, Y. (1968). Mass transfer coefficients between gas and liquid phases in packed columns. Journal of Chemical Engineering of Japan, 1(1), 56–62. https://doi.org/10.1252/jcej.1.56 | es_CO |
dc.relation.references | Seader, J. D. (2011). Absorption and Stripping of Dilute Mixtures., Separations Process Principles: Chemical and Biochemical Operations (pp. 206-252). EUA: John Wiley & Sons Ltd | es_CO |
dc.relation.references | Shiflett, M. B., & Yokozeki, A. (2005). Solubilities and Difusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4]. Ind. Eng. Chem, 44(12), 4453–4464. https://doi.org/10.1021/ie058003d | es_CO |
dc.relation.references | Towler, G; Sinnott, R. K. (2008). Separation Columns (Distillation, Absorption, and Extraction)., Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design (pp. 642- 789). USA: Elsevier. | es_CO |
dc.relation.references | Treybal, R. E. (1988). Equipo para las Operaciones Gas-Líquido., Operaciones de Transferencia de Masa (pp. 210-243). México: Mc Graw-Hill. | es_CO |
dc.relation.references | Valderrama, J. O., Sanga, W. W., & Lazzús, J. A. (2008). Critical properties, normal boiling temperatures and acentric factors of another 200 ionic liquids. Ind. Eng. Chem. Res., 47, 1318–1330 | es_CO |
dc.relation.references | Wang, G. Q., Yuan, X. G., & Yu, K. T. (2005). Review of mass-transfer correlations for packed columns. Industrial and Engineering Chemistry Research, 44(23), 8715–8729. https://doi.org/10.1021/ie050017w | es_CO |
dc.relation.references | Wu, X., Yu, Y., Qin, Z., & Zhang, Z. (2014). The advances of post-combustion CO2 capture with chemical solvents: Review and guidelines. In Energy Procedia (Vol. 63, pp. 1339–1346). Elsevier B.V. https://doi.org/10.1016/j.egypro.2014.11.143 | es_CO |
dc.relation.references | Yang, W., Yu, X., Mi, J., Wang, W., & Chen, J. (2015). Mass transfer performance of structured packings in a CO2 absorption tower. Chinese Journal of Chemical Engineering, 23(1), 42–49. https://doi.org/10.1016/j.cjche.2014.10.003 | es_CO |
dc.relation.references | Zhang, L.-L., Wang, J.-X., Xiang, Y., Zeng, X.-F., & Chen, J.-F. (2011). Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial & Engineering Chemistry Research, 50(11), 6957–6964. https://doi.org/10.1021/ie1025979 | es_CO |
dc.relation.references | Ziobrowski, Z., Krupiczka, R., & Rotkegel, A. (2016). Carbon dioxide absorption in a packed column using imidazolium based ionic liquids and MEA solution. International Journal of Greenhouse Gas Control, 47, 8–16. https://doi.org/10.1016/j.ijggc.2016.01.018 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Aramendiz_2019_TG.pdf | Aramendiz_2019_TG | 1,41 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.