• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5030
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorTovar Zapata, Aldair-
    dc.date.accessioned2022-12-01T22:48:46Z-
    dc.date.available2018-09-18-
    dc.date.available2022-12-01T22:48:46Z-
    dc.date.issued2018-
    dc.identifier.citationTovar Zapata, A. (2018). Obtención de carbón activado a partir de cáscara de piñón (Pinus Patula) y evaluación en la remoción de Cromo (VI) en solución acuosa [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5030es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5030-
    dc.descriptionSe obtuvieron carbones activados (CAs) a partir de la cascara del piñón, por activación química con H3PO4; dos muestras, una original sintetizada de carbón activado (CASCN), y otra funcionalizada con celulosa (CACCN) se caracterizaron estudiando el comportamiento de ácido-base, teniendo una diferencia de 2,056 meq/g y 1,953 meq/g respectivamente, lo que demostró la presencia más sitios ácidos que básicos. El anterior resultado se comprobó con el punto (pH) de carga cero (pHPCC) que dio un valor aproximado de 2,5 para ambos casos. Se evaluaron, los dos adsorbentes en dos concentraciones de Cr, 100 ppm y 250 ppm en pH ácido (1) y pH básico (8). Los datos experimentales para determinar el área superficial se ajustaron a varios modelos de isotermas, siendo la de Freundlich la que mejor se ajustó; se determinaron áreas de 955 y 1485 m2 /g, respectivamente. Finalmente se obtuvo una mayor remoción del 89,89 % para CACCN, en solución de pH 1 y concentración de Cr de 100 mg/L.es_CO
    dc.description.abstractActivated carbons (CAs) were obtained from the pinion shell, by chemical activation with H3PO4; Two samples, an original synthesized activated carbon (CASCN), and another functionalized with cellulose (CACCN) were characterized by studying the behavior of acid-base, having a difference of 2.056 meq/g and 1.953 meq/g respectively, which showed the presence more acid than basic sites. The previous result was checked with the point (pH) of zero load (pHPCC) that gave an approximate value of 2.5 for both cases. The two adsorbents were evaluated in two concentrations of Cr, 100 ppm and 250 ppm in acid pH (1) and basic pH (8). The experimental data to determine the surface area were adjusted to several models of isotherms, with Freundlich being the one that was best adjusted; areas of 955 and 1485 m2 /g, respectively, were determined. Finally, a greater removal of 89.89% was obtained for CACCN, in solution of pH 1 and Cr concentration of 100 mg/L.es_CO
    dc.format.extent48es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenieras y Arquitectura.es_CO
    dc.subjectAbsorción.es_CO
    dc.subjectCarbón activado.es_CO
    dc.subjectIsoterma.es_CO
    dc.subjectMetal pesado.es_CO
    dc.subjectPinus patula.es_CO
    dc.titleObtención de carbón activado a partir de cáscara de piñón (Pinus Patula) y evaluación en la remoción de Cromo (VI) en solución acuosa.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2018-06-18-
    dc.relation.referencesAcuamanus. (2016). Aquamed Carbon Activado Granulado. 2018, from http://www.acuamanus.com.ar/products/view/490-aquamed-carbon-activado granulado.htmles_CO
    dc.relation.referencesAcharya, J., Sahu, J. N., Sahoo, B. K., Mohanty, C. R., & Meikap, B. C. (2009). Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chemical Engineering Journal, 150(1), 25-39. doi: http://dx.doi.org/10.1016/j.cej.2008.11.035es_CO
    dc.relation.referencesAcheampong, M. A., Pakshirajan, K., Annachhatre, A. P., & Lens, P. N. L. (2013). Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems. Journal of Industrial and Engineering Chemistry, 19(3), 841-848. doi: https://doi.org/10.1016/j.jiec.2012.10.029es_CO
    dc.relation.referencesAdsorción. (2017a). from http://quimica.laguia2000.com/conceptos basicos/adsorcion#ixzz4rHP1Y100es_CO
    dc.relation.referencesAl-Othman, Z. A., Naushad, M., & Inamuddin. (2011). Organic–inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: Preparation, physicochemical characterization and its analytical application in separation of heavy metals. Chemical Engineering Journal, 172(1), 369-375. doi: https://doi.org/10.1016/j.cej.2011.06.018 Arulkumar, M., Thirumalai, K., Sathishkumar, P., & Palvannan, T. (2012). Rapid removal ofes_CO
    dc.relation.referencesArulkumar, M., Thirumalai, K., Sathishkumar, P., & Palvannan, T. (2012). Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon. Chemical Engineering Journal, 185-186, 178-186. doi: 10.1016/j.cej.2012.01.071es_CO
    dc.relation.referencesBachmann, R. T., Wiemken, D., Tengkiat, A. B., & Wilichowski, M. (2010). Feasibility study on the recovery of hexavalent chromium from a simulated electroplating effluent using Alamine 336 and refined palm oil. Separation and Purification Technology, 75(3), 303- 309. doi: https://doi.org/10.1016/j.seppur.2010.08.019es_CO
    dc.relation.referencesCagnon, B., Py, X., Guillot, A., Stoeckli, F., & Chambat, G. (2009). Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresource Technology, 100(1), 292-298.es_CO
    dc.relation.referencesCarbón Activado. (2017). Carbotecnia. from https://www.carbotecnia.info/encyclopedia/que es-el-carbon-activado/es_CO
    dc.relation.referencesCastañeda, B. M. (2016). Obtención y caracterización de quitosano proveniente de quitina de cuatro especies de insectos y evaluacion preliminar de su uso en remoción de cromo en agua. (Thesis), Universidad de Pamplona, Pamplona, Colombia. (100383)es_CO
    dc.relation.referencesCronje, K. J., Chetty, K., Carsky, M., Sahu, J. N., & Meikap, B. C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination, 275(1), 276-284. doi: http://dx.doi.org/10.1016/j.desal.2011.03.019es_CO
    dc.relation.referencesda Silva Lacerda, V., Lopez-Sotelo, J. B., Correa-Guimaraes, A., Hernandez-Navarro, S., Sanchez Bascones, M., Navas-Gracia, L. M., . . . Martin-Gil, J. (2015). Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J Environ Manage, 155, 67-76. doi: 10.1016/j.jenvman.2015.03.007es_CO
    dc.relation.referencesDeveci, H., & Kar, Y. (2013). Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. Journal of Industrial and Engineering Chemistry, 19(1), 190-196. doi: https://doi.org/10.1016/j.jiec.2012.08.001es_CO
    dc.relation.referencesEcuación de Langmuir. (2017). from https://quimica.laguia2000.com/ecuaciones quimicas/ecuacion-de-langmues_CO
    dc.relation.referencesEdebali, S., & Pehlivan, E. (2010). Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 161(1), 161-166. doi: https://doi.org/10.1016/j.cej.2010.04.059es_CO
    dc.relation.referencesElías Castells, X. (2017). Reciclaje de Residuos Industriales: Aplicación a la Fabricación de Materiales para la Construcción (S. A. Díaz de Santos Ed.).es_CO
    dc.relation.referencesFazlzadeh, M., Khosravi, R., & Zarei, A. (2017). Green synthesis of zinc oxide nanoparticles using Peganum harmala seed extract, and loaded on Peganum harmala seed powdered activated carbon as new adsorbent for removal of Cr (VI) from aqueous solution. Ecological Engineering, 103, 180-190.es_CO
    dc.relation.referencesFenomeno de Superficies. 2017, from http://depa.fquim.unam.mx/amyd/archivero/Unidad3Adsorcion_19664.pdfes_CO
    dc.relation.referencesFiltración. 2017, from http://unomono.com/wessa/index.php/literatura/filtracion/item/34-el dia-de-hoyes_CO
    dc.relation.referencesFombuena, M., & Valentín, A. (2010). Manual del carbón activo. Aguapedia. U. Sevilla, 1-89.es_CO
    dc.relation.referencesGhosh, G., & Bhattacharya, P. K. (2006). Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chemical Engineering Journal, 119(1), 45-53. doi: https://doi.org/10.1016/j.cej.2006.02.014es_CO
    dc.relation.referencesGottipati, R., & Mishra, S. (2016). Preparation of microporous activated carbon from Aegle Marmelos fruit shell and its application in removal of chromium(VI) from aqueous phase. Journal of Industrial and Engineering Chemistry, 36, 355-363. doi: 10.1016/j.jiec.2016.03.005es_CO
    dc.relation.referencesGupta, V. K., Rastogi, A., & Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science, 342(1), 135-141. doi: https://doi.org/10.1016/j.jcis.2009.09.065es_CO
    dc.relation.referencesHokkanen, S., Repo, E., & Sillanpää, M. (2013). Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chemical Engineering Journal, 223(Supplement C), 40-47. doi: https://doi.org/10.1016/j.cej.2013.02.054es_CO
    dc.relation.referencesIzquierdo, J. F., Cunill, F., Tejero, J., Iborra, M., & Fité, C. (2004). Cinética de las Reacciones Químicas (1 ed.).es_CO
    dc.relation.referencesJaime, C. M. O. P.-R., Restrepo, H., Sánchez, E. A. R.-F. A., Mesa-Carlos, O. J. B. U., Peláez, A. R., Miguel, C. A. R. C.-N., & Herrera, R. l Pino pátula l Pino pátula.es_CO
    dc.relation.referencesJiang, W., Pelaez, M., Dionysiou, D. D., Entezari, M. H., Tsoutsou, D., & O’Shea, K. (2013). Chromium(VI) removal by maghemite nanoparticles. Chemical Engineering Journal, 222(Supplement C), 527-533. doi: https://doi.org/10.1016/j.cej.2013.02.04es_CO
    dc.relation.referencesjlr. (2016). Desodorización con carbón activo regenerable. 2017, from http://www.alphachem.es/desodorizacion-con-carbon-activo-regenerable/es_CO
    dc.relation.referencesKarthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater, 124(1-3), 192-199. doi: 10.1016/j.jhazmat.2005.05.003es_CO
    dc.relation.referencesKumbasar, R. A. (2010). Extraction of cadmium from solutions containing various heavy metal ions by Amberlite LA-2. Journal of Industrial and Engineering Chemistry, 16(2), 207- 213. doi: https://doi.org/10.1016/j.jiec.2009.08.002es_CO
    dc.relation.referencesLuna, D., González, A., Gordon, M., & Martín, N. (2007). Obtención de carbón activado a partir de la cáscara de coco. ContactoS, 64(10), 39-48es_CO
    dc.relation.referencesMADS, Republica de Colombia 66 (Ministerio de Ambiente y Desarrollo Sostenible).es_CO
    dc.relation.referencesMohammadi, S. Z., Hamidian, H., & Moeinadini, Z. (2014). High surface area-activated carbon from Glycyrrhiza glabra residue by ZnCl2 activation for removal of Pb(II) and Ni(II) from water samples. Journal of Industrial and Engineering Chemistry, 20(6), 4112-4118. doi: http://dx.doi.org/10.1016/j.jiec.2014.01.009es_CO
    dc.relation.referencesMontes, D. d. Metodo simple para fabricar Carbon. from http://www.fao.org/docrep/X5328S/X5328S11.htmes_CO
    dc.relation.referencesNezamzadeh-Ejhieh, A., & Shahanshahi, M. (2013). Modification of clinoptilolite nano-particles with hexadecylpyridynium bromide surfactant as an active component of Cr(VI) selective electrode. Journal of Industrial and Engineering Chemistry, 19(6), 2026-2033. doi: https://doi.org/10.1016/j.jiec.2013.03.018es_CO
    dc.relation.referencesNguyen, T. N., H; Guo, W; Zhang, J; Liang, S;, & Yue, Q. L., Q; Nguyen, T;. (2013). Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresource Technology, 148, 574-585es_CO
    dc.relation.referencesOchoa, S. H. Adsorcion. 2017, from http://sgpwe.izt.uam.mx/files/users/uami/sho/Adsorcion.pdfes_CO
    dc.relation.referencesParra, A. Q., Castillo, C., & Gélvez, I. M. (2015). Potencial mutagénico y genotóxico de aguas residuales de la curtiembre Tasajero en la ciudad de Cúcuta, Norte de Santander, Colombia. Revista UDCA Actualidad & Divulgación Científica, 18(1).es_CO
    dc.relation.referencesPerez Espinosa, A. Isoterma de Freundlich y Langmuir. 2017, from http://www.academia.edu/11381852/Isoterma_de_Freundlich_y_Langmuires_CO
    dc.relation.referencesRai, M. K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R. S., & Rai, B. N. (2016). Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies, 2, S63-S70. doi: 10.1016/j.reffit.2016.11.011es_CO
    dc.relation.referencesRamos, R. (2017). Importancia y Aplicaciones de la Adsorción en Fase Líquidaes_CO
    dc.relation.referencesRen, X., Zhao, C., Du, S., Wang, T., Luan, Z., Wang, J., & Hou, D. (2010). Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal. Journal of Environmental Sciences, 22(9), 1335-1341. doi: https://doi.org/10.1016/S1001-0742(09)60259-Xes_CO
    dc.relation.referencesRincón, R., & Marisol, J. (2010). Estudio del proceso de biosorción de colorantes sobre borra (cuncho) de café. Universidad Nacional de Colombia.es_CO
    dc.relation.referencesSahinkaya, E., Altun, M., Bektas, S., & Komnitsas, K. (2012). Bioreduction of Cr(VI) from acidic wastewaters in a sulfidogenic ABR. Minerals Engineering, 32(Supplement C), 38-44. doi: https://doi.org/10.1016/j.mineng.2012.03.014es_CO
    dc.relation.referencesSDAB, Concentraciones de Referencia para los Vertimientos Industriales Realizados a la Red de Alcantarillado y de los Vertimientos Industriales y Domésticos Efectuados a Cuerpos de Agua de la Ciudad de Bogotá. Primer Informe. Secretaria Distrital de Ambiente Bogotá (SDAB), Centro de Investigaciones en Ingeniería Ambiental - CIIA Departamento de Ingeniería Civil y Ambiental Universidad de los Andes, Bogotá., Pub. L. No. Primer informe § Primer informe 166 (2010).es_CO
    dc.relation.referencesSuksabye, P., & Thiravetyan, P. (2012). Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. J Environ Manage, 102(Supplement C), 1- 8. doi: https://doi.org/10.1016/j.jenvman.2011.10.020es_CO
    dc.relation.referencesWu, L., Liao, L., Lv, G., Qin, F., He, Y., & Wang, X. (2013). Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon. J Hazard Mater, 254(Supplement C), 277-283. doi: https://doi.org/10.1016/j.jhazmat.2013.03.009es_CO
    dc.relation.referencesYadav, A. K., Kumar, N., Sreekrishnan, T. R., Satya, S., & Bishnoi, N. R. (2010). Removal of chromium and nickel from aqueous solution in constructed wetland: Mass balance, adsorption–desorption and FTIR study. Chemical Engineering Journal, 160(1), 122-128. doi: https://doi.org/10.1016/j.cej.2010.03.019es_CO
    dc.relation.referencesYang, J., Yu, M., & Chen, W. (2015). Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry, 21(Supplement C), 414-422. doi: https://doi.org/10.1016/j.jiec.2014.02.054es_CO
    dc.relation.referencesYue, Z., Bender, S. E., Wang, J., & Economy, J. (2009). Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water. J Hazard Mater, 166(1), 74-78. doi: https://doi.org/10.1016/j.jhazmat.2008.10.125es_CO
    dc.relation.referencesZhao, N., Wei, N., Li, J., Qiao, Z., Cui, J., & He, F. (2005). Surface properties of chemically modified activated carbons for adsorption rate of Cr (VI). Chemical Engineering Journal, 115(1), 133-138. doi: https://doi.org/10.1016/j.cej.2005.09.01es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Tovar_2018_TG.pdfTovar_2018_TG1,65 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.