Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5030
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Tovar Zapata, Aldair | - |
dc.date.accessioned | 2022-12-01T22:48:46Z | - |
dc.date.available | 2018-09-18 | - |
dc.date.available | 2022-12-01T22:48:46Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Tovar Zapata, A. (2018). Obtención de carbón activado a partir de cáscara de piñón (Pinus Patula) y evaluación en la remoción de Cromo (VI) en solución acuosa [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5030 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5030 | - |
dc.description | Se obtuvieron carbones activados (CAs) a partir de la cascara del piñón, por activación química con H3PO4; dos muestras, una original sintetizada de carbón activado (CASCN), y otra funcionalizada con celulosa (CACCN) se caracterizaron estudiando el comportamiento de ácido-base, teniendo una diferencia de 2,056 meq/g y 1,953 meq/g respectivamente, lo que demostró la presencia más sitios ácidos que básicos. El anterior resultado se comprobó con el punto (pH) de carga cero (pHPCC) que dio un valor aproximado de 2,5 para ambos casos. Se evaluaron, los dos adsorbentes en dos concentraciones de Cr, 100 ppm y 250 ppm en pH ácido (1) y pH básico (8). Los datos experimentales para determinar el área superficial se ajustaron a varios modelos de isotermas, siendo la de Freundlich la que mejor se ajustó; se determinaron áreas de 955 y 1485 m2 /g, respectivamente. Finalmente se obtuvo una mayor remoción del 89,89 % para CACCN, en solución de pH 1 y concentración de Cr de 100 mg/L. | es_CO |
dc.description.abstract | Activated carbons (CAs) were obtained from the pinion shell, by chemical activation with H3PO4; Two samples, an original synthesized activated carbon (CASCN), and another functionalized with cellulose (CACCN) were characterized by studying the behavior of acid-base, having a difference of 2.056 meq/g and 1.953 meq/g respectively, which showed the presence more acid than basic sites. The previous result was checked with the point (pH) of zero load (pHPCC) that gave an approximate value of 2.5 for both cases. The two adsorbents were evaluated in two concentrations of Cr, 100 ppm and 250 ppm in acid pH (1) and basic pH (8). The experimental data to determine the surface area were adjusted to several models of isotherms, with Freundlich being the one that was best adjusted; areas of 955 and 1485 m2 /g, respectively, were determined. Finally, a greater removal of 89.89% was obtained for CACCN, in solution of pH 1 and Cr concentration of 100 mg/L. | es_CO |
dc.format.extent | 48 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | Absorción. | es_CO |
dc.subject | Carbón activado. | es_CO |
dc.subject | Isoterma. | es_CO |
dc.subject | Metal pesado. | es_CO |
dc.subject | Pinus patula. | es_CO |
dc.title | Obtención de carbón activado a partir de cáscara de piñón (Pinus Patula) y evaluación en la remoción de Cromo (VI) en solución acuosa. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2018-06-18 | - |
dc.relation.references | Acuamanus. (2016). Aquamed Carbon Activado Granulado. 2018, from http://www.acuamanus.com.ar/products/view/490-aquamed-carbon-activado granulado.html | es_CO |
dc.relation.references | Acharya, J., Sahu, J. N., Sahoo, B. K., Mohanty, C. R., & Meikap, B. C. (2009). Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chemical Engineering Journal, 150(1), 25-39. doi: http://dx.doi.org/10.1016/j.cej.2008.11.035 | es_CO |
dc.relation.references | Acheampong, M. A., Pakshirajan, K., Annachhatre, A. P., & Lens, P. N. L. (2013). Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems. Journal of Industrial and Engineering Chemistry, 19(3), 841-848. doi: https://doi.org/10.1016/j.jiec.2012.10.029 | es_CO |
dc.relation.references | Adsorción. (2017a). from http://quimica.laguia2000.com/conceptos basicos/adsorcion#ixzz4rHP1Y100 | es_CO |
dc.relation.references | Al-Othman, Z. A., Naushad, M., & Inamuddin. (2011). Organic–inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: Preparation, physicochemical characterization and its analytical application in separation of heavy metals. Chemical Engineering Journal, 172(1), 369-375. doi: https://doi.org/10.1016/j.cej.2011.06.018 Arulkumar, M., Thirumalai, K., Sathishkumar, P., & Palvannan, T. (2012). Rapid removal of | es_CO |
dc.relation.references | Arulkumar, M., Thirumalai, K., Sathishkumar, P., & Palvannan, T. (2012). Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon. Chemical Engineering Journal, 185-186, 178-186. doi: 10.1016/j.cej.2012.01.071 | es_CO |
dc.relation.references | Bachmann, R. T., Wiemken, D., Tengkiat, A. B., & Wilichowski, M. (2010). Feasibility study on the recovery of hexavalent chromium from a simulated electroplating effluent using Alamine 336 and refined palm oil. Separation and Purification Technology, 75(3), 303- 309. doi: https://doi.org/10.1016/j.seppur.2010.08.019 | es_CO |
dc.relation.references | Cagnon, B., Py, X., Guillot, A., Stoeckli, F., & Chambat, G. (2009). Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology, 100(1), 292-298. | es_CO |
dc.relation.references | Carbón Activado. (2017). Carbotecnia. from https://www.carbotecnia.info/encyclopedia/que es-el-carbon-activado/ | es_CO |
dc.relation.references | Castañeda, B. M. (2016). Obtención y caracterización de quitosano proveniente de quitina de cuatro especies de insectos y evaluacion preliminar de su uso en remoción de cromo en agua. (Thesis), Universidad de Pamplona, Pamplona, Colombia. (100383) | es_CO |
dc.relation.references | Cronje, K. J., Chetty, K., Carsky, M., Sahu, J. N., & Meikap, B. C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination, 275(1), 276-284. doi: http://dx.doi.org/10.1016/j.desal.2011.03.019 | es_CO |
dc.relation.references | da Silva Lacerda, V., Lopez-Sotelo, J. B., Correa-Guimaraes, A., Hernandez-Navarro, S., Sanchez Bascones, M., Navas-Gracia, L. M., . . . Martin-Gil, J. (2015). Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J Environ Manage, 155, 67-76. doi: 10.1016/j.jenvman.2015.03.007 | es_CO |
dc.relation.references | Deveci, H., & Kar, Y. (2013). Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. Journal of Industrial and Engineering Chemistry, 19(1), 190-196. doi: https://doi.org/10.1016/j.jiec.2012.08.001 | es_CO |
dc.relation.references | Ecuación de Langmuir. (2017). from https://quimica.laguia2000.com/ecuaciones quimicas/ecuacion-de-langmu | es_CO |
dc.relation.references | Edebali, S., & Pehlivan, E. (2010). Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 161(1), 161-166. doi: https://doi.org/10.1016/j.cej.2010.04.059 | es_CO |
dc.relation.references | Elías Castells, X. (2017). Reciclaje de Residuos Industriales: Aplicación a la Fabricación de Materiales para la Construcción (S. A. Díaz de Santos Ed.). | es_CO |
dc.relation.references | Fazlzadeh, M., Khosravi, R., & Zarei, A. (2017). Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr (VI) from aqueous solution. Ecological Engineering, 103, 180-190. | es_CO |
dc.relation.references | Fenomeno de Superficies. 2017, from http://depa.fquim.unam.mx/amyd/archivero/Unidad3Adsorcion_19664.pdf | es_CO |
dc.relation.references | Filtración. 2017, from http://unomono.com/wessa/index.php/literatura/filtracion/item/34-el dia-de-hoy | es_CO |
dc.relation.references | Fombuena, M., & Valentín, A. (2010). Manual del carbón activo. Aguapedia. U. Sevilla, 1-89. | es_CO |
dc.relation.references | Ghosh, G., & Bhattacharya, P. K. (2006). Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chemical Engineering Journal, 119(1), 45-53. doi: https://doi.org/10.1016/j.cej.2006.02.014 | es_CO |
dc.relation.references | Gottipati, R., & Mishra, S. (2016). Preparation of microporous activated carbon from Aegle Marmelos fruit shell and its application in removal of chromium(VI) from aqueous phase. Journal of Industrial and Engineering Chemistry, 36, 355-363. doi: 10.1016/j.jiec.2016.03.005 | es_CO |
dc.relation.references | Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science, 342(1), 135-141. doi: https://doi.org/10.1016/j.jcis.2009.09.065 | es_CO |
dc.relation.references | Hokkanen, S., Repo, E., & Sillanpää, M. (2013). Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal, 223(Supplement C), 40-47. doi: https://doi.org/10.1016/j.cej.2013.02.054 | es_CO |
dc.relation.references | Izquierdo, J. F., Cunill, F., Tejero, J., Iborra, M., & Fité, C. (2004). Cinética de las Reacciones Químicas (1 ed.). | es_CO |
dc.relation.references | Jaime, C. M. O. P.-R., Restrepo, H., Sánchez, E. A. R.-F. A., Mesa-Carlos, O. J. B. U., Peláez, A. R., Miguel, C. A. R. C.-N., & Herrera, R. l Pino pátula l Pino pátula. | es_CO |
dc.relation.references | Jiang, W., Pelaez, M., Dionysiou, D. D., Entezari, M. H., Tsoutsou, D., & O’Shea, K. (2013). Chromium(VI) removal by maghemite nanoparticles. Chemical Engineering Journal, 222(Supplement C), 527-533. doi: https://doi.org/10.1016/j.cej.2013.02.04 | es_CO |
dc.relation.references | jlr. (2016). Desodorización con carbón activo regenerable. 2017, from http://www.alphachem.es/desodorizacion-con-carbon-activo-regenerable/ | es_CO |
dc.relation.references | Karthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater, 124(1-3), 192-199. doi: 10.1016/j.jhazmat.2005.05.003 | es_CO |
dc.relation.references | Kumbasar, R. A. (2010). Extraction of cadmium from solutions containing various heavy metal ions by Amberlite LA-2. Journal of Industrial and Engineering Chemistry, 16(2), 207- 213. doi: https://doi.org/10.1016/j.jiec.2009.08.002 | es_CO |
dc.relation.references | Luna, D., González, A., Gordon, M., & Martín, N. (2007). Obtención de carbón activado a partir de la cáscara de coco. ContactoS, 64(10), 39-48 | es_CO |
dc.relation.references | MADS, Republica de Colombia 66 (Ministerio de Ambiente y Desarrollo Sostenible). | es_CO |
dc.relation.references | Mohammadi, S. Z., Hamidian, H., & Moeinadini, Z. (2014). High surface area-activated carbon from Glycyrrhiza glabra residue by ZnCl2 activation for removal of Pb(II) and Ni(II) from water samples. Journal of Industrial and Engineering Chemistry, 20(6), 4112-4118. doi: http://dx.doi.org/10.1016/j.jiec.2014.01.009 | es_CO |
dc.relation.references | Montes, D. d. Metodo simple para fabricar Carbon. from http://www.fao.org/docrep/X5328S/X5328S11.htm | es_CO |
dc.relation.references | Nezamzadeh-Ejhieh, A., & Shahanshahi, M. (2013). Modification of clinoptilolite nano-particles with hexadecylpyridynium bromide surfactant as an active component of Cr(VI) selective electrode. Journal of Industrial and Engineering Chemistry, 19(6), 2026-2033. doi: https://doi.org/10.1016/j.jiec.2013.03.018 | es_CO |
dc.relation.references | Nguyen, T. N., H; Guo, W; Zhang, J; Liang, S;, & Yue, Q. L., Q; Nguyen, T;. (2013). Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology, 148, 574-585 | es_CO |
dc.relation.references | Ochoa, S. H. Adsorcion. 2017, from http://sgpwe.izt.uam.mx/files/users/uami/sho/Adsorcion.pdf | es_CO |
dc.relation.references | Parra, A. Q., Castillo, C., & Gélvez, I. M. (2015). Potencial mutagénico y genotóxico de aguas residuales de la curtiembre Tasajero en la ciudad de Cúcuta, Norte de Santander, Colombia. Revista UDCA Actualidad & Divulgación Científica, 18(1). | es_CO |
dc.relation.references | Perez Espinosa, A. Isoterma de Freundlich y Langmuir. 2017, from http://www.academia.edu/11381852/Isoterma_de_Freundlich_y_Langmuir | es_CO |
dc.relation.references | Rai, M. K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R. S., & Rai, B. N. (2016). Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies, 2, S63-S70. doi: 10.1016/j.reffit.2016.11.011 | es_CO |
dc.relation.references | Ramos, R. (2017). Importancia y Aplicaciones de la Adsorción en Fase Líquida | es_CO |
dc.relation.references | Ren, X., Zhao, C., Du, S., Wang, T., Luan, Z., Wang, J., & Hou, D. (2010). Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal. Journal of Environmental Sciences, 22(9), 1335-1341. doi: https://doi.org/10.1016/S1001-0742(09)60259-X | es_CO |
dc.relation.references | Rincón, R., & Marisol, J. (2010). Estudio del proceso de biosorción de colorantes sobre borra (cuncho) de café. Universidad Nacional de Colombia. | es_CO |
dc.relation.references | Sahinkaya, E., Altun, M., Bektas, S., & Komnitsas, K. (2012). Bioreduction of Cr(VI) from acidic wastewaters in a sulfidogenic ABR. Minerals Engineering, 32(Supplement C), 38-44. doi: https://doi.org/10.1016/j.mineng.2012.03.014 | es_CO |
dc.relation.references | SDAB, Concentraciones de Referencia para los Vertimientos Industriales Realizados a la Red de Alcantarillado y de los Vertimientos Industriales y Domésticos Efectuados a Cuerpos de Agua de la Ciudad de Bogotá. Primer Informe. Secretaria Distrital de Ambiente Bogotá (SDAB), Centro de Investigaciones en Ingeniería Ambiental - CIIA Departamento de Ingeniería Civil y Ambiental Universidad de los Andes, Bogotá., Pub. L. No. Primer informe § Primer informe 166 (2010). | es_CO |
dc.relation.references | Suksabye, P., & Thiravetyan, P. (2012). Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. J Environ Manage, 102(Supplement C), 1- 8. doi: https://doi.org/10.1016/j.jenvman.2011.10.020 | es_CO |
dc.relation.references | Wu, L., Liao, L., Lv, G., Qin, F., He, Y., & Wang, X. (2013). Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon. J Hazard Mater, 254(Supplement C), 277-283. doi: https://doi.org/10.1016/j.jhazmat.2013.03.009 | es_CO |
dc.relation.references | Yadav, A. K., Kumar, N., Sreekrishnan, T. R., Satya, S., & Bishnoi, N. R. (2010). Removal of chromium and nickel from aqueous solution in constructed wetland: Mass balance, adsorption–desorption and FTIR study. Chemical Engineering Journal, 160(1), 122-128. doi: https://doi.org/10.1016/j.cej.2010.03.019 | es_CO |
dc.relation.references | Yang, J., Yu, M., & Chen, W. (2015). Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry, 21(Supplement C), 414-422. doi: https://doi.org/10.1016/j.jiec.2014.02.054 | es_CO |
dc.relation.references | Yue, Z., Bender, S. E., Wang, J., & Economy, J. (2009). Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water. J Hazard Mater, 166(1), 74-78. doi: https://doi.org/10.1016/j.jhazmat.2008.10.125 | es_CO |
dc.relation.references | Zhao, N., Wei, N., Li, J., Qiao, Z., Cui, J., & He, F. (2005). Surface properties of chemically modified activated carbons for adsorption rate of Cr (VI). Chemical Engineering Journal, 115(1), 133-138. doi: https://doi.org/10.1016/j.cej.2005.09.01 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Tovar_2018_TG.pdf | Tovar_2018_TG | 1,65 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.