Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/421
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Maldonado Villamizar, Jhon Jairo. | - |
dc.date.accessioned | 2022-04-19T23:00:44Z | - |
dc.date.available | 2016-03-15 | - |
dc.date.available | 2022-04-19T23:00:44Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Maldonado Villamizar, J. J. (2015). Síntesis de resinas alquídicas a partir de aceite de palma mediante reacción con diferentes polioles [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/421 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/421 | - |
dc.description | El aceite de palma se obtiene del mesocarpio del fruto de la palma (Elais guineensis), es muy utilizado en la industria alimenticia y no alimenticia en gran cantidad de productos; actualmente y en gran proporción se ha usado en la producción de biocombustibles. Naturalmente el progreso y evolución en la industria, permite la competencia en términos de producción y calidad, lo cual lleva a que los precios del aceite no sean estables y tiendan a decaer. Como respuesta a esta problemática y en búsqueda de nuevos materiales amigables con el ambiente, se realiza la investigación en el ámbito de la oleoquímica a través de la síntesis de resinas alquídicas a partir de aceite de palma. Inicialmente se llevó a cabo la caracterización del aceite de palma crudo, a través de normas técnicas estándar, midiendo propiedades como acidez, índice de yodo, índice de saponificación, peso específico y viscosidad. En el caso de los aceites el valor de yodo y la acidez son los las características más relevantes. La formulación se realizó teniendo en cuenta tres polialcoholes y un ácido polibásico, además del aceite, las concentraciones dependen del grado de polimerización deseado; los polialcoholes se evaluaron según las propiedades finales de la resina sintetizada con cada uno, con el fin de conocer cual establece las mejores condiciones de reacción y cuál es el efecto del mismo en las características finales. El proceso de síntesis se llevó a cabo en un reactor tipo batch con capacidad de 100ml, equipado con agitador de aspas, manta de calentamiento y controlador de temperatura; dos etapas diferentes deben ocurrir durante el proceso de síntesis: primero la alcoholisis del aceite, la cual se realiza con glicerol y aceite tratado, a alta temperatura (230°C) en presencia de 0,3% peso de NaOH como catalizador, el progreso de la reacción se monitorea a través de la observación de la solubilidad de la mezcla reaccionante en metanol anhídrido en relación 1:3 respectivamente, cuando la mezcla es completamente soluble la reacción está completa; en segundo lugar se realiza la poliesterificación de los monoglicéridos de ácidos grasos obtenidos mediante la adición de un ácido polibásico y un poliol también a alta temperatura (230 °C), en este caso el avance de la reacción se mide a través de la medición del índice de acidez en intervalos de tiempo, la medida se toma bajo norma estándar ASTM D1639-90 cada 30 minutos con un máximo de 1 gramos por muestra, la reacción se lleva a cabo hasta que el índice de acidez este por debajo de 8 mg KOH/g de muestra. Finalmente se realizó la evaluación de las características de cada una de las resinas obtenidas en cuanto a humedad, viscosidad, densidad y resistencia química mediante métodos estándar; además de técnicas de análisis instrumental como FT IR y TGA. Se obtuvieron 9 resinas alquidicas, tres de las cuales fueron sintetizadas con etilenglicol, obteniendo las mejores propiedades físicas. | es_CO |
dc.description.abstract | Palm oil is obtained from the mesocarp of palm fruit (Elais guineensis), it is widely used in the food and non-food industry in many products; now and in large proportion it has been used in the production of biofuels. Naturally progress and developments in the industry, allows competition in terms of production and quality, which leads to oil prices are unstable and tend to decline. In response to this problem and in finding new environmentally friendly materials, research is done in the field of oleochemical through the synthesis of alkyd resins from palm oil. Initially it carried out the characterization of crude palm oil, through technical standards in measuring properties such as acidity, iodine value, saponification value, specific gravity and viscosity. In the case of oil the iodine value and acidity are the most important characteristics. The formulation was made taking into account three polyols and polybasic acid, in addition to oil, concentrations depend on the desired degree of polymerization; polyols were evaluated according to the final properties of the resin synthesized with each other, in order to know which establishes the best reaction conditions and what the effect of it in the final characteristics. The synthesis process was carried out in a batch type reactor with a capacity of 100 ml, equipped with blade stirrer, heating mantle and temperature controller; two different stages must occur during synthesis: first oil alcoholysis, which is done with glycerol and treated oil at high temperature (230 ° C) in the presence of 0.3 wt% of NaOH as a catalyst, the progress The reaction is monitored by observing the solubility of the reaction mixture in methanol anhydride in ratio 1: 3 respectively when the mixture is completely soluble reaction is complete; secondly the polyesterification of monoglycerides of fatty acids obtained by adding a polybasic acid and a polyol is conducted also at a high temperature (230 ° C), in this case the progress of the reaction is measured by measuring the acid at time intervals, the measurement is taken under standard ASTM D1639-90 every 30 minutes with a maximum of 1 gram per sample, the reaction is carried out until the acid value is below 8 mg KOH / g sample. Finally the evaluation of the characteristics of each of the resins obtained was performed for moisture, viscosity, density and chemical resistance using standard methods; plus instrumental analysis techniques such as FTIR and TGA. 9 alkyd resins were obtained, three of which were synthesized with ethylene glycol, to obtain the best physical properties. | es_CO |
dc.format.extent | 136 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Síntesis de resinas alquídicas a partir de aceite de palma mediante reacción con diferentes polioles. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2015-12-15 | - |
dc.relation.references | 1. Agriculture, U.S.D.o., Oilseeds: Wold Markets and Trade, in USDA FAS 2015. | es_CO |
dc.relation.references | 2. Baryeh, E.A., Effects of palm oil processing parameters on yield. Journal of Food Engineering, 2001. 48: p. 1-6. | es_CO |
dc.relation.references | 3. Gonçalves, C.B., P.A. Pessôa Filho, and A.J.A. Meirelles, Partition of nutraceutical compounds in deacidification of palm oil by solvent extraction. Journal of Food Engineering, 2007. 81(1): p. 21-26. | es_CO |
dc.relation.references | 4. Esmiol, S., ACEITE DE PALMA: USOS, ORIGENES E IMPACTOS Amigos de la tierra, 2008. | es_CO |
dc.relation.references | 5. Narváez, P.C., D.I. Jaimes, and C.A. Romero, Main Technologies for Production of Oleochemicals From Palm Oil and Palm Kernel Oil. palmas, 2004. 25(1): p. 47-66. | es_CO |
dc.relation.references | 6. Narváez, P.C., M.A. Noriega, and J.G. Cadavid, Kinetics of palm oil ethanolysis. Energy, 2015. 83: p. 337-342. | es_CO |
dc.relation.references | 7. Cardona, S.M., et al., OBTENCIÓN DE MONOGLICÉRIDOS DE ACEITE DE RICINO EMPLEANDO GLICERINA REFINADA Y CRUDA. REVISTA DE LA FACULTAD DE QUÍMICA FARMACÉUTICA, 2010. 17(2): p. 128-134. | es_CO |
dc.relation.references | 8. Nagendran, B., et al., Characteristics of red palm oil, a carotene- and vitamin E–rich refined oil for food uses. Food and Nutrition Bulletin, 2000. 21(2): p. 189-194. | es_CO |
dc.relation.references | 9. Seniha Güner, F., Y. Yağcı, and A. Tuncer Erciyes, Polymers from triglyceride oils. Progress in Polymer Science, 2006. 31(7): p. 633-670. | es_CO |
dc.relation.references | 10. Hofland, A., Alkyd resins: From down and out to alive and kicking. Progress in Organic Coatings, 2012. 73(4): p. 274-282. | es_CO |
dc.relation.references | 11. Díaz, A., et al., INFLUENCIA DEL TIPO Y CONCENTRACIÓN DE MATERIA PRIMA EN EL TIEMPO DE REACCIÓN Y PROPIEDADES FINALES DE RESINAS ALQUÍDICAS MEDIAS. Suplemento de la Revista Latinoamericana de Metalurgia y Materiales, 2009. 2(1): p. 41-42. | es_CO |
dc.relation.references | 12. Shaker, N.O., N.A. Alian, and M.M. El-sawy, Preparation, characterization and evaluation of jojoba seed oil modified alkyd resins. Der Chemica Sinica, 2012. 3(5): p. 1157-1162. | es_CO |
dc.relation.references | 13. Boruah, M., et al., Preparation and characterization of Jatropha Curcas oil based alkyd resin suitable for surface coating. Progress in Organic Coatings, 2012. 74(3): p. 596-602. | es_CO |
dc.relation.references | 14. Ekpa, O.D. and I.O. Isaac, Fatty acid composition of melon (Colocynthis vulgaris Shrad) seed oil and its application in synthesis and evaluation of alkyd resins. IOSR Journal of Applied Chemistry, 2013. 4(4): p. 30-41. | es_CO |
dc.relation.references | 15. Bora, M.M., et al., Karanja (Millettia pinnata (L.) Panigrahi) seed oil as a renewable raw material for the synthesis of alkyd resin. Industrial Crops and Products, 2014. 61: p. 106-114. | es_CO |
dc.relation.references | 16. Bora, M.M., et al., Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil-based alkyd resin. Industrial Crops and Products, 2014. 52: p. 721-728. | es_CO |
dc.relation.references | 17. Assanvo, E.F., et al., Synthesis, characterization, and performance characteristics of alkyd resins based on Ricinodendron heudelotii oil and their blending with epoxy resins. Industrial Crops and Products, 2015. 65: p. 293-302. | es_CO |
dc.relation.references | 18. Nosal, H., et al., Synthesis and characterization of alkyd resins based on Camelina sativa oil and polyglycerol. Progress in Organic Coatings, 2015. 86: p. 59- 70. | es_CO |
dc.relation.references | 19. Issam, A.M. and C.Y. Cheun, A Study of the Effect of Palm Oil on the Properties of a New Alkyd Resin. Malaysian Polymer Journal, 2009. 4(1): p. 42-49. | es_CO |
dc.relation.references | 20. Ataei, S., R. Yahya, and S.N. Gan, Palm Oleic Acid Based Alkyds: Effect of the Fatty Acid Content on the Polyesterification Kinetics. Journal of Polymers and the Environment, 2011. 19(2): p. 540-545. | es_CO |
dc.relation.references | 21. Nanvaee, A.A., R. Yahya, and S.-N. Gan, Cleaner production through using by-product palm stearin to synthesis alkyd resin for coating applications. Journal of Cleaner Production, 2013. 54: p. 307-314. | es_CO |
dc.relation.references | 22. Cardeño, F., et al., Síntesis de Resinas Alquídicas a partir de Aceites de Higuerilla, de Palma y de Fritura, Mezclados con Aceite de Soja. Información tecnológica, 2013. 24(4): p. 7-8. | es_CO |
dc.relation.references | 23. Uzoh, C.F., et al., SYNTHESIS AND CHARACTERIZATION OF PALM OIL BASED AIR DRYING ALKYD RESIN FOR SURFACE COATING. Research Journal in Engineering and Applied Sciences, 2013. 2(3): p. 187-191. | es_CO |
dc.relation.references | 24. Uzoh, C.F., et al., Optimization of polyesterification process for production of palm oil modified alkyd resin using response surface methodology. Journal of Environmental Chemical Engineering, 2013. 1(4): p. 777-785. | es_CO |
dc.relation.references | 25. Islam, M.R., M.D. Hosen Beg, and S.S. Jamari, Alkyd Based Resin from Non drying Oil. Procedia Engineering, 2014. 9 | es_CO |
dc.relation.references | 26. Mba, O.I., M.-J.e. Dumontn, and M. Ngadi, Palm oilProcessing,characterizationandutilization in thefoodindustry - A review. Food Bioscience, 2015. 10: p. 26-41. | es_CO |
dc.relation.references | 27. Aniame, p., La importancia de la palma en el mundo, in Oil world. 2004. | es_CO |
dc.relation.references | 28. Seeboldt, S. and Y. Salinas Abdala, Responsabilidad y sostenibilidad de la industria de la palma. 2010. | es_CO |
dc.relation.references | 29. Torres Carrasco, R.A., et al., Principales cifras de la agroindustria de la palma de aceite en Colombia. 2013, Fedepalma. | es_CO |
dc.relation.references | 30. Ahmad, A.L., et al., Recovery of oil and carotenes from palm oil mill effluent (POME). Chemical Engineering Journal, 2008. 141(1-3): p. 383-386. | es_CO |
dc.relation.references | 31. Szydlowska-Czerniak, A., et al., Effect of refining processes on antioxidant capacity, total contents of phenolics and carotenoids in palm oils. Food Chem, 2011. 129(3): p. 1187-92. | es_CO |
dc.relation.references | 32. Garcés, I.C. and M. Sánchez Cuéllar, Products derived from the palm oil industry. Uses. Palmas, 1997. 18(1): p. 33-48. | es_CO |
dc.relation.references | 33. Pantzaris, T.P. and M. Jaaffar Ahmad, Properties and Utilization of Palm Kernel Oil. Palmas, 2002. 23(3): p. 46-58. | es_CO |
dc.relation.references | 34. Del Hierro Santa Cruz, E., Aprovechamiento de los sub-productos de palma de aceite. Palmas, 1993. 14: p. 149-153. | es_CO |
dc.relation.references | 35. Kalogianni, E.P., T.D. Karapantsios, and R. Miller, Effect of repeated frying on the viscosity, density and dynamic interfacial tension of palm and olive oil. Journal of Food Engineering, 2011. 105(1): p. 169-179. | es_CO |
dc.relation.references | 36. Saadi, S., et al., Crystallisation regime of w/o emulsion [e.g. multipurpose margarine] models during storage. Food Chemistry, 2012. 133(4): p. 1485-1493. | es_CO |
dc.relation.references | 37. Choo, Y.-M., A.S.H. Ong, and C. Kien-Yoo, Oleoquímicos derivados de los aceites de palma y palmiste. Palmas, 1990. 11(2): p. 37-54. | es_CO |
dc.relation.references | 38. Johari, A., et al., The challenges and prospects of palm oil based biodiesel in Malaysia. Energy, 2015. 81: p. 255-261. | es_CO |
dc.relation.references | 39. Acevedo, J.C., et al., Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia. Bioresour Technol, 2015. 188: p. 117-23. | es_CO |
dc.relation.references | 40. Ebewele, R.O., Polymer science and tecnology. 1 ed. Vol. 1. 2000. 540. | es_CO |
dc.relation.references | 41. Smith, W.F. and J. Hashemi, Fundamentos de la ciencia e ingeniería de materiales. 4 ed. Vol. 4. 2006. | es_CO |
dc.relation.references | 42. Askeland, D.R. and P.P. Phulé, Ciencia e Ingenería de los Materiales. 4 ed. 2004. 806. | es_CO |
dc.relation.references | 43. Othmer, K.-. ALKYD RESINS, in Encyclopedia of Chemical Technology, J.W. Sons, Editor. 1993. | es_CO |
dc.relation.references | 44. Aydin, S., et al., The effects of anhydride type and amount on viscosity and film properties of alkyd resin. Progress in Organic Coatings, 2004. 51(4): p. 273-279. | es_CO |
dc.relation.references | 45. Ibanga, O.I. and W.N. Edet, Influence of Polybasic Acid Type on the Physicochemical and Viscosity Properties of Cottonseed Oil Alkyd Resins. The International Journal Of Engineering And Science, 2013. 2(5): p. 01-14. | es_CO |
dc.relation.references | 46. Deligny, P. and N. Tuck, RESINS FORSURFACE COATING. 2 ed. Vol. 2. 1989. | es_CO |
dc.relation.references | 47. Montero de Espinosa, L. and M.A.R. Meier, Plant oils: The perfect renewable resource for polymer science?! European Polymer Journal, 2011. 47(5): p. 837-852. | es_CO |
dc.relation.references | 48. Panda, H., Alkyd Resins Technology Handbook. 2010: Asia Pacific Business Press Inc. 424. | es_CO |
dc.relation.references | 49. Oladipo, G.O., I.C. Eromosele, and O.M. Folarin, Formation and Characterization of Paint Based on Alkyd Resin Derivative of Ximenia americana (Wild Olive) Seed Oil. Environment and Natural Resources Research, 2013. 3(3). | es_CO |
dc.relation.references | 50. Aigbodion, A.I. and F.E. Okieimen, Kinetics of the preparation of rubber seed oil alkyds. Europa polymer journal, 1996. 32(9): p. 1105 - 1108. | es_CO |
dc.relation.references | 51. Aigbodion, A.I. and F.E. Okieimen, An investigation of the utilisation of African locust bean seed oil in the preparation of alkyd resins. Industrial Crops and Products 2001. 13: p. 29 - 34. | es_CO |
dc.relation.references | 52. Patel, V.C., et al., Synthesis of alkyd resin from jatropha and rapeseed oils and their applications in electrical insulation. Journal of Applied Polymer Science, 2008. 107(3): p. 1724-1729. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Maldonado_2015_TG.pdf | Maldonado_2015_TG | 7,77 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.