• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Mecánica
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4077
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGil Rojano, Adrian Jusette.-
    dc.date.accessioned2022-11-01T21:42:16Z-
    dc.date.available2020-09-18-
    dc.date.available2022-11-01T21:42:16Z-
    dc.date.issued2020-
    dc.identifier.citationGil Rojano, A. J. (2020). Comparación del comportamiento mecánico por análisis de elementos finitos usando mallado basado en la estructura molecular y mallado convencional [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4077es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/4077-
    dc.descriptionEl autor no proporciona la información sobre este ítem.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent102es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona- Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleComparación del comportamiento mecánico por análisis de elementos finitos usando mallado basado en la estructura molecular y mallado convencional.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2020-06-18-
    dc.relation.referencesAghdasi, P., Ansari, R., Rouhi, S., & Goli, M. (2019). On the elastic and plastic properties of the bismuthene adsorbed by H, F, Cl and Br atoms. Superlattices and Microstructures, 135(March 2020), 106242. https://doi.org/10.1016/j.spmi.2019.106242es_CO
    dc.relation.referencesAlexander, C. ., & Sadiku, M. N. O. (2006). Fundamentos de circuitos electricos (3rd ed., Issue 1). https://doi.org/10.16309/j.cnki.issn.1007-1776.2003.03.004es_CO
    dc.relation.referencesBocko, J., Lengvarský, P., & Pástor, M. (2019). Estimation of material properties of carbon nanotubes using finite element method. Strojnicky Casopis, 69(2), 7–14. https://doi.org/10.2478/scjme-2019-0014es_CO
    dc.relation.referencesBrown, T. L., LeMay, H. E. J., Bursten, B. E., & Mutphy, C. J. (2009). QUIMICA la ciencia central (11th ed.). PEARSON EDUCACION, SA.es_CO
    dc.relation.referencesChang, R., & Goldsby, K. A. (2013). Química (11th ed.). McGrawHill.es_CO
    dc.relation.referencesFirouz-Abadi, R. D., Moshrefzadeh-Sany, H., Mohammadkhani, H., & Sarmadi, M. (2016). A modified molecular structural mechanics model for the buckling analysis of single layer graphene sheet. Solid State Communications, 225, 12–16. https://doi.org/10.1016/j.ssc.2015.10.009es_CO
    dc.relation.referencesGhaderi, S. H., & Hajiesmaili, E. (2013). Nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method. Materials Science and Engineering A, 582, 225–234. https://doi.org/10.1016/j.msea.2013.05.060es_CO
    dc.relation.referencesGiannopoulos, G. I. (2017). Mechanical behavior of planar borophenes: A molecular mechanics study. Computational Materials Science, 129, 304–310. https://doi.org/10.1016/j.commatsci.2016.12.045es_CO
    dc.relation.referencesHajian, M., & Moradi, M. (2019). Stochastic fracture analysis of cracked nano-graphene sheets by scaled boundary finite element method. Engineering Analysis with Boundary Elements, 98(May 2018), 54–63. https://doi.org/10.1016/j.enganabound.2018.10.005es_CO
    dc.relation.referencesHernandez, S. A., & Fonseca, A. F. (2017). Anisotropic elastic modulus, high Poisson’s ratio and negative thermal expansion of graphynes and graphdiynes. Diamond and Related Materials, 77(June), 57–64. https://doi.org/10.1016/j.diamond.2017.06.002es_CO
    dc.relation.referencesHonarmand, M., & Moradi, M. (2018). Scaled boundary finite element simulation and modeling of the mechanical behavior of cracked nanographene sheets. In Superlattices and Microstructures (Vol. 118). Elsevier Ltd. https://doi.org/10.1016/j.spmi.2018.04.029es_CO
    dc.relation.referencesHughes, D. J., Mahendrasingam, A., Oatway, W. B., Heeley, E. L., Martin, C., & Fuller, W. (1997). A simultaneous SAXS/WAXS and stress-strain study of polyethylene deformation at high strain rates. Polymer, 38(26), 6427–6430. https://doi.org/10.1016/S0032-3861(97)00351-0es_CO
    dc.relation.referencesIra N. Levine. (2001). Quimica Cuantica Levine.pdf (P. HALL (ed.); 5th ed., Vol. 12, Issue 6). PEARSON EDUCACION, SA. http://www.ncbi.nlm.nih.gov/pubmed/741517es_CO
    dc.relation.referencesKhani, N., Yildiz, M., & Koc, B. (2016). Elastic properties of coiled carbon nanotube reinforced nanocomposite: A finite element study. Materials and Design, 109, 123– 132. https://doi.org/10.1016/j.matdes.2016.06.126es_CO
    dc.relation.referencesKorobeynikov, S. N., Alyokhin, V. V., & Babichev, A. V. (2018). On the molecular mechanics of single layer graphene sheets. International Journal of Engineering Science, 133, 109–131. https://doi.org/10.1016/j.ijengsci.2018.09.001es_CO
    dc.relation.referencesLee, J. H., & Lee, B. S. (2012). Modal analysis of carbon nanotubes and nanocones using FEM. Computational Materials Science, 51(1), 30–42. https://doi.org/10.1016/j.commatsci.2011.06.041es_CO
    dc.relation.referencesLiu, Y. (2003). Lecture Notes: Introduction to the Finite Element Method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(6), 461–473. https://doi.org/10.1243/095440703766518096es_CO
    dc.relation.referencesLu, J., Sue, H. J., & Rieker, T. P. (2001). Dual crystalline texture in HDPE blown films and its implication on mechanical properties. Polymer, 42(10), 4635–4646. https://doi.org/10.1016/S0032-3861(00)00719-9es_CO
    dc.relation.referencesLu, X., & Hu, Z. (2012). Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling. Composites Part B: Engineering, 43(4), 1902–1913. https://doi.org/10.1016/j.compositesb.2012.02.002es_CO
    dc.relation.referencesMarenić, E., Ibrahimbegovic, A., Sorić, J., & Guidault, P. A. (2013). Homogenized elastic properties of graphene for small deformations. Materials, 6(9), 3764–3782. https://doi.org/10.3390/ma6093764es_CO
    dc.relation.referencesMARGARITA DEL ROCÍO MARTÍNEZ BUSTAMENTE, D. B. P. Z. (2015). SIMULACIÓN POR ORDENADOR MEDIANTE EL MÉTODO DE ELEMENTOS FINITOS Y OPTIMIZACIÓN POR EL MÉTODO DE INGENIERÍA ROBUSTA, DE CONECTORES PARA ESTANTERÍA METÁLICA. 89.es_CO
    dc.relation.referencesNasdala, L., Kempe, A., & Rolfes, R. (2012). Are finite elements appropriate for use in molecular dynamic simulations? Composites Science and Technology, 72(9), 989–1000. https://doi.org/10.1016/j.compscitech.2012.03.008es_CO
    dc.relation.referencesNasdala, L., Kempe, A., & Rolfes, R. (2015). An elastic molecular model for rubber inelasticity. Computational Materials Science, 106, 83–99. https://doi.org/10.1016/j.commatsci.2015.04.036es_CO
    dc.relation.referencesOverney, G., Zhong, W., & Tománek, D. (1993). Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift Für Physik D Atoms, Molecules and Clusters, 27(1), 93–96. https://doi.org/10.1007/BF01436769es_CO
    dc.relation.referencesRodrigues, F. C., Silvestre, N., & Deus, A. M. (2017). Nonlinear mechanical behaviour of γ-graphyne through an atomistic finite element model. Computational Materials Science, 134(August 2018), 171–183. https://doi.org/10.1016/j.commatsci.2017.03.051es_CO
    dc.relation.referencesRouhi, S., & Ansari, R. (2012). Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E: Low-Dimensional Systems and Nanostructures, 44(4), 764–772. https://doi.org/10.1016/j.physe.2011.11.020es_CO
    dc.relation.referencesSerway, R. A., & Emérito, John W. Jewett, J. (2009). FÍSICA para ciencias e ingeniería con Física Moderna (Sergio R. Cervantes González (ed.); Volumen 2.). cengege learning.es_CO
    dc.relation.referencesShahnazari, A., Ansari, R., & Rouhi, S. (2017). On the stability characteristics of zigzag phosphorene nanotubes: A finite element investigation. In Journal of Alloys and Compounds (Vol. 702). Elsevier B.V. https://doi.org/10.1016/j.jallcom.2017.01.265es_CO
    dc.relation.referencesTIRUPATHI R. CHANDRUPATLA, PH.D.P.E Rowan, ASHOK D. BELEGUNDU, P. D. (1999). Introducción al método del elemento finito (M. G. M. Pablo Eduardo Roig Vázquez, A¡nando Castañeda Conález & Edición (eds.); segunda). Prentice-Hall. Inc.es_CO
    dc.relation.referencesYoung, H. D., Freedman, R. A., & Ford, A. L. (2013). FISICA UNIVERSITARIA CON FISICA MODERNA (13th ed.). PEARSON EDUCACION, SA.es_CO
    dc.relation.referencesYu, M. F., Files, B. S., Arepalli, S., & Ruoff, R. S. (2000). Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters, 84(24), 5552–5555. https://doi.org/10.1103/PhysRevLett.84.5552es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Mecánica

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Gil_2020_TG.pdfGil_2020_TG4,45 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.