Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4178
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Suárez Rojas, Luis Martín. | - |
dc.date.accessioned | 2022-11-04T11:42:06Z | - |
dc.date.available | 2021-10-01 | - |
dc.date.available | 2022-11-04T11:42:06Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Suárez Rojas, L. M. (2021). Análisis térmico del aislamiento de un dispositivo de extrusión de ariete a baja escala, para el reciclaje de bolsas plásticas [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4178 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4178 | - |
dc.description | En el presente proyecto, se realizó un análisis térmico, para el diseño óptimo de las paredes del cilindro de un dispositivo de extrusión de ariete, para la reutilización de bolsas plásticas. Se establecieron las condiciones térmicas propias del material que compone las bolsas, condiciones del ambiente y los parámetros dimensionales del dispositivo. Como primera etapa, se realizó la selección del material aislante adecuado para obtener las condiciones de funcionamiento deseadas, por medio de la metodología de Ashby y con la ayuda del software Granta EduPack, en donde los principales criterios de selección fueron la baja conductividad térmica y la máxima temperatura de servicio. Como variables secundarias se definió el costo del material y la densidad, con el fin de reducir el costo y la masa del material. En la segunda etapa con los materiales obtenidos, se realizó un modelo de transferencia de calor en estado estacionario, por medio del método de elementos finitos en ANSYS, para determinar el espesor óptimo de cada material, con el cual la temperatura exterior alcanzara un valor definido. Luego, se calculó el volumen correspondiente al valor de espesor, para determinar la cantidad en Kg del material y posteriormente el costo del mismo. Por medio del valor de espesor y costo, se estableció el material aislante óptimo para ser adecuado al dispositivo de extrusión de ariete Como tercera etapa se analizó el proceso de fundición del material, teniendo en cuenta las condiciones de procesamiento del material. El análisis se llevó a cabo a un modelo por el método del método de elementos finitos en ANSYS para estado transitorio, con el fin de definir la cantidad de tiempo necesario, en donde la parte central del material alcanzara la temperatura de procesamiento. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 73 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona- Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Análisis térmico del aislamiento de un dispositivo de extrusión de ariete a baja escala, para el reciclaje de bolsas plásticas. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-07-01 | - |
dc.relation.references | R. Coyle, G. Hardiman, and K. O. Driscoll, “Microplastics in the marine environment: A review of their sources, distribution processes and uptake into ecosystems,” Case Stud. Chem. Environ. Eng., p. 100010, 2020, doi: 10.1016/j.cscee.2020.100010 | es_CO |
dc.relation.references | H. H. Wu, “A study on transnational regulatory governance for marine plastic debris: Trends, challenges, and prospect,” Mar. Policy, no. February, p. 103988, 2020, doi: 10.1016/j.marpol.2020.103988 | es_CO |
dc.relation.references | G. G. N. Thushari and J. D. M. Senevirathna, “Plastic pollution in the marine environment,” Heliyon, vol. 6, no. 8, p. e04709, 2020, doi: 10.1016/j.heliyon.2020.e04709. | es_CO |
dc.relation.references | A. Gracia C., N. Rangel-Buitrago, and P. Flórez, “Beach litter and woody-debris colonizers on the Atlantico department Caribbean coastline, Colombia,” Mar. Pollut. Bull., vol. 128, no. December 2017, pp. 185–196, 2018, doi: 10.1016/j.marpolbul.2018.01.017 | es_CO |
dc.relation.references | J. Maris, S. Bourdon, J. M. Brossard, L. Cauret, L. Fontaine, and V. Montembault, “Mechanical recycling: Compatibilization of mixed thermoplastic wastes,” Polym. Degrad. Stab., vol. 147, no. October 2017, pp. 245–266, 2018, doi: 10.1016/j.polymdegradstab.2017.11.001. | es_CO |
dc.relation.references | S. Devasahayam, G. Bhaskar Raju, and C. Mustansar Hussain, “Utilization and recycling of end of life plastics for sustainable and clean industrial processes including the iron and steel industry,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 634–646, 2019, doi: 10.1016/j.mset.2019.08.002 | es_CO |
dc.relation.references | M. Biron, Recycling Plastics: Advantages and Limitations of Use. 2020. | es_CO |
dc.relation.references | C. A. Tshifularo and A. Patnaik, Recycling of plastics into textile raw materials and products. Elsevier, 2020. | es_CO |
dc.relation.references | E. Schmaltz et al., “Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution,” Environ. Int., vol. 144, no. September, 2020, doi: 10.1016/j.envint.2020.106067. | es_CO |
dc.relation.references | A. M. Paramonov, “Heating furnaces efficiency improvement,” Procedia Eng., vol. 113, pp. 181–185, 2015, doi: 10.1016/j.proeng.2015.07.315. | es_CO |
dc.relation.references | H. Binici, O. Aksogan, A. Dıncer, E. Luga, M. Eken, and O. Isikaltun, “The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production,” Therm. Sci. Eng. Prog., vol. 18, no. May, 2020, doi: 10.1016/j.tsep.2020.100567. | es_CO |
dc.relation.references | W. Villasmil, L. J. Fischer, and J. Worlitschek, “A review and evaluation of thermal insulation materials and methods for thermal energy storage systems,” Renew. Sustain. Energy Rev., vol. 103, no. July 2018, pp. 71–84, 2019, doi: 10.1016/j.rser.2018.12.040. | es_CO |
dc.relation.references | V. C. Tudor, A. Marin, D. Z. Vasca, M. M. Micu, and D. I. Smedescu, “The influence of the plastic bags on the environment,” Mater. Plast., vol. 55, pp. 595–599, 2018, doi: 10.37358/mp.18.4.5081. | es_CO |
dc.relation.references | E. Stauffer, J. A. Dolan, and R. Newman, “CHAPTER 3 - Review of Basic Organic Chemistry,” E. Stauffer, J. A. Dolan, and R. B. T.-F. D. A. Newman, Eds. Burlington: Academic Press, 2008, pp. 49–83. | es_CO |
dc.relation.references | J. G. Speight, Monomers, Polymers, and Plastics. 2011. | es_CO |
dc.relation.references | W. Smith and J. Hashemi, Fundamentos de la ciencia e ingeniería de los materiales, Quinta edi. 2014. | es_CO |
dc.relation.references | D. R. Askeland and W. J. Wright, Ciencia e ingeniería de materiales, Séptima ed. 2017 | es_CO |
dc.relation.references | A. P. B. T.-I. to A. M. Mouritz, Ed., “13 - Polymers for aerospace structures,” Woodhead Publishing, 2012, pp. 268–302. | es_CO |
dc.relation.references | S. Ronca, Polyethylene, no. 1930. Elsevier Ltd, 2017 | es_CO |
dc.relation.references | S. E. Selke and R. J. Hernandez, “Packaging: Polymers in Flexible Packaging,” K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. B. T.-E. of M. S. and T. Veyssière, Eds. Oxford: Elsevier, 2001, pp. 6652–6656. | es_CO |
dc.relation.references | M. Gilbert, “Relation of Structure to Thermal and Mechanical Properties,” Brydson’s Plast. Mater. Eighth Ed., pp. 59–73, 2017, doi: 10.1016/B978-0-323-35824-8.00004- 9 | es_CO |
dc.relation.references | Y. Teck Kim, B. Min, and K. Won Kim, “Chapter 2 - General Characteristics of Packaging Materials for Food System,” in Food Science and Technology, J. H. B. T.- I. in F. P. (Second E. Han, Ed. San Diego: Academic Press, 2014, pp. 13–35. | es_CO |
dc.relation.references | G. Wypych and G. Wypych, “LDPE low density polyethylene,” Handb. Polym., pp. 178–184, Jan. 2016, doi: 10.1016/B978-1-895198-92-8.50059-8. | es_CO |
dc.relation.references | N. S. Rao and N. S. Rao, “3 – Transport Properties of Molten Polymers,” in Basic Polymer Engineering Data, 2017, pp. 43–85 | es_CO |
dc.relation.references | S. Kalpakjian and S. Steven R., Manufactura, ingeniería y tecnología, Tercera ed. 2014. | es_CO |
dc.relation.references | M. Groover, Fundamentos de manufactura moderna, Tercera ed. 2007. | es_CO |
dc.relation.references | S. Ebnesajjad, “10 - Fabrication and Processing of Granular Polytetrafluoroethylene,” vol. 1, S. B. T.-F. (Second E. Ebnesajjad, Ed. Oxford: William Andrew Publishing, 2015, pp. 177–233. | es_CO |
dc.relation.references | J. R. Wagner, E. M. Mount, and H. F. Giles, “3 - Single Screw Extruder: Equipment,” in Plastics Design Library, J. R. Wagner, E. M. Mount, and H. F. B. T.-E. (Second E. Giles, Eds. Oxford: William Andrew Publishing, 2014, pp. 17–46. | es_CO |
dc.relation.references | R. Boulahia et al., “Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: Effects of back-pressure and extrusion velocity,” Polymer (Guildf)., vol. 50, no. 23, pp. 5508–5517, 2009, doi: https://doi.org/10.1016/j.polymer.2009.09.050. | es_CO |
dc.relation.references | S. Ebnesajjad and P. R. Khaladkar, “5 - Manufacturing of Parts From Tetrafluoroethylene Homopolymers,” in Plastics Design Library, S. Ebnesajjad and P. R. B. T.-F. A. in the C. P. I. (Second E. Khaladkar, Eds. William Andrew Publishing, 2018, pp. 185–218. | es_CO |
dc.relation.references | R. Kent, “Chapter 5 - Processing,” R. B. T.-E. M. in P. P. (Third E. Kent, Ed. Elsevier, 2018, pp. 211–318. | es_CO |
dc.relation.references | Braskem, “Technical bulletin-Ram Extrusion,” pp. 1–5. | es_CO |
dc.relation.references | J. B. Ott and J. Boerio-Goates, “Chapter 1 - Introduction,” J. B. Ott and J. B. T.-C. T. P. and A. Boerio-Goates, Eds. London: Academic Press, 2000, pp. 1–36. | es_CO |
dc.relation.references | Y. A. Cengel, Transferencia de calor y masa, Cuarta Edi. 2011. | es_CO |
dc.relation.references | J. Silver, J.-P. Lalonde, T. Mihalik, and D. Wittenberger, “Chapter 7 - Medtronic CryoCath Technology,” A. J. Bredikis and D. J. B. T.-C. of C. A. Wilber, Eds. Saint Louis: W.B. Saunders, 2011, pp. 81–90. | es_CO |
dc.relation.references | P. M. Doran, “8 - Heat Transfer,” P. M. B. T.-B. E. P. Doran, Ed. London: Academic Press, 1995, pp. 164–189. | es_CO |
dc.relation.references | M. Ghassemi and A. Shahidian, “Chapter 3 - Biosystems Heat and Mass Transfer,” M. Ghassemi and A. B. T.-N. and B. H. T. and F. F. Shahidian, Eds. Oxford: Academic Press, 2017, pp. 31–56. | es_CO |
dc.relation.references | P. Kosky, R. Balmer, W. Keat, and G. Wise, “Chapter 12 - Mechanical Engineering,” P. Kosky, R. Balmer, W. Keat, and G. B. T.-E. E. (Third E. Wise, Eds. Boston: Academic Press, 2013, pp. 259–281. | es_CO |
dc.relation.references | M. F. Ashby, P. J. Ferreira, and D. L. Schodek, “Chapter 9 - Design Environments and Systems,” M. F. Ashby, P. J. Ferreira, and D. L. B. T.-N. Schodek Nanotechnologies and Design, Eds. Boston: Butterworth-Heinemann, 2009, pp. 291–402 | es_CO |
dc.relation.references | H. Zhang, “12 - Heat-insulating Materials and Sound-absorbing Materials,” in Woodhead Publishing Series in Civil and Structural Engineering, H. B. T.-B. M. in C. E. Zhang, Ed. Woodhead Publishing, 2011, pp. 304–423. | es_CO |
dc.relation.references | P. S. Liu and G. F. Chen, “Chapter Ten - Characterization Methods: Physical Properties,” P. S. Liu and G. F. B. T.-P. M. Chen, Eds. Boston: Butterworth Heinemann, 2014, pp. 493–532. | es_CO |
dc.relation.references | Y. Demirel and V. Gerbaud, “Chapter 2 - Transport and Rate Processes,” Y. Demirel and V. B. T.-N. T. (Fourth E. Gerbaud, Eds. Elsevier, 2019, pp. 87–133. | es_CO |
dc.relation.references | G. B. T.-H. of N. A. Wypych, Ed., “12 - EFFECT OF NUCLEATING AGENTS ON PHYSICAL-MECHANICAL PROPERTIES,” ChemTec Publishing, 2016, pp. 205– 215 | es_CO |
dc.relation.references | S. Basu, “Chapter 1 - Introduction and Fundamental Concepts,” in Micro and Nano Technologies, S. B. T.-N.-F. R. H. T. A. N. V. G. Basu, Ed. William Andrew Publishing, 2016, pp. 1–44. | es_CO |
dc.relation.references | T. Kim, T. J. Lu, and S. J. Song, “Chapter 1 - Experimentation in Aerodynamics and Heat Transfer,” T. Kim, T. J. Lu, and S. J. B. T.-A. of T.-F. M. T. Song, Eds. Butterworth-Heinemann, 2016, pp. 1–12. | es_CO |
dc.relation.references | M. Colombo and M. Fairweather, “Application of CFD modelling to external nuclear reactor vessel cooling,” in 28 European Symposium on Computer Aided Process Engineering, vol. 43, A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, and T. B. T.-C. A. C. E. Wallek, Eds. Elsevier, 2018, pp. 1027–1032. | es_CO |
dc.relation.references | J. L. Monteith and M. H. Unsworth, “Chapter 11 - Mass Transfer: (i) Gases and Water Vapor,” J. L. Monteith and M. H. B. T.-P. of E. P. (Fourth E. Unsworth, Eds. Boston: Academic Press, 2013, pp. 179–198. | es_CO |
dc.relation.references | D. U. Shah, “Natural fibre composites: Comprehensive Ashby-type materials selection charts,” Mater. Des., vol. 62, pp. 21–31, 2014, doi: 10.1016/j.matdes.2014.05.002. | es_CO |
dc.relation.references | A. Rashedi, I. Sridhar, and K. J. Tseng, “Multi-objective material selection for wind turbine blade and tower: Ashby’s approach,” Mater. Des., vol. 37, pp. 521–532, 2012, doi: 10.1016/j.matdes.2011.12.048. | es_CO |
dc.relation.references | R. Bolivar, “Selección de materiales,” in Selección de materiales, . | es_CO |
dc.relation.references | G. R. Liu and S. S. Quek, FEM for Heat Transfer Problems. 2014 | es_CO |
dc.relation.references | S. C. Chapra and P. R. Canale, Métodos numéricos para ingenieros, Séptima ed. 2015. | es_CO |
dc.relation.references | G. R. Liu and S. S. Quek, “Chapter 3 - Fundamentals for Finite Element Method,” G. R. Liu and S. S. B. T.-T. F. E. M. (Second E. Quek, Eds. Oxford: Butterworth Heinemann, 2014, pp. 43–79. | es_CO |
dc.relation.references | M. K. Mondal, B. P. Bose, and P. Bansal, “Recycling waste thermoplastic for energy efficient construction materials : An experimental investigation,” J. Environ. Manage., vol. 240, no. February, pp. 119–125, 2019, doi: 10.1016/j.jenvman.2019.03.016. | es_CO |
dc.relation.references | I. M. Khan, S. Kabir, M. A. Alhussain, and F. F. Almansoor, “Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction,” Procedia Eng., vol. 145, pp. 1557–1564, 2016, doi: 10.1016/j.proeng.2016.04.196. | es_CO |
dc.relation.references | M. A. B. Animpong et al., “Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels,” South African J. Chem. Eng., vol. 24, pp. 55–61, 2017, doi: 10.1016/j.sajce.2017.01.004 | es_CO |
dc.relation.references | W. L. Chen and K. L. Wong, “A reliable analytical method applied to heat transfer problems associated with insulated cylindrical tanks,” Energy Convers. Manag., vol. 48, no. 2, pp. 679–687, 2007, doi: 10.1016/j.enconman.2006.04.023. | es_CO |
dc.relation.references | M. Nowak-Ocłoń and P. Ocłoń, “Thermal and economic analysis of preinsulated and twin-pipe heat network operation,” Energy, vol. 193, 2020, doi: 10.1016/j.energy.2019.116619. | es_CO |
dc.relation.references | M. Rezvani Rad and A. McDonald, “Mathematical simulation of heating and melting of solid ice in a carbon steel pipe coated with a resistive heating system,” Int. J. Heat Mass Transf., vol. 138, pp. 923–940, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.04.088. | es_CO |
dc.relation.references | M. Sakin, F. Kaymak-Ertekin, and C. Ilicali, “Convection and radiation combined surface heat transfer coefficient in baking ovens,” J. Food Eng., vol. 94, no. 3–4, pp. 344–349, 2009, doi: 10.1016/j.jfoodeng.2009.03.027 | es_CO |
dc.relation.references | D. Czarnecka-Komorowska, K. Wiszumirska, and T. Garbacz, “Films Ldpe/Lldpe Made From Post - Consumer Plastics: Processing, Structure, Mechanical Properties,” Adv. Sci. Technol. Res. J., vol. 12, no. 3, pp. 134–142, 2018, doi: 10.12913/22998624/92205 | es_CO |
dc.relation.references | Y. Teymouri and H. Nazockdast, “The effect of process parameters on physical and mechanical properties of commercial low density polyethylene/ORG-MMT nanocomposites,” J. Mater. S | es_CO |
dc.relation.references | A. Bahadori, Material Selection for Thermal Insulation. 2014 | es_CO |
dc.relation.references | K. G. Ambli, B. M. Dodamani, A. Jagadeesh, and M. B. Vanarotti, “Heterogeneous composites for low and medium temperature thermal insulation: A review,” Energy Build., vol. 199, pp. 455–460, 2019, doi: 10.1016/j.enbuild.2019.07.024 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Mecánica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Suárez_2021_TG.pdf | Suárez_2021_TG | 2,35 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.