Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4149
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cáceres Andrade, Carlos Arturo. | - |
dc.date.accessioned | 2022-11-03T16:25:53Z | - |
dc.date.available | 2022-03-09 | - |
dc.date.available | 2022-11-03T16:25:53Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Cáceres Andrade, C. A. (2021). Diseño de un perfil aerodinámico para bajos números de Reynolds mediante herramientas computacionales [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4149 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4149 | - |
dc.description | Este trabajo muestra los resultados obtenidos para el diseño un perfil aerodinámico que maximiza la relación entre los coeficientes de sustentación y de arrastre. Para lo cual se realizo un procedimiento sistemático de parametrización de alta precisi´on y optimizaci´on para un perfil aerodinámico con el fin de mejorar su rendimiento aerodinámico. La curva de Bezier fue la técnica utilizada para la parametrización del perfil aerodinámico mediante la asignación de las coordenadas de los puntos de control que se fijan al inicio del proceso para posteriormente encontrar la geometrıa del perfil y luego se optimizaron mediante el metodo de busqueda directa implementado en el software para garantizar la precisión de ajuste. Luego mediante el software Xfoil se determinan las curvas de desempeño aerodinámico hasta encontrar un perfil con mayor relación entre sustentación y arrastre. El resultado obtenido de la relación sustentación/arrastre del perfil aerodinámico se incrementa uniformemente bajo diferentes ángulos de ataque en comparación con los perfiles E387 e UMY02-T01-26 en un 30 % ∼ 40 % para Re = 5 × 105 . Después de una comparaci´on se determinó que el perfil creado es adecuado para los aerogeneradores a bajo números de Reynolds debido a su alto coeficiente de sustentación y eficiencia aerodinámica. | es_CO |
dc.description.abstract | This work shows the results obtained for the design of an aerodynamic profile that maximi zes the relationship between the lift and drag coefficients. For which a systematic procedure of high precision parameterization and optimization for an aerodynamic profile was carried out in order to improve its aerodynamic performance. The Bezier curve was the technique used for the parameterization of the aerodynamic profile by assigning the coordinates of the control points that are set at the beginning of the process to later find the geometry of the profile and then they were optimized using the direct search method implemented with the software to ensure the accuracy of fit. Then, using the Xfoil software, the aerodynamic performance curves are determined until a profile with a greater relationship between lift and drag is found. The result obtained of the airfoil lift / drag ratio increases uniformly under different angles of attack compared to the E387 and UMY02-T01-26 profiles by 30 % ∼ 40 % for Re = 5 × 105 . After a detailed comparison it was determined that the profile created is suitable for low Reynolds number wind turbines due to its high lift coefficient and aerodynamic efficiency. | es_CO |
dc.format.extent | 92 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona- Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | Energía eólica. | es_CO |
dc.subject | Curvas de Bézier. | es_CO |
dc.subject | Perfil aerodinámicos. | es_CO |
dc.subject | Coeficiente de sustentacion. | es_CO |
dc.subject | Coeficiente de arrastre. | es_CO |
dc.title | Diseño de un perfil aerodinámico para bajos números de Reynolds mediante herramientas computacionales. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-12-09 | - |
dc.relation.references | [Akhlaghi et al., 2020] Akhlaghi, H., Soltani, M. R., and Maghrebi, M. J. (2020). Transitio nal boundary layer study over an airfoil in combined pitch-plunge motions. Aerospace Science and Technology, 98:105694. | es_CO |
dc.relation.references | [Ambientales and Energ´etica, 2015] Ambientales, I. d. H. M. y. E. and Energ´etica, U. d. P. M. (2015). Atlas de viento y energ´ıa e´olica de Colombia. Technical report, IDEAM, UPME, Bogota | es_CO |
dc.relation.references | [Arrieta et al., 2019] Arrieta, E. C., Bedoya, J. A., and Clemente, A. R. (2019). Investigaci´on num´erica sobre el uso de ´alabes multielemento en turbina hidrocin´etica de eje horizontal. Revista UIS Ingenier´ıas, 18(3):117–128. | es_CO |
dc.relation.references | [Arumugam et al., 2021] Arumugam, P., Ramalingam, V., and Bhaganagar, K. (2021). A pathway towards sustainable development of small capacity horizontal axis wind turbines – Identification of influencing design parameters & their role on performance analysis. Sustainable Energy Technologies and Assessments, 44(January):101019. | es_CO |
dc.relation.references | [Bartl et al., 2019] Bartl, J., Sagmo, K. F., Bracchi, T., and Sætran, L. (2019). Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models. European Journal of Mechanics, B/Fluids, 75:180–192. | es_CO |
dc.relation.references | [Borb´on A. and Mora F., 2014] Borb´on A., A. and Mora F., W. (2014). LATEX 2014. Es cuela de Matem´atica,Instituto Tecnol´ogico de Costa Rica. 2014, | es_CO |
dc.relation.references | [Capote Abreu et al., 2008] Capote Abreu, J., Alvear Portilla, D., Abreu Men´endez, O., L´azaro Urrutia, M., and Espina, P. (2008). Influencia del modelo de turbulencia y del refinamiento de la discretizaci´on espacial en la exactitud de las simulaciones computacio nales de incendios. Revista internacional de m´etodos num´ericos para c´alculo y dise˜no en ingenier´ıa, 24(3):227–245. | es_CO |
dc.relation.references | [Cengel and Cimbala, 2006] Cengel, Y. A. and Cimbala, J. M. (2006). Mec´anica de Fluidos: Fundamentos y Aplicaciones. M´exico, D.F., 1ra edicio edition. | es_CO |
dc.relation.references | [Chen et al., 2022] Chen, G., Li, X. B., and Liang, X. F. (2022). IDDES simulation of the performance and wake dynamics of the wind turbines under different turbulent inflow conditions. Energy, 238:121772. | es_CO |
dc.relation.references | [De Tavernier et al., 2021] De Tavernier, D., Ferreira, C., Vir´e, A., LeBlanc, B., and Ber nardy, S. (2021). Controlling dynamic stall using vortex generators on a wind turbine airfoil. Renewable Energy, 172:1194–1211. | es_CO |
dc.relation.references | [Devi and Nagaraja, 2021] Devi, S. and Nagaraja, K. V. (2021). An automated higher or der meshing for NACA0018 airfoil design using subparametric transformation. Materials Today: Proceedings, 46:4634–4639 | es_CO |
dc.relation.references | [Drela, 1989] Drela, M. (1989). Xfoil: An analysis and design system for low reynolds number airfoils. In Low Reynolds number aerodynamics, pages 1–12. Springer. | es_CO |
dc.relation.references | [Duan et al., 2020] Duan, G., Laima, S., Chen, W., and Li, H. (2020). Effects of leading-edge separation on the vortex shedding and aerodynamic characteristics of an elongated bluff body. Journal of Wind Engineering and Industrial Aerodynamics, 206(February):104356. | es_CO |
dc.relation.references | [Edelman, 2020] Edelman, L. (2020). Xfoil Interface Updated. | es_CO |
dc.relation.references | [Erkan et al., 2020] Erkan, O., Ozkan, M., Karako¸c, T. H., Garrett, S. J., and Thomas, P. J. ¨ (2020). Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method. Renewable Energy, 161:1359–1367. | es_CO |
dc.relation.references | [Gupta and Subbarao, 2020] Gupta, M. K. and Subbarao, P. M. (2020). Development of a semi-analytical model to select a suitable airfoil section for blades of horizontal axis hydrokinetic turbine. Energy Reports, 6:32–37. | es_CO |
dc.relation.references | [Hays, 2017] Hays, A. W. (2017). Aerodynamic and Aeroacoustic Design Considerations for Small-Scale, Fixed-Pitch, Horizontal-Axis Wind Turbines Operating at Low Reynolds Numbers. PhD thesis. | es_CO |
dc.relation.references | [Hern´andez, 2017] Hern´andez, J. I. (2017). ESTUDIO DE LAS FUERZAS AERO DIN´AMICASAERODIN´ AERODIN´AMICAS SOBRE ESTRUCTURAS DE PLACAS SOMETIDAS A FLAMEO. PhD thesis. | es_CO |
dc.relation.references | [Herrera et al., 2019] Herrera, C., Correa, M., Villada, V., Vanegas, J. D., Garc´ıa, J. G., Nieto-Londo˜no, C., and Sierra-P´erez, J. (2019). Structural design and manufacturing process of a low scale bio-inspired wind turbine blades. Composite Structures, 208:1–12. | es_CO |
dc.relation.references | [Huang et al., 2021] Huang, B., Wang, P., Wang, L., Cao, T., Wu, D., and Wu, P. (2021). A combined method of CFD simulation and modified Beddoes-Leishman model to predict the dynamic stall characterizations of S809 airfoil. Renewable Energy, 179:1636–1649. | es_CO |
dc.relation.references | [Jones et al., 2018] Jones, G., Santer, M., and Papadakis, G. (2018). Control of low Reynolds number flow around an airfoil using periodic surface morphing: A numerical study. Journal of Fluids and Structures, 76:95–115. | es_CO |
dc.relation.references | [Khan et al., 2017] Khan, T. A., Li, W., Zhang, J., and Shih, T. I. (2017). Local vibra tions and lift performance of low Reynolds number airfoil. Psychology of Learning and Motivation - Advances in Research and Theory, 67(2):79–90. | es_CO |
dc.relation.references | Koca et al., 2018] Koca, K., Gen¸c, M. S., A¸cıkel, H. H., C¸ a˘gda¸s, M., and Bodur, T. M. (2018). Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution. Energy, 144:750–764. | es_CO |
dc.relation.references | [Lesmes et al., 2017] Lesmes, J. Z., Cuenca, H. S., Julieta Lesmes, and Zapata, H. J. (2017). Atlas de viento de Colombia APOYO TECNICO IDEAM ´ . Imprenta Nacional de Colom bia. | es_CO |
dc.relation.references | [Li et al., 2016] Li, Q., Kamada, Y., Maeda, T., Murata, J., and Nishida, Y. (2016). Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: Static pressure measurement). Energy, 111:701–712. | es_CO |
dc.relation.references | [Li and Caracoglia, 2020] Li, S. and Caracoglia, L. (2020). Experimental error examination and its effects on the aerodynamic properties of wind turbine blades. Journal of Wind Engineering and Industrial Aerodynamics, 206:104357. | es_CO |
dc.relation.references | [Liu et al., 2020] Liu, Y., Li, P., He, W., and Jiang, K. (2020). Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines. Journal of Wind Engineering and Industrial Aerodynamics, 206(Ja nuary):104263. | es_CO |
dc.relation.references | [L´opez, 2013] L´opez, M. V. (2013). Ingenieria de la energia eolica. Alfaomega Grupo Editor, S.A. de C.V, M´exico, 1° ed. edition. | es_CO |
dc.relation.references | [Mincultura, 2009] Mincultura (2009). Caracterizaciones de los pueblos ind´ıgenas de Colom bia. U´wa. Gente inteligente que sabe hablar. page 14. | es_CO |
dc.relation.references | [Morgado et al., 2016] Morgado, J., Vizinho, R., Silvestre, M. A., and P´ascoa, J. C. (2016). XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils. Ae rospace Science and Technology, 52:207–214. | es_CO |
dc.relation.references | Murcia, 2015] Murcia, J. F. R. (2015). ESTIMACION DE LA VELOCIDAD DEL VIENTO ´ A DIFERENTES ALTURAS USANDO EL MODELO WRF. Technical report, nstituto de Hidrolog´ıa, Meteorolog´ıa y Estudios Ambientales – IDEAM. | es_CO |
dc.relation.references | [Palomino, 2019] Palomino, L. A. N. (2019). Modelaci´on num´erica para determinar la orien taci´on de una bifurcaci´on en el Tramo B del R´ıo Piura. PhD thesis, Universidad de Piura. | es_CO |
dc.relation.references | [Paluszny et al., 2002] Paluszny, M., Prautzsch, H., and Boehm, W. (2002). M´etodos de B´ezier y B-Splines. | es_CO |
dc.relation.references | [Plazas et al., 2019] Plazas, G. C. S., Fonseca, J. C. J., Herrera, L. F. G., Orlas, M. A. L., Barrag´an, M. A. L., Ideam:, Pardo, L. A. P., and Pe˜na., M. P. P. (2019). Estrategia Nacional de Calidad del Aire. Technical report, Colombia. | es_CO |
dc.relation.references | [Renovetec, ] Renovetec. Clasificaci´on de aerogeneradores. | es_CO |
dc.relation.references | [Rojas et al., 2019] Rojas, C. L. P., Fl´orez S., E., and Rico, J. C. S. (2019). Dise˜no del ´alabe de un aerogenerador horizontal de baja potencia. Bistua, 1. | es_CO |
dc.relation.references | [Ru´ız M. et al., 2015] Ru´ız M., J. F., Serna C., J., and Zapata L., H. J. (2015). Atlas de viento de Colombia. Technical Report 3-4, IDEAM, UPME, Bogota. | es_CO |
dc.relation.references | [Saleem and Kim, 2020] Saleem, A. and Kim, M. H. (2020). Aerodynamic performance op timization of an airfoil-based airborne wind turbine using genetic algorithm. Energy, 203:117841. | es_CO |
dc.relation.references | [Samaniego et al., 2021] Samaniego, G. F., Guerrero, B., and Antamba, J. F. (2021). An´ali sis del dise˜no aerodin´amico de un aler´on preparado para competencia utilizando simula ciones num´ericas de din´amica de fluidos computacional (DFC). Informaci´on tecnol´ogica, 32(2):19–28. | es_CO |
dc.relation.references | [Scheffer and Markus, 2016] Scheffer, M. and Markus, K. (2016). REDISENO Y SIMULA- ˜ CION DE UN PERFIL AERODIN ´ AMICO PARA UN AEROGENERADOR FLOTANTE ´ QUE SE ADAPTE A LAS CONDICIONES METEOROLOGICAS DE LA SABANA DE ´ BOGOTA. pages 3345–3356. | es_CO |
dc.relation.references | [Selig, 2003] Selig, M. S. (2003). Low Reynolds Number Airfoil Design Lecture Notes - Various Approaches to Airfoil Design. VKI Lecture Series, (November):24–28 | es_CO |
dc.relation.references | [Sharma et al., 2021] Sharma, P., Gupta, B., Pandey, M., Sharma, A. K., and Nareliya Mish ra, R. (2021). Recent advancements in optimization methods for wind turbine airfoil design: A review. Materials Today: Proceedings, 47:6556–6563. | es_CO |
dc.relation.references | [Siles, 2014] Siles, J. E. (2014). Estudio aerodin´amico de un aerogenerador mediante teor´ıa BEM (Blade Element Momentum). PhD thesis. | es_CO |
dc.relation.references | [Singh et al., 2012] Singh, R. K., Ahmed, M. R., Zullah, M. A., and Lee, Y. H. (2012). Design of a low Reynolds number airfoil for small horizontal axis wind turbines. Renewable Energy, 42:66–76 | es_CO |
dc.relation.references | [Tolentino Masgo, 2019] Tolentino Masgo, S. L. B. (2019). Evaluaci´on de modelos de tur bulencia para el flujo de aire en una tobera plana. Ingenius, (22):25–37. | es_CO |
dc.relation.references | [Trejo, 2017] Trejo, M. A. L. (2017). Coeficientes Aerodin´amicos Y. thesis. | es_CO |
dc.relation.references | [Trujillo, 2020] Trujillo, D. F. F. (2020). ANALISIS MEDIANTE DIN ´ AMICA DE FLUI- ´ DOS COMPUTACIONALES DE UN PERFIL AERODINAMICO PARA UN VEH ´ ´ICU LO TIPO FORMULA SAE ´ . PhD thesis, UNIVERSIDAD TECNOLOGICA DE PEREI- ´ RA. | es_CO |
dc.relation.references | [Wei et al., 2020] Wei, X., Wang, X., and Chen, S. (2020). Research on parameterization and optimization procedure of low-Reynolds-number airfoils based on genetic algorithm and Bezier curve. Advances in Engineering Software, 149(June):102864. | es_CO |
dc.relation.references | [White, 2003] White, F. M. (2003). Mec´anica De Fluidos Quinta Edici´on. ESPANA, quinta ˜ edi edition. | es_CO |
dc.relation.references | [Zadorozhna et al., 2021] Zadorozhna, D. B., Benavides, O., Grajeda, J. S., Ramirez, S. F., and de la Cruz May, L. (2021). A parametric study of the effect of leading edge spherical tubercle amplitudes on the aerodynamic performance of a 2D wind turbine airfoil at low Reynolds numbers using computational fluid dynamics. Energy Reports, 7:4184–4196. | es_CO |
dc.relation.references | [Zhang et al., 2019] Zhang, S., Li, H., and Abbasi, A. A. (2019). Design methodology using characteristic parameters control for low Reynolds number airfoils. Aerospace Science and Technology, 86:143–152 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Mecánica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Cáceres_2021_TG.pdf | Cáceres_2021_TG | 3,28 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.