Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5008
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Sosa Parra, Julio Eduardo. | - |
dc.date.accessioned | 2022-12-01T20:47:26Z | - |
dc.date.available | 2018-03-19 | - |
dc.date.available | 2022-12-01T20:47:26Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Sosa Parra, J. E. (2017). Estudio del equilibrio líquido-líquido de los líquidos iónicos de alquilamonio en la separación de las mezclas azeotrópica etanol e hidrocarburo alifáticos lineales a 298.15 K [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5008 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/5008 | - |
dc.description | Los procesos de extracción de las plantas químicas actuales tienen que ser sostenibles y amigables con el medioambiente. En estas plantas, la industria química actual tiene un particular interés en la separación de mezclas azeotrópicas para que puedan ser reutilizados nuevamente sus componentes en el proceso. Los procesos más conocidos en la separación de azeótropos es la destilación azeotrópica o extractiva pero para llevar a cabo esta clase de procesos se requieren condiciones extremas (altas temperaturas y altas presiones). Por lo tanto, una gran cantidad de energía es necesaria para lograr con éxito la separación, lo que hace que aumenten los costes de producción. En la última década los líquidos iónicos han demostrado poseer la capacidad de actuar como disolventes de extracción y han surgido como una alternativa mucho más ecológica que los solventes orgánicos volátiles usados en la industria química en este tipo de procesos. Los líquidos iónicos han demostrado también su gran capacidad de extracción en la separación de mezclas azeotrópicas. En este trabajo, se sintetizo tres líquidos iónicos formiato de 2-hidroxietilamonio, [N0002(OH)][HCO2], propaniato de 2-hidroxietilamonio, [N0002(OH)][C2H5CO2] y butanoato de 2- hidroxietilamonio, [N0002(OH)][C3H7CO2]) y fueron utilizados en la separación de mezclas azeotrópicas etanol + hexano y etanol + heptano. Se determinaron los equilibrios líquido-líquido de los sistemas antes mencionados a 101.2 kPa y 298.15 K. Además, se realizó la determinación de los parámetros binarios de NRTL con el simulador Aspen Plus V.9 para los sistemas experimentales y los sistemas de literatura. Por último, se simuló una planta de extracción líquido líquido mediante el simulador Aspen Hysys V.9 con los sistemas antes mencionados con el fin de tener conocimiento de la eficacia de estos líquidos iónicos a escala industrial | es_CO |
dc.description.abstract | The extraction processes of the current chemical plants have to be sustainable and friendly to the environment. Nowadays, chemical industry has a particular interest in these plants namely in the separation of azeotropic mixtures. The components resulting from these separations can be reused again in the industrial processes, which make them more advantageous. The most known process in the separation of azeotropes is the azeotropic or extractive distillation. However, to carry out this kind of process, it is required extreme conditions (high temperatures and high pressures). Therefore, a large amount of energy is necessary to successfully achieve the separation increasing the production costs. In the last decade, ionic liquids have proved their capacity to act as extraction solvents and have emerged as more sustainable alternative to the volatile organic solvents used in the chemical industry in this type of processes. Ionic liquids have also demonstrated their great extraction ability in the separation of azeotropic mixtures. In this work, three ionic liquids were synthesized: 2-hydroxyethylammonium formiate, [N0002(OH)][HCO2]; 2-hydroxyethylammonium propanoate, [N0002(OH)][C2H5CO2]; and 2- hydroxyethylammonium butanoate, [N0002(OH)][C3H7CO2]). All of them were used in the separation of azeotropic mixtures (ethanol + hexane and ethanol + heptane). The liquid-liquid equilibria of these systems were determined at 101.2 kPa and 298.15 K. In addition, the binary parameters of NRTL thermodynamic model were determined with the Aspen Plus V.9 simulator for experimental and literature systems. Finally, a liquid-liquid extraction plant was modelled using the Aspen Hysys V.9 simulator for the same systems in order to determine the efficacy of these ionic liquids as solvent in extraction processes at industrial scale. | es_CO |
dc.format.extent | 116 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Estudio del equilibrio líquido-líquido de los líquidos iónicos de alquilamonio en la separación de las mezclas azeotrópica etanol e hidrocarburo alifáticos lineales a 298.15 K. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2017-12-19 | - |
dc.relation.references | Hilmen, E. K., Separation of Azeotropic Mixtures: Tools for Analysis and Studies on Batch Distillation Operation. Norwegian University of Science and Technology, Department of Chemical Engineering, 2000, PhD Thesis. | es_CO |
dc.relation.references | Moore, W. J., Physical Chemistry, 3rd ed., Prentice-Hall Inc., New York, 1962. | es_CO |
dc.relation.references | Pereiro, A. B.; Araújo, J.M.M.; Esperança, J.M.S.S.; Marrucho, I.M.; Rebelo, L.P.N. Ionic liquids in separations of azeotropic systems – A review. J. Chem. Thermodyn. 2012, 46, 2–28. | es_CO |
dc.relation.references | Laroche, L.; Bekiaris, N.; Andersen, H.W.; Morari, M. Homogeneous Azeotropic Distillation: Comparing Entrainers. Can., J. Chem. Eng., 1991, 69, 1302–1319. | es_CO |
dc.relation.references | Okada, T.; Matsuura, T. A new transport model for pervaporation. J. Memb. Sci., 1991, 59, 133–150 | es_CO |
dc.relation.references | Lux, S.; Winkler, T.; Siebenhofer., M. Synthesis and Isolation of Methyl Acetate through Heterogeneous Catalysis with Liquid-Liquid Extraction. Ind. Eng. Chem. Res., 2010, 49, 10274– 10278. | es_CO |
dc.relation.references | Prasad, S.; Anoop, S.; Joshi, H.C. Review Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Conservation and Recycling, 2007, 50, 1–39. | es_CO |
dc.relation.references | Malvaldi, M.; Chiappe, C. From molten salts to ionic liquids: effect of ion asymmetry and charge distribution. J. Phys. Condens. Matter, 2008, 20, 035108 (9pp). | es_CO |
dc.relation.references | Earle, M. J.; Esperança, J.M.S.S.; Gilea, M.A.; Canongia Lopes, J.N.; Rebelo, L.P.N.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. The distillation and volatility of ionic liquids. Nature, 2006, 439, 83–834. | es_CO |
dc.relation.references | Niedermeyer, H.; Hallett, J. P.; Garcia, I. J.; Hunt, P. A.; Welton, T. Mixtures of ionic liquids. Chem. Soc. Rev., 2012, 41, 7780–7802. | es_CO |
dc.relation.references | Kirchhoff, M. Promoting sustainability through green chemistry. Resources, Conservation and Recycling, 2005, 44, 237–243. | es_CO |
dc.relation.references | Klahn, M.; Stuber, C.; Seduraman, A. What Determines the Miscibility of Ionic Liquids with Water? Identification of the Underlying Factors to Enable a Straightforward Prediction. J. Phys. Chem., 2010, 114, 2856–2868 | es_CO |
dc.relation.references | Pereiro A. B.; Rodriguez, A. Purification of hexane with effective extraction using ionic liquid as solvent. Green Chem., 2009, 11, 346–350. | es_CO |
dc.relation.references | Pereiro A. B.; Rodriguez, A. Separation of Ethanol-Heptane Azeotropic Mixtures by Solvent Extraction with an Ionic Liquid. Ind. Eng. Chem. Res., 2009, 48, 1579–1585. | es_CO |
dc.relation.references | Pereiro, A. B.; Rodriguez, A. Azeotrope-breaking using [BMIM] [MeSO4] ionic liquid in an extraction column. Sep. Purif. Technol., 2008, 62, 733–738. | es_CO |
dc.relation.references | Pereiro, A. B.; Rodríguez, A. Effective extraction in packed column of ethanol from the azeotropic mixture ethanol+ hexane with an ionic liquid as solvent. Chem. Eng. J., 2009, 153, 80– 85. | es_CO |
dc.relation.references | Oliveira, F. S.; Dohrn, R.; Pereiro, A. B.; Araújo, J. M. M.; Rebelo, L. P. N.; Marrucho, I. M. Designing high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium ethyl sulphate for effective azeotrope breaking. Fluid Phase Equilibria, 2016, 419, 57-66. | es_CO |
dc.relation.references | Cai, F.; Xiao, G. Liquid–liquid equilibria for ternary systems ethanol+ heptane+ phosphoric based ionic liquids. Fluid Phase Equilibria, 2015, 386, 155–161. | es_CO |
dc.relation.references | Seoane, R. G.; González, E. J.; González, B. 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids as solvents in the separation of azeotropic mixtures. J. Chem. Thermodynamics, 2012, 53, 152–157. | es_CO |
dc.relation.references | González, B.; Corderí. S. Capacity of two 1-butyl-1-methylpyrrolidinium-based ionic liquids for the extraction of ethanol from its mixtures with heptane and hexane. Fluid Phase Equilibria, 2013, 354, 89–94. | es_CO |
dc.relation.references | Aranda, N. M.; González, B. Cation effect of ammonium imide based ionic liquids in alcohols extraction from alcohol-alkane azeotropic mixtures. J. Chem. Thermodynamics, 2014, 68, 32–39. | es_CO |
dc.relation.references | Oliveira, F. S.; Dohrn, R.; Rebelo, L. P.; Marrucho, I. M. Improving the separation of n heptane+ ethanol azeotropic mixtures combining ionic liquid 1-ethyl-3-methylimidazolium acetate with different inorganic salts. Ind. Eng. Chem. Res., 2016, 55, 5965-5972. | es_CO |
dc.relation.references | Bastos, P. D.; Oliveira, F. S.; Rebelo, L. P. N.; Pereiro, A. B.; Marrucho, I. M. Separation of azeotropic mixtures using high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium thiocyanate. Fluid Phase Equilibria, 2015, 389, 48–54. | es_CO |
dc.relation.references | Rodriguez, N. R.; Santacruz, M.; Kroon, C. Aliphatic+ ethanol separation via liquid–liquid extraction using low transition temperature mixtures as extracting agents. Fluid Phase Equilibria, 2015, 394, 71–82. | es_CO |
dc.relation.references | Oliveira, F.S.; Pereiro, A.B.; Rebelo, L.P.N.; Marrucho, I. M. Deep eutectic solvents as extraction media for azeotropic mixtures. Green Chem., 2013, 15, 1326–1330. | es_CO |
dc.relation.references | Pereiro, A. B.; Deive, F. J.; Esperança, J. M. S. S.; Rodríguez, A. Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilibria, 2010, 291, 13–17. | es_CO |
dc.relation.references | González, B.; Corderí, S.; Santamaria, A. Application of 1-alkyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids for the ethanol removal from its mixtures with alkanes. J. Chem. Thermodynamics, 2013, 60, 9–14. | es_CO |
dc.relation.references | Pereiro, A. B.; Tojo, E.; Rodriguez, A.; Canosa, J.; Tojo, J. Ionic liquid that separates the azeotropic mixture ethanol HMImPF6. Green Chem., 2006, 8, 307–310. | es_CO |
dc.relation.references | Pereiro, A. B.; Rodríguez, A. A study on the liquid–liquid equilibria of 1-alkyl-3- methylimidazolium hexafluorophosphate with ethanol and alkanes. Fluid Phase Equilibria, 2008, 270, 23–29. | es_CO |
dc.relation.references | Cai, F.; Zhao, M.; Wang, Y.; Wang, F.; Xiao, G. Phosphoric-based ionic liquids as solvents to separate the azeotropic mixture of ethanol and hexane. J. Chem. Thermodynamics, 2015, 81, 177–183. | es_CO |
dc.relation.references | Corderí, S.; González. B. Ethanol extraction from its azeotropic mixture with hexane employing different ionic liquids as solvents. J. Chem. Thermodynamics, 2012, 55, 138–143. | es_CO |
dc.relation.references | Corderí, S.; González, B.; Calvar, N.; Gómez, E. Ionic liquids as solvents to separate the azeotropic mixture hexane/ethanol. Fluid Phase Equilibria, 2013, 337, 11–17. | es_CO |
dc.relation.references | Domanska, U.; Zołek-Tryznowska, Z.; Pobudkowska, A. Separation of Hexane/Ethanol Mixtures. LLE of Ternary Systems (Ionic Liquid or Hyperbranched Polymer + Ethanol + Hexane) at T =298.15 K. J. Chem. Eng. Data, 2009, 54, 972–976. | es_CO |
dc.relation.references | Bicak, N. A new ionic liquid: 2-hydroxy ethylammonium formate. J. Mol. Liq., 2005, 116, 15–18. | es_CO |
dc.relation.references | Esperança, J. M. S. S.; Canongia, J. N.; Tariq, M.; Santos, L. M.; Magee, J. W.; Rebelo, L. P. N. Volatility of Aprotic Ionic Liquids - A Review. J. Chem. Eng. Data, 2009, 55, 3–12. | es_CO |
dc.relation.references | Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun., 1998, 16, 1765–1766. | es_CO |
dc.relation.references | Rydberg, J.; Cox, M.; Musikas, C. Solvent Extraction Principles and Practice.2th edition, Editorial Marcel Dekker, New York, 2004. | es_CO |
dc.relation.references | Geankoplis, C.J. Procesos de trasporte y principios de procesos de separación. 4 th edition, Editorial continental, México, 2006. | es_CO |
dc.relation.references | Vera, J. H.; Sayegh, S. G.; Ratcliff, G. A. A quasi lattice-local composition model for the excess Gibbs free energy of liquid mixtures. Fluid Phase Equilibria, 1977, 1, 113–135. | es_CO |
dc.relation.references | Renon, H.; Prausnitz, J. M. Derivation of the three‐parameter Wilson equation for the excess Gibbs energy of liquid mixtures. AIChE Journal, 1969, 15, 785–785. | es_CO |
dc.relation.references | Pitzer, K. S.; Simonson, J. M. Thermodynamics of multicomponent, miscible, ionic systems: theory and equations. J. Phys. Chem., 1986, 90, 3005–3009. | es_CO |
dc.relation.references | Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE Journal, 1975, 21, 116–128. | es_CO |
dc.relation.references | Briggs, S. W.; Comings, E. W. Effect of temperature on liquid-liquid equilibrium. Ind. Eng. Chem., 1943, 35, 411–417. | es_CO |
dc.relation.references | Pucci, A. Phase equilibria of alkanol/alkane mixtures in new oil and gas process development. Pure Appl. Chem., 1989, 61, 1363–1372. | es_CO |
dc.relation.references | Marwil, S. J. Separation of hydrocarbon and alcohol azeotropic mixtures by distillation with anhydrous ammonia. 1984, U.S. Patent No. 4,437,941. Washington, DC: U.S. Patent and Trademark Office. | es_CO |
dc.relation.references | Okada, T.; Yoshikawa, M.; Matsuura, T. A study on the pervaporation of ethanol/water mixtures on the basis of pore flow model. Journal of Membrane Science, 1991, 59, 151–168. | es_CO |
dc.relation.references | Laroche, L.; Andersen, H. W.; Morari, M.; Bekiaris, N. The Curious Behavior of Homogeneous Azeotropic Distillation-Implications for Entrainer Selection comparing entrainers. Can. J. Chem. Eng., 1992, 38, 1309–1328. | es_CO |
dc.relation.references | Kubiczek, A.; Kaminski, W.; Gorak, A. Modeling of single and multi-stage extraction in the system of water, acetone, butanol, ethanol and ionic liquid. Fluid Phase Equilibria, 2014, 384, 114–121. | es_CO |
dc.relation.references | Merzougui, A.; Hasseine, A.; Laiadi., D. Liquid–liquid equilibria of {n-heptane+ toluene+ aniline} ternary system: Experimental data and correlation. Fluid Phase Equilibria, 2011, 308, 142–146 | es_CO |
dc.relation.references | Schefflan, R. Teach Yourself the Basics of Aspen Plus., 1th edition, Editorial John Wiley & Sons, 2011 | es_CO |
dc.relation.references | Sandler, S. Using Aspen Plus in Thermodynamics Instruction: A Step-by-Step Guide.1 th edition, Editorial Wiley & Sons, 2015. | es_CO |
dc.relation.references | K, AlMalah., Aspen Plus: Chemical Engineering Applications. 1 th edition, Editorial John Wiley & Sons, 2016. | es_CO |
dc.relation.references | Chaves, I. Guevara, J., García, L., Robayo, L. Process Analysis and Simulation in Chemical Engineering. 1 th edition, Editorial Springer, 2015. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Sosa_2017_TG.pdf | Sosa_2017_TG | 3,55 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.