Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3381
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Parada Jaime, Karoll Michely. | - |
dc.date.accessioned | 2022-10-03T20:09:48Z | - |
dc.date.available | 2022-03-17 | - |
dc.date.available | 2022-10-03T20:09:48Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Parada Jaime, K. M. (2021). Estimación de cotas de energía para rayos cósmicos afectados durante un decrecimiento Forbush a partir de datos del observatorio lago [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3381 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3381 | - |
dc.description | Los fenomenos meteorologicos espaciales tienen importantes impactos en la ciencia y la estructura tecnologica actual. Este trabajo se centra en la interaccion entre los eventos solares transitorios y los rayos cosmicos, especıficamente en los eventos de decrecimiento de Forbush (Fd). Un Fd consiste en una decrecimiento / afectacion en los recuentos de radiacion a nivel del suelo durante una eyeccion de masa coronal interplanetaria que atraviesa el campo geomagnetico. A continuacion mostramos un metodo para estimar los rayos cosmicos afectados durante el Fd de marzo de 2012 en terminos de la rigidez de corte geomagnetica. Para ello, hemos utilizado los datos registrados en San Carlos de Bariloche, Argentina, por uno de los detectores del observatorio LAGO (un observatorio extendido de radiacion cosmica sobre America Latina, desde Mexico hasta la Antartida). Este detector Cherenkov de agua Cherenkov funciona como recuento de muones; nos permitio seguir la tasa de muones en el suelo y debido a que estos muones provienen de interacciones hadronicas, construimos una funcion de rigidez de corte para estimar que rayos cosmicos primarios, de acuerdo con su rigidez magnetica, fueron desviados, fuera de su pista a la atmosfera. Para verificar este enfoque, validamos esta funcion a traves del toolkit ARTI de LAGO, un marco de tecnicas y codigos computacionales (CORSIKA, GEANT4, C ++, Python), es decir, calculamos los secundarios producidos por esta tasa de rayos cosmicos y seguidamente analizamos la señal producida por esos secundarios en el modelo de detector Geant4. | es_CO |
dc.description.abstract | The space weather phenomena have important impacts on science and the current technological structure. This work focuses on the interaction between transient solar events and cosmic rays, specifically the Forbush decrease events (Fd). The Fd consists of a decrease / affect in ground level radiation counts during an interplanetary coronal mass ejection that traverses the geomagnetic field. In this work we a method to estimate the cosmic rays affected during the March 2012 Fd in terms of geomagnetic shear stiffness. To do this, we have used the data recorded in San Carlos de Bariloche, Argentina, by one of the LAGO observatory detectors (an extended observatory of cosmic radiation over Latin America, from Mexico to Antarctica). This Cherenkov water Cherenkov detector works as a muon count, that is, it allowed us to follow the muon rate in the soil and because these muons come from hadronic interactions, we built a shear stiffness function to estimate which cosmic rays primaries, according to their magnetic stiffness, were diverted, out of their track into the atmosphere. To verify this approach, we validate this function through LAGO ARTI toolkit, a framework of techniques and computational codes (CORSIKA, GEANT4, C ++, Python), that is, we calculate the secondaries produced by this cosmic ray rate and then we analyze the signal produced by these secondaries in the Geant4 detector model. | es_CO |
dc.format.extent | 71 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Basicas. | es_CO |
dc.subject | Rayos Cósmicos. | es_CO |
dc.subject | Clima Espacial. | es_CO |
dc.subject | Decrecimientos Forbush. | es_CO |
dc.subject | Rigidez de corte magnético. | es_CO |
dc.title | Estimación de cotas de energía para rayos cósmicos afectados durante un decrecimiento Forbush a partir de datos del observatorio lago. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2021-12-17 | - |
dc.relation.references | Mishev, A. L., Usoskin, I. G. Assessment of the radiation environment at commercial jet-flight altitudes during gle 72 on 10 september 2017using neutron monitor data.Space Weather,16(12), 1921–1929,. https://agupubs.onlinelibrary.wiley.com/doi/abs/ 10.1029/2018SW001946., 2008. | es_CO |
dc.relation.references | Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee. Long-term sustainability of outer space activities ISBN-13: 978-0521457149 ISBN-10: 0521457149. Working report of expert group C: Space Weather,, 2014. | es_CO |
dc.relation.references | Forbush, S. E.World-wide cosmic ray variations, 1937-1952.Journalof Geophysical Research,59(4), 2525–542. http://dx.doi.org/10.1029/JZ059i004p00525, 1954. | es_CO |
dc.relation.references | Usoskin, I. G., Braun, I., Gladysheva, O. G., Ho¨randel, J. R., J¨ams´en, T., Koval-tsov, G. A.,et al. Forbush Decreases of Cosmic Rays: Energy Dependence of TheRecovery Phase.Journal of Geophysical Research: Space Physics,113(A7). http://doi.wiley. com/10.1029/2007JA012955. | es_CO |
dc.relation.references | Cane, HilaryV. . Coronal Mass Ejections and Forbush Decreases. Space Science Reviews, 93(1-2):55–77, 2000. | es_CO |
dc.relation.references | Asorey Herna´n. Los Detectores Cherenkov del Observatorio Pierre Auger y su Aplicaci´on al Estudio de Fondos de Radiaci´on. Tesis, Instituto Balseiro, Universidad Nacional de Cuyo, Comisio´n Nacional de Enrg´ıa Ato´mica, 2012. | es_CO |
dc.relation.references | Forbush, S. E. . On the effects in the cosmic-ray intensity observed during recent magnetic storm. Physical Review, 51:1108–1109. | es_CO |
dc.relation.references | Wibberenz, G., Le Roux, J., Potgieter, M., Bieber, J. Transient effects and disturbed conditions. Space science reviews, 83 (1), 309–348,. http://www.springerlink.com/ index/r2r512j776k15440.pdf, 1998. | es_CO |
dc.relation.references | Jams´en, T., Usoskin, I., Raiha, T., Sarkamo, J., Kovaltsov, G. Case study of Forbush decreases: Energy dependence of the recovery. Advances in Space Research, 40 (3), 342347,. http://linkinghub.elsevier.com/retrieve/pii/S0273117707001123., 2007. | es_CO |
dc.relation.references | A. Belov · A. Abunin · M. Abunina · E. Eroshenko · V. Oleneva · V. Yanke · A. Papaioannou · H. Mavromichalaki · N. Gopalswamy · S. Yashiro. Coronal mass ejections and non-recurrent forbush decreases. 2014. | es_CO |
dc.relation.references | M. Su´arez-Dura´n. Modulacio´n de rayos c´osmicos a nivel del suelo por cambios en el campo geomagn´etico, para la colaboracio´n lago. Master thesis, Escuela de F´ısica, Universidad Industrial de Santander, Bucaramanga, Colombia, 2015. | es_CO |
dc.relation.references | Hudson, H. S., Bougeret, J., Burkepile, J. Coronal Mass Ejections: Overview of Observations. Space Science Reviews 123, 13–30. http://dx.doi.org/10.1007/ s11214-006-9009-x, 2006. | es_CO |
dc.relation.references | Cecilia Gisele Jarne. Estudios de composicio´n primaria en base a distribuciones temporales en el detector de superficie del Observatorio Pierre Auger. Facultad de Ciencias Exactas. Universidad Nacional de La Plata, 2015. | es_CO |
dc.relation.references | Mas´ıas M. Jimmy J. Transporte de rayos c´osmicos en la heliosfera y en el entorno terrestre. Tesis, Universidad de Buenos Aires, 2017. | es_CO |
dc.relation.references | Manuel Gonz´alez. CARACTERIZACI´ON DE UN DETECTOR DE CENTELLEO PARA DETERMINACI´ON DE COMPOSICI´ON DE RAYOS C´OSMICOS PRIMARIOS EN EL OBSERVATORIO PIERRE AUGER. Bariloche, 2012. | es_CO |
dc.relation.references | P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020. | es_CO |
dc.relation.references | ICECUBE. Cosmic-ray Energy Spectrum. https://masterclass.icecube.wisc.edu/ en/analyses/cosmic-ray-energy-spectrum, 2013. | es_CO |
dc.relation.references | A. Letessier-Selvon and T. Stanev. Ultrahigh energy cosmic rays. Rev. Mod. Phys., 83:907–942, Sep 2011. | es_CO |
dc.relation.references | Boezio, M., Mocchiutti, E. Chemical composition of galactic cosmic rays with space experiments. stroparticle Physics, 39 40 (0), 95 – 108,. http://www.sciencedirect. com/science/article/pii/S0927650512001119., 2012. | es_CO |
dc.relation.references | Lagoida, I. A. ; Voronov, S. A. ; Mikhailov, V. V. Journal of Physics: Conference Series, Volume 798, Issue 1, article id. 012038 . 10.1088/1742-6596/798/1/012038, 2017. | es_CO |
dc.relation.references | I. G. Usoskin, I. Braun, O. G. Gladysheva, J. R. H¨orandel, T. Ja¨ms´en, G. A. Kovaltsov, and S. A. Starodubtsev. Forbush Decreases of Cosmic Rays: Energy Dependence of The Recovery Phase. Journal of Geophysical Research: Space Physics, 113(A7), jul 2008. | es_CO |
dc.relation.references | Hernan Asorey, Luis A. Nu´n˜ez, and Mauricio Sua´rez-Dura´n. Preliminary results from the latin american giant observatory space weather simulation chain. Space Weather, 16(5):461–475, 2018. | es_CO |
dc.relation.references | A. S. Petukhova, I. S. Petukhov, and S. I. Petukhov. Theory of the formation of forbush decrease in a magnetic cloud: Dependence of forbush decrease characteristics on magnetic cloud parameters. The Astrophysical Journal, 880(1):17, jul 2019. | es_CO |
dc.relation.references | A. Gonzalez-Esparza, Jorge Vega, J. Vel´azquez, C. Pacheco, and L. Rodr´ıguez. Clima espacial y su efecto en la red el´Ectrica nacional. 07 2017. | es_CO |
dc.relation.references | NOAA Space Weather Scales. http://www.swpc.noaa.gov/NOAAscales/. | es_CO |
dc.relation.references | National Weather Service/Space Weather Prediction Center:. http://www.swpc.noaa. gov/NOAAscales/. | es_CO |
dc.relation.references | M. Su´arez-Dur´an. VARIACIONES DEL FLUJO DE RADIACI´ON C´OSMICA ENESCENARIOS GEOF´ISICOS Y DE CLIMA ESPACIAL. Bucaramanga, Colombia, 2019. | es_CO |
dc.relation.references | Observatorio LAGO: . El Gigante Latinoamericano usando las Redes Avanzada. http://www.bella-programme.eu/index.php/es/smart-search/ 336-lago-observatory-the-latin-american-giant-using-advanced-networks, 2020. | es_CO |
dc.relation.references | Asorey, H., Dasso, S., . the LAGO Collaboration. LAGO: the latin american giant observatory. En: The 34th International Cosmic Ray Conference,. PoS(ICRC2015), 2015. | es_CO |
dc.relation.references | H. Asorey and S. Dasso and L. A. Nu´n˜ez and Y. P´erez and C. Sarmiento-Cano and M. Sua´rez-Dur´an . for the LAGO Collaboration. The LAGO space weather program: Directional geomagnetic effects, background fluence calculations and multispectral data analysis. En: The 34th International Cosmic Ray Conference, tomo. PoS(ICRC2015), 2015. | es_CO |
dc.relation.references | Y. Perez. Aplicaciones en Meteorolog´ıa Espacial de los Datos del Proyecto LAGO. M´erida, Venezuela, 2015. | es_CO |
dc.relation.references | V., J. J. Cerenkov Radiation and its applications. Great Britain: Pergamon Press,. https://archive.org/details/cerenkovradiatio030980mbp., 1958. | es_CO |
dc.relation.references | Andrei Enrique Jaimes Motta. Estimaci´on De La Respuesta De Un Detector Cherenkov De Agua Al Fondo De Rayos C´osmicos En Bucaramanga (956 M S.N.M). Pregrado, Universidad Industrial De Santander, 2018. | es_CO |
dc.relation.references | Randy M. Russell. Rayos C´osmicos. https://www.windows2universe.org/physical_ science/physics/atom_particle/cosmic_rays.html&lang=sp, 2008. | es_CO |
dc.relation.references | M. Su´arez-Dura´n. Instalaci´on de un detector Cherenkov de agua para la detecci´on de trazas de rayos c´osmicos a 956 metros sobre el nivel del mar. Pregrado, Universidad Industrial De Santander, 2011. | es_CO |
dc.relation.references | K Nakamura, K. Hagiwara, K. Hikasa, H. Murayama, and Particle Data Group 2010. Review of Particle Physics. Journal of Physics G: Nuclear and Particle Physics, 37(7A):075021, July 2010. | es_CO |
dc.relation.references | Physics of Space Plasmas: An Introduction. Westview Press,. http://goo.gl/4DGNVE, 2003. | es_CO |
dc.relation.references | of Geomagnetism, I. A., Aeronomy, W. G. V.-M. P. m., Finlay, S., C. C. a nd Maus, Beggan, C. D., Bondar, T. N., Chambodut, A.,. Bondar, T. N., Chambodut, A., et al. International geomagnetic reference field: the eleventh generation. Geophysical Journal International, 183 (3), 1216–1230,. http://dx.doi.org/10.1111/j.1365-246X.2010. 04804.x., 2010. | es_CO |
dc.relation.references | Grupen C. (2020) Primary Cosmic Rays. In: Astroparticle Physics. Undergraduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-27339-2_6. | es_CO |
dc.relation.references | V.L. GINZBURG and S.I. SYROVATSKII. The Origin of Cosmic Rays. CHAPTER I - PRIMARY COSMIC RAYS ON THE EARTH, 5–52.1964. https://doi.org/10. 1016/B978-0-08-013526-7.50008-6. | es_CO |
dc.relation.references | Viera de Souza Henrique. Estudo da atividade solar com detectores de part´ıculas situados em solo terrestre. Master’s thesis, Instituto de F´ısica Gleb Wataghin, Universidade Estadual de Campinas, 2017. | es_CO |
dc.relation.references | ¨Oztu¨rk, M. K. rajectories of charged particles trapped in earth’s magnetic field. American Journal of Physics, 80 (5), 420–428,. http://scitation.aip.org/content/aapt/ journal/ajp/80/5/10.1119/1.3684537., 2021. | es_CO |
dc.relation.references | Heck, D. report fzka 6019, forschungszentrum karlsruhe. et al. Corsika: A monte carlo code to simulate extensive air shower. Capdevielle, J., Schatz, G., Thouw, T., 1998. | es_CO |
dc.relation.references | Heck, D. Pierog, T. Extensive Air Shower Simulation with CORSIKA: A User’s Guide. 7 a ed. Karlsruhe, Germany,. http://www-ik.fzk.de/corsika/., 2013. | es_CO |
dc.relation.references | of Geomagnetism, I. A. Aeronomy, W. G. V.-M. International geomagnetic reference field: the eleventh generation. Geophysical Journal International, 183 (3), 1216–1230,. http://dx.doi.org/10.1111/j.1365246X.2010.04804.x., 2010. | es_CO |
dc.relation.references | NMDB: the Neutron Monitor Database. Real-Time Database for high-resolution Neutron Monitor measurements. https://www.nmdb.eu/?q=node%2F19, 2021. | es_CO |
dc.relation.references | Steigies, C. T. NMDB Event Search Tool (NEST),. http://www.nmdb.eu/nest/ search.php, 2008 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Parada_2021_TG.pdf | Parada_2021_TG | 3,35 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.