• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Física
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3113
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorMadrid Carrillo, Yesid Alexander.-
    dc.date.accessioned2022-09-29T15:17:27Z-
    dc.date.available2019-06-28-
    dc.date.available2022-09-29T15:17:27Z-
    dc.date.issued2019-
    dc.identifier.citationMadrid Carrillo, Y. A. (2019). Transformación de Fourier fraccionaria cuántica [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3113es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3113-
    dc.descriptionLa transformaci´on de Fourier ha tenido importancia en diferentes a´reas de la ciencia e ingenier´ıa debido a sus multiples aplicaciones y recientemente en la computacio´n cua´ntica debido a su utilidad para alcanzar superposici´on de estados cua´nticos. Nuestra propuesta consiste en desarrollar una nueva compuerta cua´ntica asociada con la transformacio´n de Fourier fraccionaria. Hemos probado esta compuerta a trav´es del simulador de computador cua´ntico de IBM Experience. Por lo tanto, ha sido demostrado que el orden fraccionario ofrece un grado de libertad adicional en la superposicio´n de los esatdos del qubit, que permite a su vez la reduccio´n del volumen cua´ntico reemplanzando el uso de algunas compuertas cua´nticas acorde al orden fraccionario aplicado.es_CO
    dc.description.abstractThe Fourier transformation has been successful in different areas of science and engineering due to its multiple applications and now in quantum computing because of its utility to achieve superposition of quantum states. Our proposal consists of developing a new quantum gate associated with the fractional Fourier transformation, which allows a degree of freedom that has as a special case the standard Fourier transformation. We have tested this gate through the quantum computer simulator of IBM experience. Thus, it has been shown that the fractional order offers an additional degree of freedom in the superposition of qubit states, what allowed the reduction of the quantum volume in replacing the use of some other quantum gates according to the fractional order.es_CO
    dc.format.extent93es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Basicas.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleTransformación de Fourier fraccionaria cuántica.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2019-03-28-
    dc.relation.referencesJoseph Fourier. Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, p`ere et fils, 1822.es_CO
    dc.relation.referencesMichael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge University Press, Cambridge, 2010.es_CO
    dc.relation.referencesDavid Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A, 439(1907):553–558, 1992es_CO
    dc.relation.referencesLov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219. ACM, 1996es_CO
    dc.relation.referencesPeter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 124–134. IEEE Computer Society, 1994.es_CO
    dc.relation.referencesPeter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.es_CO
    dc.relation.referencesVictor Namias. The fractional order fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 25(3):241–265, 1980.es_CO
    dc.relation.referencesRafael Torres, Pierre Pellat-Finet, and Yezid Torres. Fractional convolution, fractional correlation and their translation invariance properties. Signal processing, 90(6):1976–1984, 2010.es_CO
    dc.relation.referencesR Torres, Pierre Pellat-Finet, and Yezid M Torres Moreno. Numerical holography computing by using the fractional fourier transform: a ping-pong-pang algorithm. In 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications, volume 5622, pages 1457– 1463. International Society for Optics and Photonics, 2004.es_CO
    dc.relation.referencesRafael Torres, Zandra Lizarazo, and Edmanuel Torres. Fractional sampling theorem for alpha-bandlimited random signals and its relation to the von neumann ergodic theorem. IEEE Trans. Signal Processing, 62(14):3695–3705, 2014.es_CO
    dc.relation.referencesAlberto Patin˜o-Vanegas, Pierre-Emmanuel Durand, Pierre Pellat-Finet, and Rafael Torres. Diffuser in fractional fourier optics. In Latin America Optics and Photonics Conference, pages LTu3A–2. Optical Society of America, 2016.es_CO
    dc.relation.referencesElkin A Santos, Ferney Castro, and Rafael Torres. Huygens-fresnel principle: Analyzing consistency at the photon level. Physical Review A, 97(4):043853, 2018.es_CO
    dc.relation.referencesAC McBride and FH Kerr. On namias’s fractional fourier transforms. IMA Journal of applied mathematics, 39(2):159–175, 1987es_CO
    dc.relation.referencesT Alieva, Vicente Lopez, F Agullo-Lopez, and LB Almeida. The fractional fourier transform in optical propagation problems. Journal of modern optics, 41(5):1037–1044, 1994.es_CO
    dc.relation.referencesAdolf W Lohmann. Image rotation, wigner rotation, and the fractional fourier transform. JOSA A, 10(10):2181–2186, 1993.es_CO
    dc.relation.referencesHaldun M Ozaktas and David Mendlovic. Fractional fourier transforms and their optical implementation. ii. JOSA A, 10(12):2522–2531, 1993es_CO
    dc.relation.referencesPierre Pellat-Finet and Georges Bonnet. Fractional order fourier transform and fourier optics. Optics communications, 111(1-2):141–154, 1994es_CO
    dc.relation.referencesPierre Pellat-Finet. Fresnel diffraction and the fractional-order fourier transform. Optics Letters, 19(18):1388–1390, 1994.es_CO
    dc.relation.referencesNicolas Gisin, Gr´egoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. Quantum cryptography. Reviews of modern physics, 74(1):145, 2002.es_CO
    dc.relation.referencesVittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum-enhanced measurements: beating the standard quantum limit. Science, 306(5700):1330– 1336, 2004.es_CO
    dc.relation.referencesAgedi N Boto, Pieter Kok, Daniel S Abrams, Samuel L Braunstein, Colin P Williams, and Jonathan P Dowling. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Physical Review Letters, 85(13):2733, 2000es_CO
    dc.relation.referencesDavid Deutsch. Quantum theory, the church–turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 400(1818):97–117, 1985.es_CO
    dc.relation.referencesDavid P DiVincenzo and Daniel Loss. Quantum information is physical. Superlattices and Microstructures, 23(3-4):419–432, 1998es_CO
    dc.relation.referencesDavid Deutsch. Quantum computational networks. Proc. R. Soc. Lond. A, 425(1868):73–90, 1989es_CO
    dc.relation.referencesMike Stannett. X-machines and the halting problem: Building a super-turing machine. Formal Aspects of Computing, 2(1):331–341, 1990.es_CO
    dc.relation.referencesEU Condon. Immersion of the fourier transform in a continuous group of functional transformations. Proceedings of the National Academy of Sciences, 23(3):158–164, 1937.es_CO
    dc.relation.referencesNorbert Wiener. Hermitian polynomials and fourier analysis. Studies in Applied Mathematics, 8(1-4):70–73, 1929.es_CO
    dc.relation.referencesDavid H Bailey and Paul N Swarztrauber. The fractional fourier transform and applications. SIAM review, 33(3):389–404, 1991.es_CO
    dc.relation.referencesRonald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and its applications, volume 31999. McGraw-Hill New York, 1986.es_CO
    dc.relation.referencesAthanasios Papoulis and AA Maradudin. The fourier integral and its applications. Physics Today, 16:70, 1963.es_CO
    dc.relation.referencesYigal Bitran, Zeev Zalevsky, David Mendlovic, and Rainer G Dorsch. Fractional correlation operation: performance analysis. Applied optics, 35(2):297– 303, 1996es_CO
    dc.relation.referencesZeev Zalevsky, David Mendlovic, and John H Caulfield. Fractional correlator with real-time control of the space-invariance property. Applied optics, 36 (11):2370–2375, 1997.es_CO
    dc.relation.referencesDavid Mendlovic and Haldun M Ozaktas. Fractional fourier transforms and their optical implementation: I. JOSA A, 10(9):1875–1881, 1993.es_CO
    dc.relation.referencesMarius Nagy and Selim G Akl. Quantum computation and quantum information. The International Journal of Parallel, Emergent and Distributed Systems, 21(1):1–59, 2006.es_CO
    dc.relation.referencesAndr´es Sicard. Algunos elementos introductorios acerca de la computaci´on cua´ntica. Memorias VII Encuentro ERM, Universidad de Antioquia, Medelln, agosto, 23, 1999.es_CO
    dc.relation.referencesAlbert Einstein, Boris Podolsky, and Nathan Rosen. Can quantummechanical description of physical reality be considered complete? Physical review, 47(10):777, 1935.es_CO
    dc.relation.referencesJohn S Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1(3):195, 1964.es_CO
    dc.relation.referencesColin Jack. Sherlock holmes investigates the epr paradox. Physics World, 8 (4):39, 1995.es_CO
    dc.relation.referencesAlain Aspect, Jean Dalibard, and G´erard Roger. Experimental test of bell’s inequalities using time-varying analyzers. Physical review letters, 49(25):1804, 1982.es_CO
    dc.relation.referencesAlain Aspect, Philippe Grangier, and G´erard Roger. Experimental tests of realistic local theories via bell’s theorem. Physical review letters, 47(7):460, 1981es_CO
    dc.relation.referencesHenry O. Kunz. On the equivalence between one-dimensional discrete walshhadamard and multidimensional discrete fourier transforms. IEEE Transactions on Computers, (3):267–268, 1979.es_CO
    dc.relation.referencesC Vu. Ibm makes quantum computing available on ibm cloud to accelerate innovation. IBM News Room, 2016.es_CO
    dc.relation.referencesAntonio D C´orcoles, Easwar Magesan, Srikanth J Srinivasan, Andrew W Cross, Matthias Steffen, Jay M Gambetta, and Jerry M Chow. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nature communications, 6:6979, 2015.es_CO
    dc.relation.referencesHE Caicedo-Ortiz, E Santiago-Cort´es, and DA Mantilla-Sandoval. Construyendo compuertas cu anticas con ibm’s cloud quantum computer. Journal de Ciencia e Ingenierıa, 9(1):42–56, 2017.es_CO
    dc.relation.referencesRafael Torres, Pierre Pellat-Finet, and Yezid Torres. Sampling theorem for fractional bandlimited signals: A self-contained proof. application to digital holography. IEEE Signal Processing Letters, 13(11):676–679, 2006.es_CO
    dc.relation.referencesAke Bjo¨rck and Victor Pereyra. Solution of vandermonde systems of equations. Mathematics of Computation, 24(112):893–903, 1970.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Física

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Madrid_2019_TG.pdfMadrid_2019_TG5,15 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.