Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4526
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Moreno Vergara, Maria Camila. | - |
dc.date.accessioned | 2022-11-17T16:40:09Z | - |
dc.date.available | 2022-03-17 | - |
dc.date.available | 2022-11-17T16:40:09Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Moreno Vergara, M. C. (2021). Algoritmos de control en un prototipo de brazo robótico acuático modular con interfaz de realidad aumentada [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4526 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4526 | - |
dc.description | Este documento presenta los resultados de un proyecto de investigación sobre el control de un prototipo de brazo robótico acuático modular con interfaz de realidad aumentada. Con forme a lo anterior, se estructuran tres fases principales: En la Fase I, se expone el análisis cinemático, modelo dinámico y control cinemático del prototipo. En la Fase II, se presentan simulaciones que permitan corroborar el análisis realizado en la Fase I. Este apartado incluye interfaces de realidad aumentada para estimular la interacción humano-robot a través de teléfonos inteligentes, cámaras web y Microsoft HoloLens. Finalmente, en la Fase III, se es tablece comunicación entre las interfaces de realidad aumentada y las simulaciones mediante protocolos de transmisión de datos para generar referencias de posición o velocidad que son validadas de forma remota en el sistema físico localizado en la Universidad de Texas A&M Corpus Christi. Este contempla un robot antropomórfico de 4 grados de libertad con módulos intercambiables para adaptar diversas herramientas en el elemento terminal o ser integrado en otros sistemas que compartan estándares de compatibilidad. Los movimientos generados por el prototipo en el sistema físico presentan un alto grado de correspondencia al expuesto en las simulaciones, evidenciando la relación entre los análisis y las interfaces de visualización. | es_CO |
dc.description.abstract | This document presents the results of a research project on the control of a prototype of a modular aquatic robotic arm with an augmented reality interface. According to the abo ve, three main phases are structured: In Phase I, the kinematic analysis, dynamic model and kinematic control of the prototype are exposed. In Phase II, simulations are presented to corroborate the analysis carried out in Phase I. This section includes augmented reality inter faces to stimulate human-robot interaction through smartphones, web cameras and Microsoft HoloLens. Finally, in Phase III, communication is established between the augmented reality interfaces and the simulations through data transmission protocols to generate position or speed references that are remotely validated in the physical system located at the University of Texas A&M-Corpus Christi. This contemplates an anthropomorphic robot with 4 degrees of freedom with interchangeable modules to adapt various tools in the terminal element or to be integrated into other systems that share compatibility standards. The movements ge nerated by the prototype in the physical system present a high degree of correspondence to that shown in the simulations, evidencing the relationship between analysis and visualization interfaces | es_CO |
dc.format.extent | 145 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona- Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Control. | es_CO |
dc.subject | Robótica modular. | es_CO |
dc.subject | Robótica acuática. | es_CO |
dc.subject | Simulación. | es_CO |
dc.subject | Realidad aumentada. | es_CO |
dc.subject | Protocolos de comunicación. | es_CO |
dc.title | Algoritmos de control en un prototipo de brazo robótico acuático modular con interfaz de realidad aumentada. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-12-17 | - |
dc.relation.references | Jonathan Ruiz de Garibay Pascual. Robótica: Estado del arte. Universidad de Deuston. Número. Fecha, page 54, 2006. | es_CO |
dc.relation.references | Kyle Gilpin and Daniela Rus. Modular robot systems. IEEE robotics & automation magazine, 17(3):38–55, 2010. | es_CO |
dc.relation.references | Robert Grabowski, Luis E Navarro-Serment, Christiaan JJ Paredis, and Pradeep K Khosla. Heterogeneous teams of modular robots for mapping and exploration. Autono mous Robots, 8(3):293–308, 2000. | es_CO |
dc.relation.references | Alexandre Campeau-Lecours, Hugo Lamontagne, Simon Latour, Philippe Fauteux, Vé ronique Maheu, François Boucher, Charles Deguire, and Louis-Joseph Caron L’Ecuyer. Kinova modular robot arms for service robotics applications. In Rapid Automation: Concepts, Methodologies, Tools, and Applications, pages 693–719. IGI global, 2019. | es_CO |
dc.relation.references | Jordi Pages, Luca Marchionni, and Francesco Ferro. Tiago: the modular robot that adapts to different research needs. In International workshop on robot modularity, IROS, 2016. | es_CO |
dc.relation.references | Antonio Barrientos, Luis Felipe Peñin, Carlos Balaguer, and Rafael Aracil. Fundamentos de robótica, volume 2. McGraw-Hill Madrid, 2007. | es_CO |
dc.relation.references | María del Rosario Neira Piñeiro, María Esther del Moral Pérez, and Inés Fombella Coto. Aprendizaje inmersivo y desarrollo de las inteligencias múltiples en educación infantil a partir de un entorno interactivo con realidad aumentada. Magister: Revista miscelánea de investigación, 31(2):1–8, 2019. | es_CO |
dc.relation.references | Francesco Mondada, Giovanni C Pettinaro, Andre Guignard, Ivo W Kwee, Dario Flo reano, Jean-Louis Deneubourg, Stefano Nolfi, Luca Maria Gambardella, and Marco Do rigo. Swarm-bot: A new distributed robotic concept. Autonomous robots, 17(2):193–221, 2004. | es_CO |
dc.relation.references | Runxiao Ding, Paul Eastwood, Francesco Mondada, and Roderich Groß. A stochastic self-reconfigurable modular robot with mobility control. In Conference Towards Auto nomous Robotic Systems, pages 416–417. Springer, 201 | es_CO |
dc.relation.references | Lei Zhang, Zhenhua Li, Hao Zhang, and Huaming Zhong. A simulation study of modular robot self-replication. In International Symposium on Intelligence Computation and Applications, pages 479–489. Springer, 2012. | es_CO |
dc.relation.references | Mark Yim, Paul White, Michael Park, and Jimmy Sastra. Modular Self-Reconfigurable Robots, pages 5618–5631. Springer New York, New York, NY, 2009. ISBN 978-0- 387-30440-3. doi: 10.1007/978-0-387-30440-3_334. URL https://doi.org/10.1007/ 978-0-387-30440-3_334. | es_CO |
dc.relation.references | Marco Aurelio Troncos Riofrío. Diseño y ensamble de un brazo robot como módulo de laboratorio para el escaneo de curvas en 3d. 2017. | es_CO |
dc.relation.references | José Baca, Manuel Ferre, and Rafael Aracil. A heterogeneous modular robotic design for fast response to a diversity of tasks. Robotics and Autonomous Systems, 60(4): 522–531, 2012. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2011.11.013. URL https://www.sciencedirect.com/science/article/pii/S0921889011002168. | es_CO |
dc.relation.references | Kyle Gilpin, Keith Kotay, Daniela Rus, and Iuliu Vasilescu. Miche: Modular shape formation by self-disassembly. The International Journal of Robotics Research, 27(3-4): 345–372, 2008. | es_CO |
dc.relation.references | Juan Gonzalez. DiseÑo de robots Ápodos, Dec 2003. URL http://www.iearobotics. com/personal/juan/doctorado/tea/html/node41.html. | es_CO |
dc.relation.references | Deisy Yisneth Forero Quintero, Marco Andres Meza Calderon, et al. Diseño y construc ción de un robot acuático. B.S. thesis, Universidad Piloto de Col | es_CO |
dc.relation.references | Héctor A Moreno, Roque Saltarén, Lisandro Puglisi, Isela Carrera, Pedro Cárdenas, and César Álvarez. Robótica submarina: Conceptos, elementos, modelado y control. Revista Iberoamericana de Automática e Informática industrial, 11(1):3–19, 2014. | es_CO |
dc.relation.references | Auke J Ijspeert, Jonas Buchli, Alessandro Crespi, Ludovic Righetti, and Yvan Bourquin. Institute presentation: Biologically inspired robotics group at epfl. International Journal of Advanced Robotics Systems, 2(ARTICLE):175–199, 2005. | es_CO |
dc.relation.references | Alessandro Crespi, Konstantinos Karakasiliotis, Andre Guignard, and Auke Jan Ijspeert. Salamandra robotica ii: an amphibious robot to study salamander-like swimming and walking gaits. IEEE Transactions on Robotics, 29(2):308–320, 2013. | es_CO |
dc.relation.references | AgnathaX ff BioRob ‐ EPFL. URL https://www.epfl.ch/labs/biorob/research/ amphibious/agnathax/. | es_CO |
dc.relation.references | Martín Madueño Ortega et al. Control Teleoperado del robot RV-M1 mediante dispositivo móvil y Realidad Aumentada. PhD thesis, Universitat Politècnica de Catalunya. Escola Politècnica Superior d …, 2013. | es_CO |
dc.relation.references | Iván Mauricio Melo Bohórquez. Realidad aumentada y aplicaciones. Tecnología Inves tigación y Academia, 6(1):28–35, | es_CO |
dc.relation.references | Oskari Sihvonen. Prosessinohjausratkaisun tuottaminen vuzix m4000-älylaseille. 2021. | es_CO |
dc.relation.references | Arturo Merino. Realidad mixta. | es_CO |
dc.relation.references | Jon Peddie. Augmented reality: Where we will all live. Springer, 2017. | es_CO |
dc.relation.references | Jennifer Langston. To the moon and beyond: How hololens 2 is helping build nasa’s orion spacecraft, Sep 2020. URL https://news.microsoft.com/innovation-stories/ hololens-2-nasa-orion-artemis/. | es_CO |
dc.relation.references | Bill Briggs. Vroom with a view: Hololens 2 powers faster fixes for mercedes benz usa, Sep 2020. URL https://news.microsoft.com/transform/ vroom-with-a-view-hololens-2-powers-faster-fixes-mercedes-benz-usa/. | es_CO |
dc.relation.references | Xavier Basogain, Miguel Olabe, Koldobika Espinosa, C Rouèche, and JC Olabe. Realidad aumentada en la educación: una tecnología emergente. Escuela Superior de Ingeniería de Bilbao, EHU. Recuperado de http://bit. ly/2hpZokY, 2007. | es_CO |
dc.relation.references | Mark Garcia. Astronaut shane kimbrough wears an augmented reality headset, Sep 2021. URL https://www.nasa.gov/image-feature/ astronaut-shane-kimbrough-wears-an-augmented-reality-headset. | es_CO |
dc.relation.references | Veronica McGregor Guy Webster and Dwayne Brown. Nasa, microsoft collaboration will allow scientists to ’work on mars’ – nasa’s mars ex ploration program, Jan 2015. URL https://mars.nasa.gov/news/1773/ nasa-microsoft-collaboration-will-allow-scientists-to-work-on-mars/. | es_CO |
dc.relation.references | Tony Greicius. ’mixed reality’ technology brings mars to earth, Mar 2016. URL https:// www.nasa.gov/feature/jpl/mixed-reality-technology-brings-mars-to-earth. | es_CO |
dc.relation.references | Allan Brito. Blender 3D. Novatec, 2007 | es_CO |
dc.relation.references | José Baca, S.G.M. Hossain, Prithviraj Dasgupta, Carl A. Nelson, and Ayan Dutta. Modred: Hardware design and reconfiguration planning for a high dexterity modu lar self-reconfigurable robot for extra-terrestrial exploration. Robotics and Autono mous Systems, 62(7):1002–1015, 2014. ISSN 0921-8890. doi: https://doi.org/10.1016/ j.robot.2013.08.008. URL https://www.sciencedirect.com/science/article/pii/ S0921889013001516. Reconfigurable Modular Robotics. | es_CO |
dc.relation.references | José Baca, Bradley Woosley, Prithviraj Dasgupta, and Carl A. Nelson. Configuration discovery of modular self-reconfigurable robots: Real-time, distributed, ir+xbee commu nication method. Robotics and Autonomous Systems, 91:284–298, 2017. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2017.01.012. URL https://www.sciencedirect. com/science/article/pii/S092188901630029X. | es_CO |
dc.relation.references | Xiang Zhou, Liyu Tang, Ding Lin, and Wei Han. Virtual augmented reality for biological microscope in experiment education. Virtual Reality Intelligent Hardware, 2(4):316–329, 2020. ISSN 2096-5796. doi: https://doi.org/10.1016/j.vrih.2020.07.004. URL https: //www.sciencedirect.com/science/article/pii/S2096579620300577. | es_CO |
dc.relation.references | Orlando Sabogal Rojas et al. Holomuseo: aplicación de realidad mixta con contenido multimedia desacoplado. B.S. thesis, Uniandes, 2019. | es_CO |
dc.relation.references | J.M. Azorín J.M. Sabater. R. Saltarén, M. Almonacid. Prácticas de Robótica utilizando Matlab. Escuela Politécnica Superior de Elche, 2000. | es_CO |
dc.relation.references | César Peña, Cristhian Riaño, and Gonzalo Moreno. Robotgreen. a teleoperated agricul tural robot for structured environments. Journal of Engineering Science & Technology Review, 11(6), 2018 | es_CO |
dc.relation.references | Francisco A Candelas-Herías and Jorge Pomares. Práctica 3. protocolos de transporte tcp y udp. Redes, 2009 | es_CO |
dc.relation.references | Tcp/ip interface. URL https://it.mathworks.com/help/instrument/ tcp-ip-interface.html | es_CO |
dc.relation.references | Robotics Toolbox - Peter Corke. URL https://petercorke.com/toolboxes/ robotics-toolbox/ | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Mecatrónica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Moreno_2021_TG.pdf | Moreno_2021_TG | 5,21 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.