• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5090
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorFlórez González, Oscar Ramiro.-
    dc.date.accessioned2022-12-02T22:20:54Z-
    dc.date.available2018-09-18-
    dc.date.available2022-12-02T22:20:54Z-
    dc.date.issued2018-
    dc.identifier.citationFlórez González, O. R. (2018). Predicción del equilibrio líquido-líquido de mezclas ternarias de hidrocarburos y líquidos iónicos con un método termodinámico [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5090es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5090-
    dc.descriptionSe realizó la determinación de los parámetros de interacción de grupo para los pares CH2/SO4, ArCH/SO4, CYCH/SO4, Imid/SO4 con el modelo de contribución de grupos ASOG y los parámetros de interacción binaria de los modelos de composición local UNIQUAC y NRTL, a partir de datos de equilibrio liquido-liquido de la literatura de 26 sistemas ternarios de mezclas de hidrocarburos aromáticos (Tolueno, Benceno), hidrocarburos alifáticos (Hexano, Heptano, Octano y Nonano) , hidrocarburos alifáticos cíclicos (Ciclo hexano, Cicloctano y metil-ciclohexano) y los liquidos iónicos ([Emim][EtSO4] y [Bmim][MSO4]) para el cálculo de los coeficientes de actividad. Para el modelo ASOG se estimaron los parámetros mediante el ajuste de 217 líneas de reparto usando un algoritmo desarrollado en el lenguaje de programación del software libre OCTAVE 4.2.1, la comparación de datos de literatura y calculados con este modelo obtuvo una desviación absoluta media cuadrática rms (por sus siglas en ingles) de 0,51±0,28%. Se desarrolló un algoritmo para la estimación de los parámetros de interacción binaria mediante la herramienta computacional m OCTAVE, los datos ajustados con este software presentan una rms de 0,15± 0,13, 0,11±0,08 % para los modelos NRTL y UNIQUAC respectivamente. También se determinaron los parámetros con el simulador de procesos ASPEN PLUS, encontrando que los datos presentan una desviación de 0,96±0,5%y 0,71±0,47 % para NRTL y UNIQUAC respectivamente.es_CO
    dc.description.abstractThe group interaction parameters were determined for the pairs CH2 / SO4, ArCH / SO4, CYCH / SO4, Imid / SO4 with the model group contribution ASOG, and the binary interaction parameters of the local composition models UNIQUAC and NRTL from liquid-liquid equilibrium literature data of 26 ternary mixture systems: aromatic hydrocarbons (Toluene, Benzene), aliphatic hydrocarbons (Hexane, Heptane, Octane and Nonane), cyclic aliphatic hydrocarbons (cycloHexane cyclooctane and methyl-cyclohexane) and the ionic liquids ([Emim] [EtSO4] and [Bmim] [MSO4]). For the ASOG model the parameters were estimated by adjusting 217 distribution lines using an algorithm developed in the programming language m-OCTAVE, the comparison of literature and calculated data with this model obtained a root mean square (rms) of 0.51 ± 0.28%. An algorithm was developed for the estimation of the binary interaction parameters by means of the m-OCTAVE computational tool; the data adjusted with this software have a rms of 0,15± 0,13, 0,11±0,08 for the NRTL and UNIQUAC models, respectively. The parameters were also determined with the ASPEN PLUS process simulator; it was found that the data presented a deviation rms of 0.96 ± 0.5% and 0.71 ± 0.47% for NRTL and UNIQUAC, respectively.es_CO
    dc.format.extent59es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectLíquidos iónicos.es_CO
    dc.subjectParámetros binarios.es_CO
    dc.subjectUNIQUAC.es_CO
    dc.subjectNRTL.es_CO
    dc.subjectASOG.es_CO
    dc.subjectTernarios.es_CO
    dc.subjectCoeficientes de actividad.es_CO
    dc.titlePredicción del equilibrio líquido-líquido de mezclas ternarias de hidrocarburos y líquidos iónicos con un método termodinámico.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2018-06-18-
    dc.relation.referencesR. L. Vekariya, ―A review of ionic liquids: Applications towards catalytic organic transformations,‖ J. Mol. Liq., vol. 227, pp. 44–60, 2017.es_CO
    dc.relation.referencesK. N. Marsh, J. Boxall, and R. Lichtenthaler, ―Room temperature ionic liquids and their mixtures—a review,‖ Fluid Phase Equilib., vol. 219, no. 1, pp. 93–98, 2004.es_CO
    dc.relation.referencesJuergen-gmehling, ―Thermodynamic Models.‖ [Online]. Available: http://www.uni oldenburg.de/juergen-gmehling/research/thermodynamics-models/. [Accessed: 18-Feb 2018].es_CO
    dc.relation.referencesG. Wytze Meindersma, A. Podt, and A. B. de Haan, ―Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures,‖ Fuel Process. Technol., vol. 87, no. 1, pp. 59–70, 2005.es_CO
    dc.relation.referencesG. W. Meindersma and A. B. de Haan, ―Conceptual process design for aromatic/aliphatic separation with ionic liquids,‖ Chem. Eng. Res. Des., vol. 745–752, no. 7, 2008.es_CO
    dc.relation.referencesJ. H. Gary, G. E. Handwerk, and M. J. Kaiser, Petroleum refining: technology and economics. CRC press, 2007es_CO
    dc.relation.referencesM. Larriba, P. Navarro, J. García, and F. Rodríguez, ―Liquid–liquid extraction of toluene from n-heptane by {[emim][TCM] + [emim][DCA]} binary ionic liquid mixtures,‖ Fluid Phase Equilib., vol. 364, pp. 48–54, Feb. 2014.es_CO
    dc.relation.referencesS. H. Ali, H. M. S. Lababidi, S. Q. Merchant, and M. A. Fahim, ―Extraction of aromatics from naphtha reformate using propylene carbonate,‖ Fluid Phase Equilib., vol. 214, no. 1, pp. 25–38, 2003es_CO
    dc.relation.referencesU. Domańska, A. Pobudkowska, and M. Królikowski, ―Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C2NTf2 at T = 298.15 K,‖ Fluid Phase Equilib., vol. 259, no. 2, pp. 173–179, Oct. 2007.es_CO
    dc.relation.referencesS. K. Shukla, S. Pandey, and S. Pandey, ―Applications of ionic liquids in biphasic separation: Aqueous biphasic systems and liquid–liquid equilibria,‖ J. Chromatogr. A, 2017.es_CO
    dc.relation.referencesM. D. Martinez Reina, E. Amado González, and Y. M. Muñoz, ―Study of Liquid-Liquid Equilibria of Toluene + (Hexane, Heptane, or Cyclohexane) with 1-Ethyl-3- methylimidazolium Ethylsulfate at 308.15 K,‖ Bull. Chem. Soc. Jpn., vol. 85, no. 10, pp. 1138–1144, 2012.es_CO
    dc.relation.referencesI. Domínguez, N. Calvar, E. Gómez, and Á. Domínguez, ―Separation of toluene from cyclic hydrocarbons using 1-butyl-3-methylimidazolium methylsulfate ionic liquid at T = 298.15 K and atmospheric pressure,‖ J. Chem. Thermodyn., vol. 43, no. 5, pp. 705–710, May 2011.es_CO
    dc.relation.referencesE. J. González, N. Calvar, I. Domínguez, and Á. Domínguez, ―Extraction of toluene from aliphatic compounds using an ionic liquid as solvent: Influence of the alkane on the (liquid + liquid) equilibrium,‖ J. Chem. Thermodyn., vol. 43, no. 4, pp. 562–568, Apr. 2011.es_CO
    dc.relation.referencesP. A. Robles Vásquez, ―Modelado del equilibrio líquido-líquido de sistemas que contienen líquidos iónicos usando el método ASOG,‖ Universidad de antofagasta, 2012.es_CO
    dc.relation.referencesP. A. Robles, J. W. Morales, and L. A. Cisternas, ―Modeling of liquid-liquid equilibrium for binary and ternary systems containing ionic liquids with the hexafluorophosphate anion using the ASOG method,‖ Fluid Phase Equilib., vol. 429, pp. 119–126, 2016.es_CO
    dc.relation.referencesP. A. Robles and L. A. Cisternas, ―Prediction of ( liquid + liquid ) equilibrium for binary and ternary systems containing ionic liquids with the bis [( trifluoromethyl ) sulfonyl ] imide anion using the ASOG method,‖ J. Chem. Thermodyn., vol. 90, pp. 1–7, 2015es_CO
    dc.relation.referencesL. D. Simoni, Y. Lin, J. F. Brennecke, and M. A. Stadtherr, ―Modeling liquid− liquid equilibrium of ionic liquid systems with NRTL, Electrolyte-NRTL, and UNIQUAC,‖ Ind. Eng. Chem. Res., vol. 47, no. 1, pp. 256–272, 2008.es_CO
    dc.relation.references―Scopus,‖ 2018. [Online]. Available: www.scopus.com. [Accessed: 20-Feb-2018].es_CO
    dc.relation.referencesS. L. I. Toh, J. McFarlane, C. Tsouris, D. W. DePaoli, H. Luo, and S. Dai, ―Room‐ Temperature Ionic Liquids in Liquid–Liquid Extraction: Effects of Solubility in Aqueous Solutions on Surface Properties,‖ Solvent Extr. Ion Exch., vol. 24, no. 1, pp. 33–56, Mar. 2006.es_CO
    dc.relation.referencesJ. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, and R. D. Rogers, ―Room temperature ionic liquids as novel media for ‗clean‘ liquid-liquid extraction,‖ Chem. Commun., no. 16, pp. 1765–1766, 1998.es_CO
    dc.relation.referencesT. Welton, ―Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,‖ Chem. Rev., vol. 99, no. 8, pp. 2071–2084, Aug. 1999.es_CO
    dc.relation.referencesG. W. Meindersma, A. J. G. Podt, and A. B. de Haan, ―Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures,‖ Fuel Process. Technol., vol. 87, no. 1, pp. 59–70, 2005es_CO
    dc.relation.referencesG. W. Meindersma and A. B. de Haan, ―Conceptual process design for aromatic/aliphatic separation with ionic liquids,‖ Chem. Eng. Res. Des., vol. 86, no. 7, pp. 745–752, 2008.es_CO
    dc.relation.referencesP. D. Robert A. Meyers, ―UOP SULFOLANE PROCESS,‖ Handbook of Petroleum Refining Processes, Fourth Edition. McGraw Hill Professional, Access Engineering, 2016.es_CO
    dc.relation.referencesJ. P. G. Villaluenga and A. Tabe-Mohammadi, ―A review on the separation of benzene/cyclohexane mixtures by pervaporation processes,‖ J. Memb. Sci., vol. 169, no. 2, pp. 159–174, 2000es_CO
    dc.relation.referencesH. C. V. N. J. M. Smith M. M.Abbott and M. M.Abbott, ―Introducción a la termodinámica en ingeniería química.‖ México: McGrawHill, 2007.es_CO
    dc.relation.referencesG. M. Wilson, ―Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing,‖ J. Am. Chem. Soc., vol. 86, no. 2, pp. 127–130, Jan. 1964.es_CO
    dc.relation.referencesH. Renon and J. M. Prausnitz, ―Local compositions in thermodynamic excess functions for liquid mixtures,‖ AIChE J., vol. 14, no. 1, pp. 135–144, Jan. 1968.es_CO
    dc.relation.referencesA. Fredenslund, R. L. Jones, and J. M. Prausnitz, ―Group‐ contribution estimation of activity coefficients in nonideal liquid mixtures,‖ AIChE J., vol. 21, no. 6, pp. 1086–1099, 1975.es_CO
    dc.relation.referencesK. Tochigi and K. Kojima, ―Prediction of liquid-liquid equilibria by an analytycal solutions of group,‖ J. Chem. Eng. JAPAN, vol. 10, no. 1, pp. 61–63, 1977es_CO
    dc.relation.referencesD. S. Abrams and J. M. Prausnitz, ―Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems,‖ AIChE J., vol. 21, no. 1, pp. 116–128, 1975.es_CO
    dc.relation.referencesJ. J. Scheepers, ―Influence of temperature and intermolecular forces on volatile organic compounds-ester interactions,‖ University of Johannesburg, 2014.es_CO
    dc.relation.referencesZ. Li, K. H. Smith, K. A. Mumford, Y. Wang, and G. W. Stevens, ―Regression of NRTL parameters from ternary liquid–liquid equilibria using particle swarm optimization and 56 discussions,‖ Fluid Phase Equilib., vol. 398, pp. 36–45, 2015.es_CO
    dc.relation.referencesR. S. Santiago, G. R. Santos, and M. Aznar, ―UNIQUAC correlation of liquid–liquid equilibrium in systems involving ionic liquids: The DFT–PCM approach. Part II,‖ Fluid Phase Equilib., vol. 293, no. 1, pp. 66–72, 2010.es_CO
    dc.relation.referencesR. S. Santiago, G. R. Santos, and M. Aznar, ―UNIQUAC correlation of liquid – liquid equilibrium in systems involving ionic liquids : The DFT – PCM approach,‖ Fluid Phase Equilib., vol. 278, pp. 54–61, 2009.es_CO
    dc.relation.referencesJ. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Termodinámica molecular de los equilibrios de fases, 3rd ed. Madrid: Prentice Hall, 2000.es_CO
    dc.relation.referencesD. Constantinescu and J. Gmehling, ―The UNIFAC Consortitium Dortmund Data Bank Software & Separation Technology.‖es_CO
    dc.relation.referencesJ. Gmehling, ―Present status and potential of group contribution methods for process development,‖ J. Chem. Thermodyn., vol. 41, no. 6, pp. 731–747, 2009.es_CO
    dc.relation.referencesK. Tochigi, M. Hiraga, and K. Kojima, ―Prediction of Liquid-Liquid Equilibria for Ternary Systems by the ASOG Method,‖ J. Chem. Eng. Japan, vol. 13, no. 2, pp. 159–162, 1980.es_CO
    dc.relation.referencesR. Treybal, Operaciones con transferencia de masa. Mc Graw-Hill, Mexico, 1978.es_CO
    dc.relation.referencesW. L. McCabe, Operaciones Unitarias en Ingenieria Quìmica. Mexico: Mc Graw Hill, 2007.es_CO
    dc.relation.referencesF. M. Khoury, Multistage separation processes. CRC Press, 2004.es_CO
    dc.relation.referencesK. I. M. Al-Malah, Aspen Plus: Chemical Engineering Applications. John Wiley & Sons, 2016.es_CO
    dc.relation.referencesS. I. Sandler, Using Aspen Plus in thermodynamics instruction: a step-by-step guide. John Wiley & Sons, 2015.es_CO
    dc.relation.referencesU. Domańska, A. Wiśniewska, Z. Dąbrowski, and M. Więckowski, ―Evaluation and correlation of separation heptane/ethanol with ionic liquids. Ternary liquid-liquid phase equilibrium data,‖ J. Mol. Liq., vol. 255, pp. 504–512, 2018.es_CO
    dc.relation.referencesM. Karpińska, M. Wlazło, and U. Domańska, ―Investigation on the ethylbenzene/styrene separation efficiency with ionic liquids in liquid–liquid extraction,‖ Chem. Eng. Res. Des., vol. 128, pp. 214–220, 2017es_CO
    dc.relation.referencesA. Cháfer, J. de la Torre, J. B. Montón, and E. Lladosa, ―Experimental Determination and Correlation of Liquid–Liquid Equilibria Data for a System of Water + Ethanol + 1-Butyl-3- methylimidazolium Hexafluorophosphate at Different Temperatures,‖ J. Chem. Eng. Data, vol. 62, no. 2, pp. 773–779, 2017.es_CO
    dc.relation.referencesA. Cháfer, J. de la Torre, M. P. Cumplido, and J. B. Monton, ―Measurement and correlation of liquid-liquid equilibria at different temperatures in water + 1-propanol + 1-ethyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ternary systems,‖ Fluid Phase Equilib., vol. 429, pp. 76– 83, 2016es_CO
    dc.relation.referencesA. R. Ferreira, M. G. Freire, J. C. Ribeiro, F. M. Lopes, J. G. Crespo, and J. A. P. Coutinho, ―Overview of the liquid–liquid equilibria of ternary systems composed of ionic liquid and aromatic and aliphatic hydrocarbons, and their modeling by COSMO-RS,‖ Ind. Eng. Chem. Res., vol. 51, no. 8, pp. 3483–3507, 2012.es_CO
    dc.relation.referencesY. Zhou et al., ―Separation of thioglycolic acid from its aqueous solution by ionic liquids: Ionic liquids selection by the COSMO-SAC model and liquid-liquid phase equilibrium,‖ J. Chem. Thermodyn., vol. 118, pp. 263–273, 2018.es_CO
    dc.relation.referencesB. Tamal, V. K. Kishore, and K. Ashok, ―Liquid–liquid equilibrium for ionic liquid systems using COSMO‐ RS: Effect of cation and anion dissociation,‖ AIChE J., vol. 54, no. 7, pp. 1874–1885, Apr. 2008es_CO
    dc.relation.referencesM. G. Freire, L. M. N. B. F. Santos, I. M. Marrucho, and J. A. P. Coutinho, ―Evaluation of COSMO-RS for the prediction of LLE and VLE of alcohols+ionic liquids,‖ Fluid Phase Equilib., vol. 255, no. 2, pp. 167–178, 2007.es_CO
    dc.relation.referencesU. Domańska, M. Karpińska, and M. Wlazło, ―Bis (trifluoromethylsulfonyl) imide, or dicyanamide-based ionic liquids in the liquid–liquid extraction of hex-1-ene from hexane and cyclohexene from cyclohexane,‖ J. Chem. Thermodyn., vol. 105, pp. 375–384, 2017.es_CO
    dc.relation.referencesM. Wlazło, E. I. Alevizou, E. C. Voutsas, and U. Domańska, ―Prediction of ionic liquids phase equilibrium with the COSMO-RS model,‖ Fluid Phase Equilib., vol. 424, pp. 16–31, 2016.es_CO
    dc.relation.referencesI. Domínguez, E. J. González, and Á. Domínguez, ―Liquid extraction of aromatic / cyclic aliphatic hydrocarbon mixtures using ionic liquids as solvent : Literature review and new 58 experimental LLE data,‖ Fuel Process. Technol., vol. 125, pp. 207–216, 2014.es_CO
    dc.relation.referencesM. Martínez Reina, E. Amado González, and Y. M. Muñoz Muñoz, ―Estudio del equilibrio líquido-líquido de benceno+(hexano, heptano y ciclohexano) con el líquido iónico 1-etil-3- metilimidazolio etilsulfato a 308, 15 k,‖ Rev. Colomb. Química, vol. 41, no. 1, pp. 89–107, 2012es_CO
    dc.relation.referencesE. Amado Gonzalez and M. D. Martinez Reina, Equilibrio de fases de mezclas de hidrocarburos y líquidos iónicos de imidazolio. Universidad de Pamplona, 2014.es_CO
    dc.relation.referencesE. J. González, N. Calvar, B. González, and Á. Domínguez, ―Liquid Extraction of Benzene from Its Mixtures Using 1-Ethyl-3-methylimidazolium Ethylsulfate as a Solvent,‖ J. Chem. Eng. Data, vol. 55, no. 11, pp. 4931–4936, Nov. 2010.es_CO
    dc.relation.referencesE. J. González, N. Calvar, E. Gómez, and Á. Domínguez, ―Separation of Benzene from Linear Alkanes (C6−C9) Using 1-Ethyl-3-Methylimidazolium Ethylsulfate at T = 298.15 K,‖ J. Chem. Eng. Data, vol. 55, no. 9, pp. 3422–3427, Sep. 2010.es_CO
    dc.relation.referencesJ. García, A. Fernández, J. S. Torrecilla, M. Oliet, and F. Rodríguez, ―Liquid–liquid equilibria for {hexane+benzene+1-ethyl-3-methylimidazolium ethylsulfate} at (298.2, 313.2 and 328.2)K,‖ Fluid Phase Equilib., vol. 282, no. 2, pp. 117–120, 2009.es_CO
    dc.relation.referencesJ. García, A. Fernández, J. S. Torrecilla, M. Oliet, and F. Rodríguez, ―Ternary Liquid−Liquid Equilibria Measurement for Hexane and Benzene with the Ionic Liquid 1- Butyl-3-methylimidazolium Methylsulfate at T = (298.2, 313.2, and 328.2) K,‖ J. Chem. Eng. Data, vol. 55, no. 1, pp. 258–261, Jan. 2010.es_CO
    dc.relation.referencesM. Larriba, P. Navarro, J. García, and F. Rodríguez, ―Liquid–liquid extraction of toluene from heptane using [emim][DCA],[bmim][DCA], and [emim][TCM] ionic liquids,‖ Ind. Eng. Chem. Res., vol. 52, no. 7, pp. 2714–2720, 2013es_CO
    dc.relation.referencesM. Karpińska, M. Wlazło, M. Zawadzki, and U. Domańska, ―Liquid-liquid separation of hexane/hex-1-ene and cyclohexane/cyclohexene by dicyanamide-based ionic liquids,‖ J. Chem. Thermodyn., vol. 116, no. Supplement C, pp. 299–308, 2018.es_CO
    dc.relation.referencesM. Aznar, ―Correlation of (liquid + liquid) equilibrium of systems including ionic liquids,‖ Brazilian J. Chem. Eng., vol. 24, pp. 143–149, 2007.es_CO
    dc.relation.referencesI. Domínguez, E. J. González, J. Palomar, and Á. Domínguez, ―Phase behavior of ternary 59 mixtures {aliphatic hydrocarbon + aromatic hydrocarbon + ionic liquid}: Experimental LLE data and their modeling by COSMO-RS,‖ J. Chem. Thermodyn., vol. 77, pp. 222–229, 2014.es_CO
    dc.relation.referencesF. J. Hernández-Fernández, A. P. de los Ríos, D. Gómez, M. Rubio, F. Tomás-Alonso, and G. Víllora, ―Ternary liquid–liquid equilibria for mixtures of an ionic liquid + n-hexane + an organic compound involved in the kinetic resolution of rac-1-phenyl ethanol (rac-1-phenyl ethanol, vinyl propionate, rac-1-phenylethyl propionate or propionic acid) at 298.2 ,‖ Fluid Phase Equilib., vol. 263, no. 2, pp. 190–198, 2008.es_CO
    dc.relation.referencesU. Domańska, K. Walczak, and M. Zawadzki, ―Separation of sulfur compounds from alkanes with 1-alkylcyanopyridinium-based ionic liquids,‖ J. Chem. Thermodyn., vol. 69, pp. 27–35, 2014.es_CO
    dc.relation.referencesA. Cháfer, J. de la Torre, A. Font, and E. Lladosa, ―Liquid–Liquid Equilibria of Water + Ethanol + 1-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Ternary System: Measurements and Correlation at Different Temperatures,‖ J. Chem. Eng. Data, vol. 60, no. 8, pp. 2426–2433, 2015.es_CO
    dc.relation.referencesA. Chafer, J. De la Torre, E. Lladosa, J. Pla-Franco, and M. P. Cumplido, ―Liquid–Liquid Equilibria of the Water + 1-Propanol + 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ternary System: Study of the Ability of Ionic Liquid as a Solvent,‖ J. Chem. Eng. Data, vol. 61, no. 12, pp. 4006–4012, 2016.es_CO
    dc.relation.referencesP. A. Robles Vásquez, T. A. Graber, and M. Aznar, ―Prediction of liquid – liquid equilibrium for ternary systems containing ionic liquids with the tetrafluoroborate anion using ASOG,‖ Fluid Phase Equilib., vol. 296, pp. 154–158, 2010.es_CO
    dc.relation.referencesP. A. Robles, T. A. Graber, and M. Aznar, ―Prediction by the ASOG method of liquid–liquid equilibrium for binary and ternary systems containing 1-alkyl-3-methylimidazolium hexafluorophosphate,‖ Fluid Phase Equilib., vol. 287, no. 1, pp. 43–49, 2009.es_CO
    dc.relation.referencesR. R. Pinto, ―Equilíbrio líquido-líquido em sistemas ternários com Líquidos Iônicos baseados no íon amônio, incluindo a síntese e purificação dos mesmos,‖ Universidade Estadual de Campinas, 2016.es_CO
    dc.relation.referencesZ. Lei, J. Zhang, Q. Li, and B. Chen, ―UNIFAC model for ionic liquids,‖ Ind. Eng. Chem. Res., vol. 48, no. 5, pp. 2697–2704, 2009.es_CO
    dc.relation.referencesG. W. Meindersma, A. J. G. Podt, and A. B. de Haan, ―Ternary liquid–liquid equilibria for 60 mixtures of toluene + n-heptane + an ionic liquid,‖ Fluid Phase Equilib., vol. 247, no. 1–2, pp. 158–168, 2006.es_CO
    dc.relation.referencesJ. de Riva, V. R. Ferro, D. Moreno, I. Diaz, and J. Palomar, ―Aspen Plus supported conceptual design of the aromatic–aliphatic separation from low aromatic content naphtha using 4-methyl-N-butylpyridinium tetrafluoroborate ionic liquid,‖ Fuel Process. Technol., vol. 146, pp. 29–38, 2016.es_CO
    dc.relation.referencesE. Gonzalez and M. Martínez - Reina, ―Equilibrio de fase en mezclas de hidrocarburos y liquidos ionicos de imidazolio,‖ Pamplona, 2014.es_CO
    dc.relation.referencesM. Martínez Reina, E. Amado González, and Y. M. Muñoz Muñoz, ―Estudio del equilibrio Líquido-líquido de Benceno +(Hexano. Heptano y ciclohexano) con el líquido iónico 1-Etil 3-metilimidazolio Etilsulfato a 308,15K,‖ Rev. Colomb. Química, vol. 41, no. 1, pp. 89–107, 2012.es_CO
    dc.relation.referencesOCTAVE-FORGE, ―Manual GNU Octave Version 4.2.1,‖ 2018. [Online]. Available: https://octave.sourceforge.io/octave/function/fminsearch.html. [Accessed: 18-Apr-2018].es_CO
    dc.relation.referencesMathorks, ―Documentacion fminsearch.‖ [Online]. Available: https://www.mathworks.com/help/matlab/ref/fminsearch.html?s_tid=srchtitle. [Accessed: 18-Apr-2018].es_CO
    dc.relation.referencesP. A. Robles, T. A. Graber, and M. Aznar, ―Predicción de Equilibrio Líquido-Líquido de Sistemas Binarios y Ternarios conteniendo Líquidos Iónicos usando el Método ASOG,‖ Universidad de Antofagasta, 2012.es_CO
    dc.relation.referencesJ. O. Valderrama and R. E. Rojas, ―Critical Properties of Ionic Liquids. Revisited,‖ Ind. Eng. Chem. Res., vol. 48, no. 14, pp. 6890–6900, Jul. 2009es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Flórez_2018_TG.pdfFlórez_2018_TG1,26 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.