Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4940
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Rojas Silva, Cesar Enrique. | - |
dc.date.accessioned | 2022-11-30T22:07:09Z | - |
dc.date.available | 2018-03-19 | - |
dc.date.available | 2022-11-30T22:07:09Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Rojas Silva, C. E. (2017). Síntesis y caracterización de nano partículas de magnetita (Fe3o4) para un estudio en la remoción de metales pesados (Zn, Pb, Cr) presentes en el agua, como fortalecimiento a los procesos de tratamiento convencionales [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4940 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4940 | - |
dc.description | En este documento, se sintetizo un adsorbente efectivo para la eliminación de algunos iones de metales pesados como Cr, Zn y Pb del agua, mediante el método de co-precipitacion de sales férricas y ferrosas bajo presencia de gas nitrógeno y con la ayuda de un agente precipitante (NaOH), obteniendo así una reacción de acuerdo con la formula química de la magnetita, Fe+3[Fe+2 Fe3+]O4. La caracterización cristalográfica del material se realizó mediante DRX obteniendo un tamaño de cristal promedio de 6,9851 nm, en la caracterización química superficial del adsorbente se encontró predominancia de sitios básicos 2,119 (meq/g), sobre los ácidos 1,506 (meq/g) y se determinó el pH en el punto de carga cero el cual presenta un valor de 9,2. El área superficial del adsorbente se estimó mediante isotermas, donde se muestra que la adsorción de las nanopartículas de magnetita siguió el modelo de Langmuir y se obtuvo un área superficial de 1190,3908 m2 /g. La adsorción de iones metálicos en el agua se determinó por espectrofotometría de absorción atómica, dando como resultado un porcentaje de adsorción máxima de magnetita hacia Cr+ , Zn+ y Pb+ en pH 3 de 96,1713 y 95,7856%; 99,6479 y 99,5136%; 99,8993 y 99,6014%; para un tiempo de 60 y 120 min respectivamente, en el caso de pH 7, se obtuvieron resultados ligeramente menores pero con un buen porcentaje de remoción de 97,6837 y 97,0510% para Cr; 99,9473 y 93,6272% para Zn y por ultimo 98,2007 y 90,7694% para Pb en tiempos de 60 y 120 min. Los datos experimentales muestran que las nanopartículas de magnetita sintetizadas presentan buena eficiencia y pueden eliminar cuantitativamente iones de metales pesados del agua. | es_CO |
dc.description.abstract | In this work, an effective adsorbent was synthesized for the elimination of some heavy metal ions such as Cr, Zn and Pb from water, by the method of co-precipitation of ferric and ferrous salts under the presence of nitrogen gas and with the help of a precipitating agent (NaOH), thus obtaining a reaction according to the chemical formula of magnetite, Fe+3[Fe+2 Fe3+ ]O4. The crystallographic characterization of the material was carried out by means of XRD obtaining an average crystal size of 6.9851 nm, in the superficial chemical characterization of the adsorbent was found predominance of basic sites 2,119 (meq/g), on acids 1,506 (meq/g) and the pH was determined at the point of zero load which has a value of 9,2. The surface area of the adsorbent was estimated by isotherms, where it is shown that the adsorption of the magnetite nanoparticles followed the Langmuir model and a surface area of 1190.3908 m2/g was obtained. The adsorption of metal ions in water was determined by atomic absorption spectrophotometry, resulting in a maximum adsorption percentage of magnetite towards Cr+ , Zn+ and Pb+ at pH 3 of 96.1713 and 95.7856%; 99.6479 and 99.5136%; 99.8993 and 99.6014%; for a time of 60 and 120 min respectively, in the case of pH 7, slightly lower results were obtained but with a good percentage of removal of 97.6837 and 97.0515% for Cr; 99,9473 and 93,6272% for Zn and finally 98,2007 and 90,7694% for Pb at times of 60 and 120 min. Experimental data show that synthesized magnetite nanoparticles have good efficiency and can quantitatively remove heavy metal ions from water | es_CO |
dc.format.extent | 66 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenieras y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Síntesis y caracterización de nano partículas de magnetita (Fe3o4) para un estudio en la remoción de metales pesados (Zn, Pb, Cr) presentes en el agua, como fortalecimiento a los procesos de tratamiento convencionales. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2017-12-19 | - |
dc.relation.references | Brito, K.A.L., Síntesis de compuestos híbridos nanoestructurados y evaluación de su comportamiento supramolecular y actividad biológica, in Departamento de Química. 2013, Universitat de les Illes Balears. p. 210. | es_CO |
dc.relation.references | Franger, S., P. Berthet, and J. Berthon, Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. Journal of Solid State Electrochemistry, 2004. 8(4): p. 218-223. | es_CO |
dc.relation.references | Cornell, R.M. and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses Second Edition ed. 2003. 659. | es_CO |
dc.relation.references | An-Hui, D.L., D.S.E. L., and D.F. Schuth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, in Angewandte Chemie. 2007 Angewandte Chemie. p. 1222-1244. | es_CO |
dc.relation.references | V., A.I., et al., 57Fe Mössbauer spectroscopy and electron paramagnetic resonance studies of human liver ferritin, Ferrum Lek and Maltofer. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2014. 130: p. 23-36. | es_CO |
dc.relation.references | Mejia, C.A.Z., J.T. Gonzales, and I.T. Monzon, Concentración y distribución de metales pesados (Pb, Zn, Cu, Cd y Cr) en sedimentos viarios urbanos. Revista Facultad de Ingeniería Universidad de Antioquia, 2011(58): p. 53-62. | es_CO |
dc.relation.references | R., E.D., J.O. Verbel, and B.E.J. C., Remoción de cromo de aguas residuales de curtiembres usando quitosan obtenido de desechos de camaron. Scientia et Technica 2009. 2(42): p. 290-295 | es_CO |
dc.relation.references | Villanueva, R.O.C., Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiología, 2000. 42: p. 131-143. | es_CO |
dc.relation.references | Hu, H., et al., Dissolution–reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geology Reviews, 2014. 57: p. 393-405. | es_CO |
dc.relation.references | Wen, G., et al., Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the 57 Handan-Xingtai iron district, North China Craton. Geochimica et Cosmochimica Acta, 2017. 213: p. 255-270. | es_CO |
dc.relation.references | Zhang, H., et al., Synthesis and characterization of Gd-doped magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 2017. 423: p. 386-394 | es_CO |
dc.relation.references | Martínez, M.d.R.M., Estudio y caracterización de la magnetita para su aplicación a la fertilización de suelos agrícolas, in Escola Tècnica Superior d'Enginyeria Industrial de Barcelona 2013, Universitat politecnica de catalunya | es_CO |
dc.relation.references | Khan, U.S., et al., Aging study of the powdered magnetite nanoparticles. Materials Chemistry and Physics, 2017. 189: p. 86-89. | es_CO |
dc.relation.references | Ngomsik, A.-F., et al., Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie, 2005. 8(6-7): p. 963-970. | es_CO |
dc.relation.references | F. Hasany, S., et al., Systematic Review of the Preparation Techniques of Iron Oxide Magnetic Nanoparticles. Nanoscience and Nanotechnology, 2013. 2(6): p. 148-158. | es_CO |
dc.relation.references | Zhu, Y. and Q. Wu, Synthesis of Magnetite Nanoparticles by Precipitation with Forced Mixing. Journal of Nanoparticle Research, 1999. 1(3): p. 393-396. | es_CO |
dc.relation.references | Ghosal, P.S. and A.K. Gupta, Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. Journal of Molecular Liquids, 2017. 225: p. 137-146. | es_CO |
dc.relation.references | Sime, R., The Langmuir Adsorption Isotherm. Physical Chemistry: Methods, Techniques, Experiments, 2000: p. 7 | es_CO |
dc.relation.references | Corona, L., et al., Área superficial del carbón activado usando la isoterma de adsorción deLangmuir. Instituto Tecnológico y de Estudios Superiores de Monterrey, 2015: p. 5. | es_CO |
dc.relation.references | Dunicz, B.L., Surface area of activated charcoal by Langmuir adsorption isotherm. Journal of Chemical Education, 1961. 38(7): p. 357. | es_CO |
dc.relation.references | Ihsanullah, et al., Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 2016. 157: p. 141-161 | es_CO |
dc.relation.references | Gumpu, M.B., et al., A review on detection of heavy metal ions in water – An electrochemical approach. Sensors and Actuators B: Chemical, 2015. 213: p. 515-533. | es_CO |
dc.relation.references | Verma, R. and B.D. Gupta, Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem, 2015. 166: p. 568-75. | es_CO |
dc.relation.references | Kolbasov, A., et al., Heavy metal adsorption on solution-blown biopolymer nanofiber membranes. Journal of Membrane Science, 2017. 530: p. 250-263 | es_CO |
dc.relation.references | Porras, Á.C., Descripcion de la nocividad del cromo proveniente de la industria curtiembre y de las posibles formas de removerlo. Revista Ingenierías Universidad de Medellín, 2010. 9(17): p. 41-50. | es_CO |
dc.relation.references | Liu, Y., et al., Heavy Metal Contamination of Agricultural Soils in Taiyuan, China. Pedosphere, 2015. 25(6): p. 901-909. | es_CO |
dc.relation.references | Hosseini, M., S.M. Nabavi, and Y. Parsa, Bioaccumulation of trace mercury in trophic levels of benthic, benthopelagic, pelagic fish species, and sea birds from Arvand River, Iran. Biol Trace Elem Res, 2013. 156(1-3): p. 175-80 | es_CO |
dc.relation.references | Colin, V.L., L.B. Villegas, and C.M. Abate, Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration & Biodegradation, 2012. 69: p. 28-37. | es_CO |
dc.relation.references | Santos-Gallego, C.G. and I. Jialal, Cadmium and atherosclerosis: Heavy metal or singing the blues? Atherosclerosis, 2016. 249: p. 230-2. | es_CO |
dc.relation.references | Job, N., et al., Synthesis optimization of organic xerogels produced from convective air drying of resorcinol–formaldehyde gels. Journal of Non-Crystalline Solids, 2006. 352(1): p. 24-34 | es_CO |
dc.relation.references | Arbizzani, C., et al., Cryo- and xerogel carbon supported PtRu for DMFC anodes. Journal of Power Sources, 2007. 172(2): p. 578-586. | es_CO |
dc.relation.references | Young, K. and J. In-Liang, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide National Taiwan University of Science and Technology, 1999. 35: p. 135-142. | es_CO |
dc.relation.references | Huisman, J.L., G. Schouten, and C. Schultz, Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy, 2006. 83(1-4): p. 106-113. | es_CO |
dc.relation.references | A., B.K., et al., Effect of electrolyte composition on zinc hydroxide precipitation by lime. The University of Newcastle, 1997. 31: p. 973-980 | es_CO |
dc.relation.references | Chen, Q., et al., Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Res, 2009. 43(10): p. 2605- 14. | es_CO |
dc.relation.references | Alvarez, M.T., C. Crespo, and B. Mattiasson, Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere, 2007. 66(9): p. 1677-83. | es_CO |
dc.relation.references | Guo, Z.-R., et al., Enhanced chromium recovery from tanning wastewater. Journal of Cleaner Production, 2006. 14(1): p. 75-79. | es_CO |
dc.relation.references | Blue, L.Y., et al., Low-level mercury removal from groundwater using a synthetic chelating ligand. Water Res, 2008. 42(8-9): p. 2025-8. | es_CO |
dc.relation.references | Fu, F., et al., Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere, 2007. 69(11): p. 1783-9 | es_CO |
dc.relation.references | Fu, F. and Q. Wang, Removal of heavy metal ions from wastewaters: a review. J Environ Manage, 2011. 92(3): p. 407-18. | es_CO |
dc.relation.references | Kang, S.Y., et al., Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere, 2004. 56(2): p. 141-7. | es_CO |
dc.relation.references | Gode, F. and E. Pehlivan, Removal of chromium(III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J Hazard Mater, 2006. 136(2): p. 330-7. | es_CO |
dc.relation.references | Hua, M., et al., Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater, 2012. 211-212: p. 317-31. | es_CO |
dc.relation.references | Jusoh, A., et al., A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination, 2007. 206(1-3): p. 9-16. | es_CO |
dc.relation.references | Wang, H., et al., Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J Colloid Interface Sci, 2007. 316(2): p. 277-83. | es_CO |
dc.relation.references | Apiratikul, R. and P. Pavasant, Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol, 2008. 99(8): p. 2766-77. | es_CO |
dc.relation.references | Crini, G., Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol, 2006. 97(9): p. 1061-85. | es_CO |
dc.relation.references | Bhattacharyya, K.G. and S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci, 2008. 140(2): p. 114-31 | es_CO |
dc.relation.references | Karami, H., Heavy metal removal from water by magnetite nanorods. Chemical Engineering Journal, 2013. 219: p. 209-216. | es_CO |
dc.relation.references | Shahalam, A.M., A. Al-Harthy, and A. Al-Zawhry, Feed water pretreatment in RO systems: unit processes in the Middle East Desalination, 2002. 150: p. 235-245. | es_CO |
dc.relation.references | Landaburu-Aguirre, J., et al., The removal of zinc from synthetic wastewaters by micellar enhanced ultrafiltration: statistical design of experiments. Desalination, 2009. 240(1-3): p. 262-269. | es_CO |
dc.relation.references | Dialynas, E. and E. Diamadopoulos, Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination, 2008. 238: p. 302-311. | es_CO |
dc.relation.references | Shon, H.K., et al., Nanofiltration for water and wastewater treatment. Drinking water engineering and science, 2013. 6: p. 47-53 | es_CO |
dc.relation.references | Figoli, A., et al., Influence of operating parameters on the arsenic removal by nanofiltration. Water Res, 2010. 44(1): p. 97-104. | es_CO |
dc.relation.references | Liu, F., et al., Performance of Nanofiltration and Reverse Osmosis Membranes in Metal Effluent Treatment. Chinese Journal of Chemical Engineering, 2008. 16(3): p. 441-445. | es_CO |
dc.relation.references | Sadrzadeh, M., et al., Neural network modeling of Pb2+ removal from wastewater using electrodialysis. Chemical Engineering and Processing: Process Intensification, 2009. 48(8): p. 1371-1381. | es_CO |
dc.relation.references | Nataraj, S.K., K.M. Hosamani, and T.M. Aminabhavi, Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalination, 2007. 217(1-3): p. 181-190. | es_CO |
dc.relation.references | Chen, G., Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 2004. 38(1): p. 11-41. | es_CO |
dc.relation.references | Wang, L.K., Y.-T. Hung, and N.K. Shammas, Advanced physicochemical treatment technologies. 1 ed. Handbook of Environmental Engineering. Vol. 5. 2007: Humana Press. | es_CO |
dc.relation.references | Boehm, H., Surface oxides on carbon and their analysis: a critical assessment. Carbon, 2002. 40(2): p. 145-149. | es_CO |
dc.relation.references | Franz, M., H.A. Arafat, and N.G. Pinto, Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon, 2000. 38(13): p. 1807-1819. | es_CO |
dc.relation.references | R., M.G.R., S.A.M. D., and L.T. P., Efecto de la cantidad de cromo hexavalente y el pH en la remocion de cromo 6+ en un reactor electroquimico de electrodos rotatorios Universidad Autonoma Metropolitana, 2008(180): p. 5. | es_CO |
dc.relation.references | Mogollon, M.M.M., Remocion de cromo en agua mediante adsorcion en nanoparticulas de magnetita, in Ingenieria Quimica 2016, Universidad de Pamplona p. 56. | es_CO |
dc.relation.references | Picasso, G., et al., Preparación de nanopartículas de magnetita por los métodos sol-gel y precipitación: estudio de la composición química y estructura. Revista de la Sociedad Química del Perú, 2012. 78(3): p. 170-182. | es_CO |
dc.relation.references | Lopez, J.A., et al., Synthesis and characterization of Fe3O4 magnetic nanofluid. Revista Latinoamericana de Metalurgia y Materiales, 2010. 30(1): p. 60-66. | es_CO |
dc.relation.references | Fleet, M.E., The structure of magnetite: Symmetry of cubic spinels. Journal of Solid State Chemistry, 1986. 62(1): p. 75-82. | es_CO |
dc.relation.references | Roy, A. and J. Bhattacharya, Removal of Cu(II), Zn(II) and Pb(II) from Water Using Microwave-Assisted Synthesized Maghemite Nanotubes. Chemical Engineering Journal, 2012: p. 493-500. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Rojas_2017_TG.pdf | Rojas_2017_TG | 1,27 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.