Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3889
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Pabón Rojas, Cristhian Leonardo. | - |
dc.date.accessioned | 2022-10-28T15:53:39Z | - |
dc.date.available | 2018-09-13 | - |
dc.date.available | 2022-10-28T15:53:39Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Pabón Rojas, C. L. (2018). Diseño del álabe de un aerogenerador horizontal de baja potencia [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3889 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3889 | - |
dc.description | El autor no proporciona la información sobre este ítem. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 74 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona- Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Diseño del álabe de un aerogenerador horizontal de baja potencia. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2018-06-13 | - |
dc.relation.references | Parra, H. G., Rivera, W. G., & Cerón Muñoz, H. D. (2017). Análisis por CFD del efecto de vórtice en puntas de aspa para rotor eólico. V concurso de investigación formativa | es_CO |
dc.relation.references | Anderson, J. D. (2005). Ludwig Prandtl’s boundary layer. Physics Today, 58, 42-48. | es_CO |
dc.relation.references | Basavaraj, A. (2016). Computational Analysis of Airfoil Merging and its Effect on Performance of Lift Based Vertical Axis Wind Turbine. ASME 2016 International Mechanical Engineering Congress and Exposition. | es_CO |
dc.relation.references | Bastianon, R. A. (2008). Cálculo y diseño de la hélice óptima para turbinas eólicas. Servicio Naval de Investigación y Desarrollo de la Armada Argentina. | es_CO |
dc.relation.references | Bayati, I., Belloli, M., & Bernini, L. &. (2017). Aerodynamic design methodology for wind tunnel tests of wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics, 217-227. | es_CO |
dc.relation.references | Buhl , M. (6 de Julio de 2012). NWTC information portal / Wind Turbine Airfoil List. Obtenido de NREL: https://wind.nrel.gov/airfoils/AirfoilList.html | es_CO |
dc.relation.references | Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook. John Wiley & Sons. | es_CO |
dc.relation.references | Carlin, P. W., Laxson, A. S., & Muljadi, E. (2003). The history and state of the art of variable-speed wind turbine technology. Wind Energy, Wiley Online Library, 129-159. | es_CO |
dc.relation.references | Carrizales Rodríguez, M. A. (2015). Análisis numérico de la morfologı́a del ala para su uso en fumigación aérea. Ph.D. dissertation, Universidad Autónoma de Nuevo León. | es_CO |
dc.relation.references | Cengel, Y. A., Cimbala, J. M., & Sknarina, S. (2006). Mecánica de fluidos: fundamentos y aplicaciones (Vol. 1). McGraw-Hill. | es_CO |
dc.relation.references | Colosqui, C., Delnero, S., Marañón Di Leo, J., & Colman, J. &. (s.f.). CÁLCULO DE COEFICIENTES AERODINÁMICOS DE PERFILES DE BAJO REYNOLDS MEDIANTE EL METODO DE ELEMENTOS FINITOS | es_CO |
dc.relation.references | Communier, D., Salinas, M. F., Carranza Moyao, O., & Botez, R. M. (2015). Aero structural modeling of a wing using CATIA V5 and XFLR5 software and experimental validation using the Price-Pa\idoussis wing tunnel. AIAA Atmospheric Flight Mechanics Conference | es_CO |
dc.relation.references | Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils. En Low Reynolds number aerodynamics (págs. 1-12). Springer. | es_CO |
dc.relation.references | Drela, M. (1989). XFOIL: An analysis and design system for low Reynolds number airfoils. Low Reynolds number aerodynamics, Springer, 1-12. | es_CO |
dc.relation.references | Drela, M., & Youngren, H. (2001). XFOIL 6.94 user guide. MIT Aero & Astro | es_CO |
dc.relation.references | Giguere, P. &. (1998). New airfoils for small horizontal axis wind turbines. Journal of solar energy engineering, American Society of Mechanical Engineers, 108- 114. | es_CO |
dc.relation.references | Giguere, P., & Selig, M. S. (1998). New airfoils for small horizontal axis wind turbines. Journal of solar energy engineering, American Society of Mechanical Engineers, 108-114. | es_CO |
dc.relation.references | Gómez González, S. (2017). Mallado y simulación CFD de automóvil. Master's thesis, Universitat Politècnica de Catalunya. | es_CO |
dc.relation.references | Guide, M. (2007). Ansys Inc. Canonsburg. | es_CO |
dc.relation.references | Hartwanger, D., & Horvat, A. (2008). 3D modelling of a wind turbine using CFD. NAFEMS Conference, United Kingdom. | es_CO |
dc.relation.references | Holst, D., Pechlivanoglou, G., Kohlrausch, C., & Nayeri, C. &. (2016). sHAWT Design: Airfoil Aerodynamics Under the Influence of Roughness. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. | es_CO |
dc.relation.references | Hu, H., Yang, Z., & Igarashi, H. (2007). Aerodynamic hysteresis of a low-Reynolds number airfoil. Journal of Aircraft, 2083-2086. | es_CO |
dc.relation.references | Jamieson, P. (2018). Innovation in wind turbine design. John Wiley & Sons. | es_CO |
dc.relation.references | jiang, H., Li, Y., & Cheng, Z. (2015). Performances of ideal wind turbine. Renewable Energy, 658-662. | es_CO |
dc.relation.references | Maia, I. A., Santos Lopes, A., Silveira, J. V., Andrade, C. F., & Filho, C. d. (s.f.). Avaliação de desempenho de um aerogerador em escala com perfil aerodinâmico NACA 63425, através de simulação computacional e testes de campo. | es_CO |
dc.relation.references | Mamadaminov, U. M. (s.f.). Review of Airfoil Structures for Wind Turbine Blades. Department of Electrical Engineering and Renewable Energy REE, 515 | es_CO |
dc.relation.references | Manwell, J., Mcgowan, J., & Rogers, A. (2009). wind energy explained Theory, desing and aplication. Chichester: Jhon Wiley & Sons Ltda. | es_CO |
dc.relation.references | Marten, D., Wendler, J., Pechlivanoglou, G., Nayeri, C., & Paschereit, C. (2013). QBLADE: an open source tool for design and simulation of horizontal and vertical axis wind turbines. Int. J. Emerging Technol. Adv. Eng, 264-269. | es_CO |
dc.relation.references | Miley, S. J. (1982). A catalog of low Reynolds number airfoil data for wind turbine applications. | es_CO |
dc.relation.references | Moragues, J., & Rapallini, A. (2003). Energía eólica. Instituto Argentino de la Energ\ia “General Mosconi. | es_CO |
dc.relation.references | Moragues, J., & Rapallini, A. (2003). Energıa eólica. ́ Instituto Argentino de la Energ{\'\i}a “General Mosconi, 3 | es_CO |
dc.relation.references | Morgado, J., Vizinho, R., Silvestre, M., & Páscoa, J. (2016). XFOIL vsCFD performance predictions for high lift low Reynoldsnumber airfoils. Aerospace Science and Technology, 207-214. | es_CO |
dc.relation.references | Mulugeta, B. A., & Gerawork, A. (2017). Aerodynamic design of horizontal axis wind turbine blades. FME Transactions, 45, 647-660. | es_CO |
dc.relation.references | Mulugeta, B. A., & Gerawork, A. (2017). Aerodynamic design of horizontal axis wind turbine blades. FME Transactions, 647-660. | es_CO |
dc.relation.references | Ragheb, M. (2009). Optimal rotor tip speed ratio. Available from NetFiles at the University of Illinois at Urbana-Champaign, Last modified. | es_CO |
dc.relation.references | Rojas-Sola, J. I., García-Ruesgas, L., & Porras-Galán, J. (2016). Recuperación gráfica de la máquina eólica para desaguar terrenos pantanosos de Agustin de Betancourt y Molina: Modelado tridimensional y documentación geométrica con Solid Edge. 8th International congress on archaeology, computer graphics, cultural heritage and innovation, (págs. 24-31). | es_CO |
dc.relation.references | Roncero, S. E., & Jiménez, F. G. (2009). Aeronaves y vehículos espaciales. Departamento de Ingenier\ia Aeroespacial y Mecánica de Fluidos. Escuela Superior de Ingenieros. Universidad de Sevilla | es_CO |
dc.relation.references | Scappatici, L., Bartolini, N., Castellani, F., Astolfi, D., Garinei, A., & Pennicchi, M. (2016). Optimizing the design of horizontal-axis small wind turbines: From the laboratory to market. Journal of Wind Engineering and Industrial Aerodynamics, 154, 58-68. | es_CO |
dc.relation.references | Schlichting, H., & Gersten, K. (2016). Boundary-layer theory. Springer | es_CO |
dc.relation.references | Schubel, P. J., & Crossley, R. J. (2012). Wind turbine blade design. Energies, Molecular Diversity Preservation International, 3425-3449. | es_CO |
dc.relation.references | Siemens, P. L. (2014). Software. Solid Edge. | es_CO |
dc.relation.references | Singh, R. K., & Ahmed, M. R. (2013). Blade design and performance testing of a small wind turbine rotor for low wind speed applications. Renewable Energy, 812-819. | es_CO |
dc.relation.references | Singh, R. K., Ahmed, M. R., Zullah, M. A., & Lee, Y.-H. (2012). Design of a low Reynolds number airfoil for small horizontal axis wind turbines. Renewable Energy, 42, 66-76. doi:https://doi.org/10.1016/j.renene.2011.09.014 | es_CO |
dc.relation.references | Smith, T. (16 de Mayo de 2017). Phoenix analysis and design technologies. Obtenido de http://www.padtinc.com/blog/the-focus/when-the-going-gets tough-the-tough-use-ansys-for-cfd-meshing | es_CO |
dc.relation.references | Somers, D. M. ( 2005). S833, S834, and S835 Airfoils: November 2001--November 2002. National Renewable Energy Laboratory (NREL), Golden, CO., National Renewable Energy Laboratory (NREL), Golden, CO., | es_CO |
dc.relation.references | Soto Gutierrez, J. J. (2016). Desarrollo de la energı́a eólica en Colombia. {B.S.} thesis, Fundación Universidad de América. | es_CO |
dc.relation.references | Tangler, J. (2000). The evolution of rotor and blade design. Tech. rep., National Renewable Energy Lab., Golden, CO (US). | es_CO |
dc.relation.references | Tangler, J. L., & Somers, D. M. (1995). NREL airfoil families for HAWTs. Tech. rep., National Renewable Energy Lab., Golden, CO (United States). | es_CO |
dc.relation.references | Thresher, R. W., & Dodge, D. M. (1998). Trends in the evolution of wind turbine generator configurations and systems. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, Wiley Online Library, 70-86 | es_CO |
dc.relation.references | Tu, J., Yeoh, G.-H., & Liu, C. (2018). Computational fluid dynamics: a practical approach. Butterworth-Heinemann. | es_CO |
dc.relation.references | Vargas, W. L., Riaño, C. A., & Pineda, L. M. (2005). Ambientes Virtuales para la enseñanza de la Mecánica de Fluidos: Algunos ejemplos simplificados aplicando ANSYS. Ciencia e Ingenier{\'\i}a Neogranadina, 15, 94-115. | es_CO |
dc.relation.references | Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson Education. | es_CO |
dc.relation.references | Workbench, A. N. (s.f.). 14.0 User Guide. DesignModeler User Guide//Introduction/MechIntro | es_CO |
dc.relation.references | Xudong, W., Licun, W., & Hongjun, X. (2015). An integrated method for designing airfoils shapes. Mathematical Problems in Engineering, 2015 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Mecánica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Pabón_2018_TG.pdf | Pabón_2018_TG | 3,86 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.