• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Mecánica
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4156
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMoreno Parra, Cristian David.-
    dc.date.accessioned2022-11-03T17:49:11Z-
    dc.date.available2022-03-06-
    dc.date.available2022-11-03T17:49:11Z-
    dc.date.issued2022-
    dc.identifier.citationMoreno Parra, C. D. (2021). Simulación del ruido generado en el perfil aerodinámico NACA0012 [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4156es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4156-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent94es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona- Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleSimulación del ruido generado en el perfil aerodinámico NACA0012.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2021-12-06-
    dc.relation.referencesJ. L. Sawin et al., “Renewables 2012 Global Status Report. REN21 Secretariat, Paris,” Ren21, pp. 1–172, 2012, [Online]. Available: http://www.ren21.net/REN21Activities/GlobalStatusReport.aspx.es_CO
    dc.relation.referencesA. E. P. Guzmán, J. D. P. Páez, and D. F. C. León, Simulación Aero acústica de un plano Aeronáutico.es_CO
    dc.relation.referencesZ. Zeng, “Aumenta la velocidad del viento en la Tierra,” confidencial, 2019. https://www.elconfidencial.com/tecnologia/ciencia/2019-11-19/aumenta velocidad-viento-tierra-energia-eolica_2342542/#:~:text=Como ejemplo%2C los investigadores calcularon,aumento del 37%25 para 2024es_CO
    dc.relation.referencesA. Laratro, M. Arjomandi, B. Cazzolato, and R. Kelso, “Self-noise of NACA 0012 and NACA 0021 aerofoils at the onset of stall,” Int. J. Aeroacoustics, vol. 16, no. 3, pp. 181–195, 2017, doi: 10.1177/1475472X17709929.es_CO
    dc.relation.referencesP. Ma, F. S. Lien, and E. Yee, “Coarse-resolution numerical prediction of small wind turbine noise with validation against field measurements,” Renew. Energy, vol. 102, pp. 502–515, 2017, doi: 10.1016/j.renene.2016.10.070.es_CO
    dc.relation.referencesM. Di LEO, “FINITOS,” Univ. Nac. La Plata, vol. XXII, pp. 72–86, 2003es_CO
    dc.relation.referencesA. Tadamasa and M. Zangeneh, “Numerical prediction of wind turbine noise,” Renew. Energy, vol. 36, no. 7, pp. 1902–1912, 2011, doi: 10.1016/j.renene.2010.11.036.es_CO
    dc.relation.referencesP. Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe; Fuglsang, Wind turbine airfoil catalogue. 2001.es_CO
    dc.relation.referencesS. Moreau, “LES of the trailing-edge flow and noise of a NACA0012 airfoil near stall,” Univ. sherborken, no. January, 2015.es_CO
    dc.relation.referencesY. Cengel and J. Cimbala, “Mecánica de fluidos. Fundamentos y aplicaciones,” Mc Graw Hill, vol. 1, no. 9, p. 997, 2006.es_CO
    dc.relation.referencesJ. K. Vennard, Elementary Fluid Mechanics. 1940.es_CO
    dc.relation.referencesfrank.m white, fluid mechanics. 2006.es_CO
    dc.relation.referencesM. Okiishi and H. Rothmayer, Fundamentals of Fluid Mechanics. 2016es_CO
    dc.relation.referencesS. Martínez Aranda, “Medida de los coeficientes de arrastre y sustentación y análisis de vibraciones en un ala con perfil NACA 0012,” p. 16, 2013, [Online]. Available: http://www.tuneldeviento.uma.es/index_archivos/martinez_2013.pdf.es_CO
    dc.relation.referencesS. Algozino, J. S. Delnero, and L. Plata, “ANÁLISIS EXPERIMENTAL DE LA PÉRDIDA DINÁMICA EN,” pp. 1–8, 2017.es_CO
    dc.relation.referencesF. A. Everest, the master hand book acoustic. 2021.es_CO
    dc.relation.referencesN. H. Dan Zhao, “Aeroacoustics of wind turbines,” pp. 463–491, 2019, doi: 10.1016/B978-0-12-817135-6.00008-9.es_CO
    dc.relation.referencesAnsys worbech, “ANSYS FLUENT 12.0/12.1 Documentation,” 2017. https://www.afs.enea.it/project/neptunius/docs/fluent/index.htmes_CO
    dc.relation.referencesS. Rodrigues, “Aeroacoustic Optimization of Wind Turbine Blades,” Comput. Intell. …, no. November, 2012, [Online]. Available: https://dspace.ist.utl.pt/bitstream/2295/1305785/1/Thesis.pdf.es_CO
    dc.relation.referencesElías Nicolás, “Impacto Acústico , Referida a La Etapa De Operación,” no. May, 2016.es_CO
    dc.relation.referencesC. Alberto, E. Londo, and A. E. Gonz, “LOS PARQUES EÓLICOS Tesis Doctoral Facultad de Ingeniería Doctorado en Ingeniería Ambiental,” 2017.es_CO
    dc.relation.referencesA. E. Bale, “The Application of MEMS Microphone Arrays to Aeroacoustic Measurements by,” 2011.es_CO
    dc.relation.referencesA. Ranjan, “A review Wind turbine noise and Symposium its mitigation techniques : A review,” Energy Procedia, vol. 160, no. 2018, pp. 633–640, 2019, doi: 10.1016/j.egypro.2019.02.215.es_CO
    dc.relation.referencesS. Adhikari and S. Adhikari, “Cai_c_Zheng_g_Modelling_of_material_prop.pdf.”es_CO
    dc.relation.referencesH. Landes and M. Kaltenbacher, “Large Scale Computation of Coupled Electro-Acoustic Systems using ANSYS Large Scale Computation of Coupled Electro-Acoustic Systems using ANSYS and CAPA,” no. January, 2016.es_CO
    dc.relation.referencesJ. Bartl, K. F. Sagmo, T. Bracchi, and L. Sætran, “Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models,” Eur. J. Mech. B/Fluids, vol. 75, pp. 180–192, 2019, doi: 10.1016/j.euromechflu.2018.10.002.es_CO
    dc.relation.referencesL. M. García-Cuevas González, A. Gil Megías, R. Navarro García, and P. M. Quintero Igeño, “Mecánica de fluidos computacional: tipos de mallas y calidad del mallado,” 2010, [Online]. Available: moz-extension://d3843984-ee3f-4340- a23a-bbff1a3a2e51/enhanced reader.html?openApp&pdf=https%3A%2F%2Friunet.upv.es%2Fbitstream%2 Fhandle%2F10251%2F146219%2FGarc%25C3%25ADa Cuevas%253BGil%253BNavarro%2520- %2520Mec%25C3%25A1nica%2520de%2520fluidos%2520computa.es_CO
    dc.relation.referencesS. Gómez, “Mallado Y Simulación Cfd De Automóvil,” p. 106, 2017, [Online]. Available: https://upcommons.upc.edu/handle/2117/108947.pdf?sequence=1&isAllowe d=y.es_CO
    dc.relation.referencesM. F. Vasquez, “Escuela politècnica nacional,” p. 157, 2019, [Online]. Available: https://bibdigital.epn.edu.ec/handle/15000/786%0Ahttps://bibdigital.epn.edu. ec/bitstream/15000/786/1/CD-1222.pdf.es_CO
    dc.relation.referencesP. Gascó Casado, “Large Eddy Simulation en Perfiles Alares,” 2019.es_CO
    dc.relation.referencesY. Zhou, L. Hou, and D. Huang, “The effects of Mach number on the flow separation control of airfoil with a small plate near the leading edge,” Comput. Fluids, vol. 156, pp. 274–282, 2017, doi: 10.1016/j.compfluid.2017.07.014.es_CO
    dc.relation.referencesM. Anzola and C. Mart, “Validación del coeficiente de sustentación y arrastre para el perfil NACA 0012 en ANSYS® Fluent.”es_CO
    dc.relation.referencesC. Antonio et al., “Performance of an optimized k − bluff bodies turbulence model for flows around,” Mech. Res. Commun., vol. 105, p. 103518, 2020, doi: 10.1016/j.mechrescom.2020.103518es_CO
    dc.relation.referencesA. Tools, “airfoils to0ls,” 2021. http://airfoiltools.com/es_CO
    dc.relation.referencesY. Amini, M. Liravi, and E. Izadpanah, “The effects of Gurney flap on the aerodynamic performance of NACA 0012 airfoil in the rarefied gas flow,” Comput. Fluids, vol. 170, pp. 93–105, 2018, doi: 10.1016/j.compfluid.2018.05.003.es_CO
    dc.relation.references] C. ONLINE, “CFD ONLINE,” 2021. https://www.cfd online.com/Tools/yplus.php.es_CO
    dc.relation.referencesK. Oukassou, S. El, E. Mouhsine, and E. Hajjaji, “Comparison of of the the power , power , lift lift and and drag drag coefficients coefficients of of wind wind turbine turbine blade from aerodynamics characteristics of and blade from aerodynamics characteristics of Naca0012 and June Costing models for c,” Procedia Manuf., vol. 32, pp. 983–990, 2019, doi: 10.1016/j.promfg.2019.02.312.es_CO
    dc.relation.referencesr. . and hays revell, j.d, prydz, “Experimental Study of Airframe Noise vs. Drag Relationship for Circular Cylinders,” IJRAME, vol. 3, p. 91, 2014, [Online]. Available: https://www.academia.edu/5892461/Flow_Noise_Investigation_for_an_Unste ady_Flow_Past_a_Circular_Cylinderes_CO
    dc.relation.referencesT. Ohtake, Y. Nakae, and T. Motohashi, “Nonlinearity of the Aerodynamic Characteristics of NACA0012 Aerofoil at Low Reynolds Numbers,” J. Japan 73 Soc. Aeronaut. Sp. Sci., vol. 55, no. 644, pp. 439–445, 2007, doi: 10.2322/jjsass.55.439.es_CO
    dc.relation.referencesC. J. D. and A. C. Z. G., Elias J., “Ffect of Reynolds NUmber on the FLow,” no. August, pp. 3–7, 2019.es_CO
    dc.relation.referencesY. C. Küçükosman, J. Christophe, and C. Schram, “Trailing edge noise prediction based on wall pressure spectrum models for NACA0012 airfoil,” J. Wind Eng. Ind. Aerodyn., vol. 175, no. July 2017, pp. 305-IBC, 2018, doi: 10.1016/j.jweia.2018.01.030es_CO
    dc.relation.referencesAEMPP, “Peligros del ruido y sus efectos en nuestra saludk,” elsevier, 2018, [Online]. Available: https://www.elsevier.com/es-es/connect/actualidad sanitaria/efectos-negativos-del-ruido-y-su-repercusion-en-nuestes_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Mecánica

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Moreno_2021_TG.pdfMoreno_2021_TG5,07 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.