Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2976
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Sánchez Daza, Juan Alberto. | - |
dc.date.accessioned | 2022-09-28T00:52:49Z | - |
dc.date.available | 2019-03-06 | - |
dc.date.available | 2022-09-28T00:52:49Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Sánchez Daza, J. A. (2018). Implementación de un Microscopio perfilométrico por interferometría óptica [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2976 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2976 | - |
dc.description | La microscopía interferométrica es una técnica muy conocida en el estudio de topografías de objetos del orden nanométrico. En este trabajo se presenta el diseño y construcción de un microscopio perfilométrico por interferometría de luz policromática y por interferometría de luz cuasi-monocromática, que permite el levantamiento topográfico de objetos con resolución nanométrica. El sistema está compuesto por un objetivo interferométrico tipo Mirau de 10X, una cámara digital tipo CMOS, un sistema de traslación piezoeléctrico con resolución de 0.1nm y un sistema de iluminación de luz blanca tipo LED y para la adaptación del dispositivo a luz cuasi-monocromática, se usa un filtro pasa banda de 647nm. Para luz policromática, por medio de un escaneo axial del objeto, se adquiere un conjunto de imágenes con franjas interferométricas deformadas las cuales dan información de la rugosidad del objeto. El principio del sistema está basado en la localización del pico de coherencia en cada posición Im(i,j) del conjunto de m imágenes adquiridas, en donde la posición z(m) del pico de coherencia cambia de acuerdo a la topografía del objeto. Para calcular el pico de coherencia se implementan varios algoritmos como son: el cálculo del mínimo del interferograma min{Im(i,j)}, el cálculo del máximo de la envolvente y la localización del centro de interferograma mediante el análisis de la fase por transformada de Fourier. Cuando se adapta el filtro pasa banda, la fuente puede ser considerada una fuente cuasi-monocromática, para este caso se implementan las técnicas de Phased Shifting a 3 y 4 imágenes, lo que reduce considerablemente el número de imágenes a adquirir, por lo tanto, el costo computacional. Se presenta una serie de reconstrucciones tridimensionales de varios objetos a resolución nanométrica, obtenidas de manera automática con la ayuda de una interface gráfica elaborada en Matlab, que permite el control de los dispositivos, procesado digital de las imágenes y el cálculo de la topografía del objeto | es_CO |
dc.description.abstract | Interferometric microscopy is a well-known technique in the study of topographies of objects. In this work the design and construction of a profilometric microscope by polychromatic light interferometry and by quasi-monochromatic light interferometry, which allows the topographic survey of objects with nanometric resolution, is presented. The system consists of a 10X Mirau interferometric lens, a CMOS-type digital camera, a piezoelectric translation system with a resolution of 0.1nm and a white LED lighting system and for the adaptation of the device to quasi-monochromatic light, a 647nm band pass filter is used. For polychromatic light, by means of an axial scan of the object, a set of images is acquired with a system of distorted interferometric strips which give information about the roughness of the object. The principle of the system is based on the location of the coherence peak in each position Im(i, j) of the set of m acquired images, where the z (m) position of the coherence peak changes according to the topography of the object. To calculate the coherence peak, several algorithms are implemented, such as the calculation of the minimum interferogram minimum {Im (i, j)}, the calculation of the maximum of the envelope and the location of the interferogram center by analyzing the phase by Fourier transform. When the band pass filter is adapted, the source can be considered a quasi-monochromatic source, for this case the techniques of Phased Shifting to 3 and 4 images are implemented, which considerably reduces the number of images to acquire, therefore the cost computational It presents a series of three-dimensional reconstructions of several objects at nanometric resolution, obtained automatically with the help of a graphical interface developed in Matlab, which allows the control of the devices, digital processing of the images and the calculation of the topography of the object . | es_CO |
dc.format.extent | 78 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Basicas. | es_CO |
dc.subject | Interferometría de luz blanca. | es_CO |
dc.subject | Mirau. | es_CO |
dc.subject | Sistema interferómetro Vertical. | es_CO |
dc.subject | Phase Shifting. | es_CO |
dc.title | Implementación de un microscopio perfilométrico por interferometría óptica. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2018-12-06 | - |
dc.relation.references | Arias-Hernández, N. A., Molina-Prado, M. L., & Meneses-Fonseca, J. E. (2015). A reconstruction of objets by interferometric profilometry with positioning system of labeled target periodic. Dyna, 82(190), 153-159. | es_CO |
dc.relation.references | Arias, N. A., Meneses, J. E., Suárez, M. A., & Gharbi, T. (2009). Medida de la Orientación, Posición y Desplazamiento en el Plano de un Objeto por Codificación de Fase. Bistua: Revista de la Facultad de Ciencias Básicas, 7(2). | es_CO |
dc.relation.references | Arlante, J. J. B., & Gómez, A. P. (2010). imágenes de rango de la superficie del ojo de la mosca mediante correlación interferométrica. ITECKNE, 7(2), 144-148. | es_CO |
dc.relation.references | Balasubramanian, N. (1982). Optical system for surface topography measurement: Google Patents | es_CO |
dc.relation.references | Bruning, J. H., Herriott, D. R., Gallagher, J., Rosenfeld, D., White, A., & Brangaccio, D. (1974). Digital wavefront measuring interferometer for testing optical surfaces and lenses. Applied Optics, 13(11), 2693-2703. | es_CO |
dc.relation.references | Caber, P. J. (1993). Interferometric profiler for rough surfaces. Applied Optics, 32(19), 3438-3441. | es_CO |
dc.relation.references | Carré, P. (1966). Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures. Metrologia, 2(1), 13. | es_CO |
dc.relation.references | Crane, R. (1969). Interference phase measurement. Applied Optics, 8, 345. | es_CO |
dc.relation.references | Creath, K. (1985). Phase-shifting speckle interferometry. Applied Optics, 24(18), 30533058 | es_CO |
dc.relation.references | Creath, K. (1988). Phase-measurement interferometry techniques. Progress in optics, 26(26), 349-393. | es_CO |
dc.relation.references | Cheng, Y.-Y., & Wyant, J. C. (1985). Phase shifter calibration in phase-shifting interferometry. Applied Optics, 24(18), 3049-3052. | es_CO |
dc.relation.references | Davidson, M., Kaufman, K., Mazor, I., & Cohen, F. (1987). An application of interference microscopy to integrated circuit inspection and metrology. Paper presented at the Integrated Circuit Metrology, Inspection, & Process Control. | es_CO |
dc.relation.references | de Groot, P., & Deck, L. (1995). Surface profiling by analysis of white-light interferograms in the spatial frequency domain. Journal of modern optics, 42(2), 389-401. | es_CO |
dc.relation.references | Deck, L., & De Groot, P. (1994). High-speed noncontact profiler based on scanning white-light interferometry. Applied Optics, 33(31), 7334-7338. | es_CO |
dc.relation.references | Gåsvik, K. J. (2003). Optical metrology: John Wiley & Sons. | es_CO |
dc.relation.references | Hariharan, P. (2003). Optical Interferometry, 2e: Elsevier | es_CO |
dc.relation.references | Heikkila, J., & Silven, O. (1997). A four-step camera calibration procedure with implicit image correction. Paper presented at the Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on. | es_CO |
dc.relation.references | Klempner, A. R. (2007). Development of a modular interferometric microscopy system for characterization of MEMS. | es_CO |
dc.relation.references | Lara, L., Jerez, M., Morantes, L., Plata, A., Torres, Y., Lasprilla, M., & Zhabon, V. (2011). Nanocharacterization of TiN films obtained by Ion Vapor deposition. Paper presented at the Journal of Physics: Conference Series | es_CO |
dc.relation.references | Larkin, K. G. (1996). Efficient nonlinear algorithm for envelope detection in white light interferometry. JOSA A, 13(4), 832-843. | es_CO |
dc.relation.references | Lee, B. S., & Strand, T. C. (1990). Profilometry with a coherence scanning microscope. Applied Optics, 29(26), 3784-3788. | es_CO |
dc.relation.references | Meneses-Fabian, C., & Rivera-Ortega, U. (2012). Phase-shifting interferometry by amplitude modulation Interferometry-Research and Applications in Science and Technology: InTech. | es_CO |
dc.relation.references | Nakadate, S., & Saito, H. (1985). Fringe scanning speckle-pattern interferometry. Applied Optics, 24(14), 2172-2180. | es_CO |
dc.relation.references | Nakadate, S., Saito, H., & Nakajima, T. (1986). Vibration measurement using phaseshifting stroboscopic holographic interferometry. Optica Acta: International Journal of Optics, 33(10), 1295-1309. | es_CO |
dc.relation.references | Olszak, A. (2000). Lateral scanning white-light interferometer. Applied Optics, 39(22), 3906-3913. | es_CO |
dc.relation.references | Robinson, D., & Williams, D. (1986). Digital phase stepping speckle interferometry. Optics communications, 57(1), 26-30. | es_CO |
dc.relation.references | Sandoz, P. (1996). An algorithm for profilometry by white-light phase-shifting interferometry. Journal of modern optics, 43(8), 1545-1554. | es_CO |
dc.relation.references | Sandoz, P., Devillers, R., & Plata, A. (1997). Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry. Journal of modern optics, 44(3), 519-534. | es_CO |
dc.relation.references | Sandoz, P., Zeggari, R., Froehly, L., Pretet, J. L., & Mougin, C. (2007). Position referencing in optical microscopy thanks to sample holders with out‐of‐focus encoded patterns. Journal of Microscopy, 225(3), 293-303 | es_CO |
dc.relation.references | Sathiamoorthy, K., & Ahmed, T. (2011). Construction and Validation of a White Light Interferometer. | es_CO |
dc.relation.references | Schwider, J. (1990). IV advanced evaluation techniques in interferometry Progress in optics (Vol. 28, pp. 271-359): Elsevier | es_CO |
dc.relation.references | Stetson, K. A., & Brohinsky, W. R. (1988). Fringe-shifting technique for numerical analysis of time-average holograms of vibrating objects. JOSA A, 5(9), 14721476 | es_CO |
dc.relation.references | Takeda, M., Ina, H., & Kobayashi, S. (1982). Fourier-transform method of fringepattern analysis for computer-based topography and interferometry. JosA, 72(1), 156-160. | es_CO |
dc.relation.references | Török, P., & Kao, F.-J. (2007). Optical imaging and microscopy: techniques and advanced systems (Vol. 87): Springer. | es_CO |
dc.relation.references | Windecker, R., Franz, S., & Tiziani, H. J. (1999). Optical roughness measurements with fringe projection. Applied Optics, 38(13), 2837-2842. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Sánchez_2018_TG.pdf | Sánchez_2018_TG | 1,77 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.