• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Mecánica
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4178
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorSuárez Rojas, Luis Martín.-
    dc.date.accessioned2022-11-04T11:42:06Z-
    dc.date.available2021-10-01-
    dc.date.available2022-11-04T11:42:06Z-
    dc.date.issued2022-
    dc.identifier.citationSuárez Rojas, L. M. (2021). Análisis térmico del aislamiento de un dispositivo de extrusión de ariete a baja escala, para el reciclaje de bolsas plásticas [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4178es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4178-
    dc.descriptionEn el presente proyecto, se realizó un análisis térmico, para el diseño óptimo de las paredes del cilindro de un dispositivo de extrusión de ariete, para la reutilización de bolsas plásticas. Se establecieron las condiciones térmicas propias del material que compone las bolsas, condiciones del ambiente y los parámetros dimensionales del dispositivo. Como primera etapa, se realizó la selección del material aislante adecuado para obtener las condiciones de funcionamiento deseadas, por medio de la metodología de Ashby y con la ayuda del software Granta EduPack, en donde los principales criterios de selección fueron la baja conductividad térmica y la máxima temperatura de servicio. Como variables secundarias se definió el costo del material y la densidad, con el fin de reducir el costo y la masa del material. En la segunda etapa con los materiales obtenidos, se realizó un modelo de transferencia de calor en estado estacionario, por medio del método de elementos finitos en ANSYS, para determinar el espesor óptimo de cada material, con el cual la temperatura exterior alcanzara un valor definido. Luego, se calculó el volumen correspondiente al valor de espesor, para determinar la cantidad en Kg del material y posteriormente el costo del mismo. Por medio del valor de espesor y costo, se estableció el material aislante óptimo para ser adecuado al dispositivo de extrusión de ariete Como tercera etapa se analizó el proceso de fundición del material, teniendo en cuenta las condiciones de procesamiento del material. El análisis se llevó a cabo a un modelo por el método del método de elementos finitos en ANSYS para estado transitorio, con el fin de definir la cantidad de tiempo necesario, en donde la parte central del material alcanzara la temperatura de procesamiento.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent73es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona- Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleAnálisis térmico del aislamiento de un dispositivo de extrusión de ariete a baja escala, para el reciclaje de bolsas plásticas.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-07-01-
    dc.relation.referencesR. Coyle, G. Hardiman, and K. O. Driscoll, “Microplastics in the marine environment: A review of their sources, distribution processes and uptake into ecosystems,” Case Stud. Chem. Environ. Eng., p. 100010, 2020, doi: 10.1016/j.cscee.2020.100010es_CO
    dc.relation.referencesH. H. Wu, “A study on transnational regulatory governance for marine plastic debris: Trends, challenges, and prospect,” Mar. Policy, no. February, p. 103988, 2020, doi: 10.1016/j.marpol.2020.103988es_CO
    dc.relation.referencesG. G. N. Thushari and J. D. M. Senevirathna, “Plastic pollution in the marine environment,” Heliyon, vol. 6, no. 8, p. e04709, 2020, doi: 10.1016/j.heliyon.2020.e04709.es_CO
    dc.relation.referencesA. Gracia C., N. Rangel-Buitrago, and P. Flórez, “Beach litter and woody-debris colonizers on the Atlantico department Caribbean coastline, Colombia,” Mar. Pollut. Bull., vol. 128, no. December 2017, pp. 185–196, 2018, doi: 10.1016/j.marpolbul.2018.01.017es_CO
    dc.relation.referencesJ. Maris, S. Bourdon, J. M. Brossard, L. Cauret, L. Fontaine, and V. Montembault, “Mechanical recycling: Compatibilization of mixed thermoplastic wastes,” Polym. Degrad. Stab., vol. 147, no. October 2017, pp. 245–266, 2018, doi: 10.1016/j.polymdegradstab.2017.11.001.es_CO
    dc.relation.referencesS. Devasahayam, G. Bhaskar Raju, and C. Mustansar Hussain, “Utilization and recycling of end of life plastics for sustainable and clean industrial processes including the iron and steel industry,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 634–646, 2019, doi: 10.1016/j.mset.2019.08.002es_CO
    dc.relation.referencesM. Biron, Recycling Plastics: Advantages and Limitations of Use. 2020.es_CO
    dc.relation.referencesC. A. Tshifularo and A. Patnaik, Recycling of plastics into textile raw materials and products. Elsevier, 2020.es_CO
    dc.relation.referencesE. Schmaltz et al., “Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution,” Environ. Int., vol. 144, no. September, 2020, doi: 10.1016/j.envint.2020.106067.es_CO
    dc.relation.referencesA. M. Paramonov, “Heating furnaces efficiency improvement,” Procedia Eng., vol. 113, pp. 181–185, 2015, doi: 10.1016/j.proeng.2015.07.315.es_CO
    dc.relation.referencesH. Binici, O. Aksogan, A. Dıncer, E. Luga, M. Eken, and O. Isikaltun, “The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production,” Therm. Sci. Eng. Prog., vol. 18, no. May, 2020, doi: 10.1016/j.tsep.2020.100567.es_CO
    dc.relation.referencesW. Villasmil, L. J. Fischer, and J. Worlitschek, “A review and evaluation of thermal insulation materials and methods for thermal energy storage systems,” Renew. Sustain. Energy Rev., vol. 103, no. July 2018, pp. 71–84, 2019, doi: 10.1016/j.rser.2018.12.040.es_CO
    dc.relation.referencesV. C. Tudor, A. Marin, D. Z. Vasca, M. M. Micu, and D. I. Smedescu, “The influence of the plastic bags on the environment,” Mater. Plast., vol. 55, pp. 595–599, 2018, doi: 10.37358/mp.18.4.5081.es_CO
    dc.relation.referencesE. Stauffer, J. A. Dolan, and R. Newman, “CHAPTER 3 - Review of Basic Organic Chemistry,” E. Stauffer, J. A. Dolan, and R. B. T.-F. D. A. Newman, Eds. Burlington: Academic Press, 2008, pp. 49–83.es_CO
    dc.relation.referencesJ. G. Speight, Monomers, Polymers, and Plastics. 2011.es_CO
    dc.relation.referencesW. Smith and J. Hashemi, Fundamentos de la ciencia e ingeniería de los materiales, Quinta edi. 2014.es_CO
    dc.relation.referencesD. R. Askeland and W. J. Wright, Ciencia e ingeniería de materiales, Séptima ed. 2017es_CO
    dc.relation.referencesA. P. B. T.-I. to A. M. Mouritz, Ed., “13 - Polymers for aerospace structures,” Woodhead Publishing, 2012, pp. 268–302.es_CO
    dc.relation.referencesS. Ronca, Polyethylene, no. 1930. Elsevier Ltd, 2017es_CO
    dc.relation.referencesS. E. Selke and R. J. Hernandez, “Packaging: Polymers in Flexible Packaging,” K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. B. T.-E. of M. S. and T. Veyssière, Eds. Oxford: Elsevier, 2001, pp. 6652–6656.es_CO
    dc.relation.referencesM. Gilbert, “Relation of Structure to Thermal and Mechanical Properties,” Brydson’s Plast. Mater. Eighth Ed., pp. 59–73, 2017, doi: 10.1016/B978-0-323-35824-8.00004- 9es_CO
    dc.relation.referencesY. Teck Kim, B. Min, and K. Won Kim, “Chapter 2 - General Characteristics of Packaging Materials for Food System,” in Food Science and Technology, J. H. B. T.- I. in F. P. (Second E. Han, Ed. San Diego: Academic Press, 2014, pp. 13–35.es_CO
    dc.relation.referencesG. Wypych and G. Wypych, “LDPE low density polyethylene,” Handb. Polym., pp. 178–184, Jan. 2016, doi: 10.1016/B978-1-895198-92-8.50059-8.es_CO
    dc.relation.referencesN. S. Rao and N. S. Rao, “3 – Transport Properties of Molten Polymers,” in Basic Polymer Engineering Data, 2017, pp. 43–85es_CO
    dc.relation.referencesS. Kalpakjian and S. Steven R., Manufactura, ingeniería y tecnología, Tercera ed. 2014.es_CO
    dc.relation.referencesM. Groover, Fundamentos de manufactura moderna, Tercera ed. 2007.es_CO
    dc.relation.referencesS. Ebnesajjad, “10 - Fabrication and Processing of Granular Polytetrafluoroethylene,” vol. 1, S. B. T.-F. (Second E. Ebnesajjad, Ed. Oxford: William Andrew Publishing, 2015, pp. 177–233.es_CO
    dc.relation.referencesJ. R. Wagner, E. M. Mount, and H. F. Giles, “3 - Single Screw Extruder: Equipment,” in Plastics Design Library, J. R. Wagner, E. M. Mount, and H. F. B. T.-E. (Second E. Giles, Eds. Oxford: William Andrew Publishing, 2014, pp. 17–46.es_CO
    dc.relation.referencesR. Boulahia et al., “Deformation behaviour and mechanical properties of polypropylene processed by equal channel angular extrusion: Effects of back-pressure and extrusion velocity,” Polymer (Guildf)., vol. 50, no. 23, pp. 5508–5517, 2009, doi: https://doi.org/10.1016/j.polymer.2009.09.050.es_CO
    dc.relation.referencesS. Ebnesajjad and P. R. Khaladkar, “5 - Manufacturing of Parts From Tetrafluoroethylene Homopolymers,” in Plastics Design Library, S. Ebnesajjad and P. R. B. T.-F. A. in the C. P. I. (Second E. Khaladkar, Eds. William Andrew Publishing, 2018, pp. 185–218.es_CO
    dc.relation.referencesR. Kent, “Chapter 5 - Processing,” R. B. T.-E. M. in P. P. (Third E. Kent, Ed. Elsevier, 2018, pp. 211–318.es_CO
    dc.relation.referencesBraskem, “Technical bulletin-Ram Extrusion,” pp. 1–5.es_CO
    dc.relation.referencesJ. B. Ott and J. Boerio-Goates, “Chapter 1 - Introduction,” J. B. Ott and J. B. T.-C. T. P. and A. Boerio-Goates, Eds. London: Academic Press, 2000, pp. 1–36.es_CO
    dc.relation.referencesY. A. Cengel, Transferencia de calor y masa, Cuarta Edi. 2011.es_CO
    dc.relation.referencesJ. Silver, J.-P. Lalonde, T. Mihalik, and D. Wittenberger, “Chapter 7 - Medtronic CryoCath Technology,” A. J. Bredikis and D. J. B. T.-C. of C. A. Wilber, Eds. Saint Louis: W.B. Saunders, 2011, pp. 81–90.es_CO
    dc.relation.referencesP. M. Doran, “8 - Heat Transfer,” P. M. B. T.-B. E. P. Doran, Ed. London: Academic Press, 1995, pp. 164–189.es_CO
    dc.relation.referencesM. Ghassemi and A. Shahidian, “Chapter 3 - Biosystems Heat and Mass Transfer,” M. Ghassemi and A. B. T.-N. and B. H. T. and F. F. Shahidian, Eds. Oxford: Academic Press, 2017, pp. 31–56.es_CO
    dc.relation.referencesP. Kosky, R. Balmer, W. Keat, and G. Wise, “Chapter 12 - Mechanical Engineering,” P. Kosky, R. Balmer, W. Keat, and G. B. T.-E. E. (Third E. Wise, Eds. Boston: Academic Press, 2013, pp. 259–281.es_CO
    dc.relation.referencesM. F. Ashby, P. J. Ferreira, and D. L. Schodek, “Chapter 9 - Design Environments and Systems,” M. F. Ashby, P. J. Ferreira, and D. L. B. T.-N. Schodek Nanotechnologies and Design, Eds. Boston: Butterworth-Heinemann, 2009, pp. 291–402es_CO
    dc.relation.referencesH. Zhang, “12 - Heat-insulating Materials and Sound-absorbing Materials,” in Woodhead Publishing Series in Civil and Structural Engineering, H. B. T.-B. M. in C. E. Zhang, Ed. Woodhead Publishing, 2011, pp. 304–423.es_CO
    dc.relation.referencesP. S. Liu and G. F. Chen, “Chapter Ten - Characterization Methods: Physical Properties,” P. S. Liu and G. F. B. T.-P. M. Chen, Eds. Boston: Butterworth Heinemann, 2014, pp. 493–532.es_CO
    dc.relation.referencesY. Demirel and V. Gerbaud, “Chapter 2 - Transport and Rate Processes,” Y. Demirel and V. B. T.-N. T. (Fourth E. Gerbaud, Eds. Elsevier, 2019, pp. 87–133.es_CO
    dc.relation.referencesG. B. T.-H. of N. A. Wypych, Ed., “12 - EFFECT OF NUCLEATING AGENTS ON PHYSICAL-MECHANICAL PROPERTIES,” ChemTec Publishing, 2016, pp. 205– 215es_CO
    dc.relation.referencesS. Basu, “Chapter 1 - Introduction and Fundamental Concepts,” in Micro and Nano Technologies, S. B. T.-N.-F. R. H. T. A. N. V. G. Basu, Ed. William Andrew Publishing, 2016, pp. 1–44.es_CO
    dc.relation.referencesT. Kim, T. J. Lu, and S. J. Song, “Chapter 1 - Experimentation in Aerodynamics and Heat Transfer,” T. Kim, T. J. Lu, and S. J. B. T.-A. of T.-F. M. T. Song, Eds. Butterworth-Heinemann, 2016, pp. 1–12.es_CO
    dc.relation.referencesM. Colombo and M. Fairweather, “Application of CFD modelling to external nuclear reactor vessel cooling,” in 28 European Symposium on Computer Aided Process Engineering, vol. 43, A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, and T. B. T.-C. A. C. E. Wallek, Eds. Elsevier, 2018, pp. 1027–1032.es_CO
    dc.relation.referencesJ. L. Monteith and M. H. Unsworth, “Chapter 11 - Mass Transfer: (i) Gases and Water Vapor,” J. L. Monteith and M. H. B. T.-P. of E. P. (Fourth E. Unsworth, Eds. Boston: Academic Press, 2013, pp. 179–198.es_CO
    dc.relation.referencesD. U. Shah, “Natural fibre composites: Comprehensive Ashby-type materials selection charts,” Mater. Des., vol. 62, pp. 21–31, 2014, doi: 10.1016/j.matdes.2014.05.002.es_CO
    dc.relation.referencesA. Rashedi, I. Sridhar, and K. J. Tseng, “Multi-objective material selection for wind turbine blade and tower: Ashby’s approach,” Mater. Des., vol. 37, pp. 521–532, 2012, doi: 10.1016/j.matdes.2011.12.048.es_CO
    dc.relation.referencesR. Bolivar, “Selección de materiales,” in Selección de materiales, .es_CO
    dc.relation.referencesG. R. Liu and S. S. Quek, FEM for Heat Transfer Problems. 2014es_CO
    dc.relation.referencesS. C. Chapra and P. R. Canale, Métodos numéricos para ingenieros, Séptima ed. 2015.es_CO
    dc.relation.referencesG. R. Liu and S. S. Quek, “Chapter 3 - Fundamentals for Finite Element Method,” G. R. Liu and S. S. B. T.-T. F. E. M. (Second E. Quek, Eds. Oxford: Butterworth Heinemann, 2014, pp. 43–79.es_CO
    dc.relation.referencesM. K. Mondal, B. P. Bose, and P. Bansal, “Recycling waste thermoplastic for energy efficient construction materials : An experimental investigation,” J. Environ. Manage., vol. 240, no. February, pp. 119–125, 2019, doi: 10.1016/j.jenvman.2019.03.016.es_CO
    dc.relation.referencesI. M. Khan, S. Kabir, M. A. Alhussain, and F. F. Almansoor, “Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction,” Procedia Eng., vol. 145, pp. 1557–1564, 2016, doi: 10.1016/j.proeng.2016.04.196.es_CO
    dc.relation.referencesM. A. B. Animpong et al., “Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels,” South African J. Chem. Eng., vol. 24, pp. 55–61, 2017, doi: 10.1016/j.sajce.2017.01.004es_CO
    dc.relation.referencesW. L. Chen and K. L. Wong, “A reliable analytical method applied to heat transfer problems associated with insulated cylindrical tanks,” Energy Convers. Manag., vol. 48, no. 2, pp. 679–687, 2007, doi: 10.1016/j.enconman.2006.04.023.es_CO
    dc.relation.referencesM. Nowak-Ocłoń and P. Ocłoń, “Thermal and economic analysis of preinsulated and twin-pipe heat network operation,” Energy, vol. 193, 2020, doi: 10.1016/j.energy.2019.116619.es_CO
    dc.relation.referencesM. Rezvani Rad and A. McDonald, “Mathematical simulation of heating and melting of solid ice in a carbon steel pipe coated with a resistive heating system,” Int. J. Heat Mass Transf., vol. 138, pp. 923–940, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.04.088.es_CO
    dc.relation.referencesM. Sakin, F. Kaymak-Ertekin, and C. Ilicali, “Convection and radiation combined surface heat transfer coefficient in baking ovens,” J. Food Eng., vol. 94, no. 3–4, pp. 344–349, 2009, doi: 10.1016/j.jfoodeng.2009.03.027es_CO
    dc.relation.referencesD. Czarnecka-Komorowska, K. Wiszumirska, and T. Garbacz, “Films Ldpe/Lldpe Made From Post - Consumer Plastics: Processing, Structure, Mechanical Properties,” Adv. Sci. Technol. Res. J., vol. 12, no. 3, pp. 134–142, 2018, doi: 10.12913/22998624/92205es_CO
    dc.relation.referencesY. Teymouri and H. Nazockdast, “The effect of process parameters on physical and mechanical properties of commercial low density polyethylene/ORG-MMT nanocomposites,” J. Mater. Ses_CO
    dc.relation.referencesA. Bahadori, Material Selection for Thermal Insulation. 2014es_CO
    dc.relation.referencesK. G. Ambli, B. M. Dodamani, A. Jagadeesh, and M. B. Vanarotti, “Heterogeneous composites for low and medium temperature thermal insulation: A review,” Energy Build., vol. 199, pp. 455–460, 2019, doi: 10.1016/j.enbuild.2019.07.024es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Mecánica

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Suárez_2021_TG.pdfSuárez_2021_TG2,35 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.