Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2959
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Páez Amaya, Darby. | - |
dc.date.accessioned | 2022-09-27T21:05:21Z | - |
dc.date.available | 2019-03-06 | - |
dc.date.available | 2022-09-27T21:05:21Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Páez Amaya, D. (2018). Análisis teórico de una pinza óptica en las aproximaciones de Rayleighy Mie para un haz de captura Doughnut-Shaped tipo TEM01 [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2959 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2959 | - |
dc.description | Una Pinza Óptica es un instrumento que usa un haz láser altamente enfocado para capturar y manipular objetos micrométricos o nanométricos. Desde su invención, ha demostrado ser una herramienta de primer nivel para la investigación en varios campos como la Biología, y la Microbiología, entre otros. La predicción del comportamiento de las fuerzas responsables de este fenómeno se ha planteado como un problema actual y de continua evolución, sumado al uso reciente de haces con vórtices ópticos que poseen propiedades exóticas como el Momento Angular Orbital, con ventajas como la manipulación rotacional de las micro partículas capturadas y reducción del daño óptico en muestras biológicas (Opticution) respecto a las Pinzas Ópticas de tipo Gradiente, hacen aun más complejo el problema. Por lo tanto, en este trabajo se realizo´ un análisis de las fuerzas presentes en la captura óptica de una esfera dieléctrica por un haz de luz Laguerre Gaussiano modo Doughnut-Shaped tipo TEM∗ 01 mediante la deducción de expresiones matemáticas calculadas bajo las aproximaciones en el Regimen de Rayleigh y el Regimen de Mie, además, de analizar el torque debido a la transferencia de Momento Angular Orbital de este haz a la micro partícula. Finalmente, se desarrolla una interfaz gra´fica de usuario en MATLAB que permite el an´alisis de las fuerzas presentes en la captura bajo las aproximaciones del Regimen de Rayleigh y el Regimen de Mie. Adicionalmente, se presentan resultados experimentales de medición de fuerzas, observación del torque producido por un haz Laguerre Gaussiano e implementación de una pinza óptica, obtenidos en el Óptica Trapping Lab-Grup de Biofotonica (BIOPT), del Departamento de Física Aplicada, de la Facultad de Física de la Universidad de Barcelona, en Barcelona-España. | es_CO |
dc.description.abstract | An Optical Tweezer is an instrument that uses a focused highly laser beam to capture and to manipulate micrometric and nanometric objects. From its invention has demonstrated to be a tool of first level for the investigation in several fields as Biology, and the Microbiology amoung others. The prediction of the behavior of the forces present in this phenomenon is a current problem and of continuous evolution, this added to the recent use of beams with optical vortexes that possess exotic properties as the Angular Orbital Moment, with advantages as the manipulation rotacional of the micro captured particles and reduction of the optical damage in biological samples (Opticution), with regard to gradient Optical Tweezer, make the problem even more complex. Therefore, in this work is realized an analysis of the light forces in the optical capture of a dielectric sphere with a beam Laguerre Gaussian mode Doughnut-Shaped type TEM∗ 01 by means of the deduction of mathematical expressions calculated in the approximations of Rayleigh Regime and Mie Regime, in addition, is analyzed the torque due to the transfer at the Orbital Angular Moment of this beam to the micro particle. Finally, is develop a user’s graphical interface in MATLAB that allows the analysis of the forces present in the capture in the approximations of Rayleigh Regime and Mie Regime. Additionally are presents experimentals results of measurement of forces, observation of the torque generated for a beam Laguerre Gaussian, implementation of an optical tweezer obtained in the Optical Trapping Lab-Grup de Biofot´onica (BIOPT), del Departamento de Física Aplicada, de la Facultad de Física de la Universidad de Barcelona, in Barcelona-España. | es_CO |
dc.format.extent | 155 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Basicas. | es_CO |
dc.subject | Pinza optica. | es_CO |
dc.subject | Regimen de Rayleigh. | es_CO |
dc.subject | Regimen de Mie. | es_CO |
dc.subject | Haz Laguerre Gaussiano tipo TEM∗ 01. | es_CO |
dc.title | Análisis teórico de una Pinza óptica en las aproximaciones de Rayleighy Mie para un Haz de Captura Doughnut-Shaped tipo TEM01.Trabajo de grado Universidad de Pamplona. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2018-12-06 | - |
dc.relation.references | A treatise on Electricity and Magnetism. London, 1873 | es_CO |
dc.relation.references | E. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. (Series I), vol. 13, pp. 307–320, Nov 1901. | es_CO |
dc.relation.references | A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett., vol. 24, pp. 156–159, Jan 1970. | es_CO |
dc.relation.references | A. Ashkin and J. M Dziedzic, “Optical levitation of liquid drops by radiation pressure,” vol. 187, pp. 1073–5, 04 1975. | es_CO |
dc.relation.references | A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, vol. 235, no. 4795, pp. 1517–1520, 1987. | es_CO |
dc.relation.references | A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett., vol. 11, pp. 288–290, May 1986 | es_CO |
dc.relation.references | A. Ashkin, “Atomic-beam deflection by resonance-radiation pressure,” Phys. Rev. Lett., vol. 25, pp. 1321–1324, Nov 1970 | es_CO |
dc.relation.references | R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express, vol. 13, pp. 8906–8912, Oct 2005. | es_CO |
dc.relation.references | K. Dholakia and P. Zema´nek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys., vol. 82, pp. 1767–1791, Jun 2010. | es_CO |
dc.relation.references | D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proceedings of the National Academy of Sciences, vol. 107, no. 3, pp. 1005–1010, 2010. | es_CO |
dc.relation.references | C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single dna molecules,” Proceedings of the National Academy of Sciences, vol. 94, no. 12, pp. 6185–6190, 1997. | es_CO |
dc.relation.references | Y. Hao, C. Canavan, S. S. Taylor, and R. A. Maillard, “Integrated method to attach dna handles and functionally select proteins to study folding and protein-ligand interactions with optical tweezers,” in Scientific Reports, 2017. | es_CO |
dc.relation.references | J. E Molloy, J. Burns, J. Kendrick-Jones, R. T Tregear, and D. C. S. White, “Movement and force produced by single myosin head,” vol. 378, pp. 209–12, 12 1995 | es_CO |
dc.relation.references | L. Gardini, S. M. Heissler, C. Arbore, Y. Yang, J. R. Sellers, F. S. Pavone, and M. Capitanio, “Dissecting myosin-5b mechanosensitivity and calcium regulation at the single molecule level,” Nature Communications, 2018. | es_CO |
dc.relation.references | M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z. qiang Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers.,” Nature communications, vol. 4, p. 1768, 2013. | es_CO |
dc.relation.references | I. A. Favre-Bulle, A. B. Stilgoe, H. Rubinsztein-Dunlop, and E. K. Scott, “Optical trapping of otoliths drives vestibular behaviours in larval zebrafish,” vol. 8, Springer US, 2017 | es_CO |
dc.relation.references | J. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Optics Communications, vol. 207, pp. 169–175, 6 2002. | es_CO |
dc.relation.references | Grier and D. G., “A revolution in optical manipulation,” Nature, vol. 424, pp. 810–816, 08 2003 | es_CO |
dc.relation.references | G. Sergio and F. J. Kevin, Noninvasive techniques in cell biology. | es_CO |
dc.relation.references | S. Sato, M. Ishigure, and H. Inaba, “Application of higher-order-mode nd:yag laser beam for manipulation and rotation of biological cells,” in Conference on Lasers and Electro-Optics, p. CWF49, Optical Society of America, 1991. | es_CO |
dc.relation.references | D. W. Zhang and X.-C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett., vol. 28, pp. 740–742, May 2003. | es_CO |
dc.relation.references | K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electronics Letters, vol. 43, pp. 107–108, January 2007. | es_CO |
dc.relation.references | R. Dasgupta, S. Ahlawat, R. Shanker, S. Shukla, and P. Gupta, “Optical trapping of spermatozoa using laguerre-gaussian laser modes,” vol. 15, p. 065010, 11 2010. | es_CO |
dc.relation.references | M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics, vol. 5, pp. 343–348, 08 2011. | es_CO |
dc.relation.references | C. Fury, C. Harfield, P. H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” 2014. | es_CO |
dc.relation.references | L. M. Zhou, K. W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser and Photonics Reviews, vol. 11, no. 2, pp. 1–8, 2017. | es_CO |
dc.relation.references | X. Zhou, Z. Chen, Z. Liu, and J. Pu, “Experimental investigation on optical vortex tweezers for microbubble trapping,” Open Physics, vol. 16, p. 52, July 2018. | es_CO |
dc.relation.references | “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 82, no. 557, pp. 560–567, 1909. | es_CO |
dc.relation.references | R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev., vol. 50, pp. 115–125, Jul 1936. | es_CO |
dc.relation.references | L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A, vol. 45, pp. 8185–8189, Jun 1992. | es_CO |
dc.relation.references | H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms,” Journal of Modern Optics, vol. 42, pp. 217–223, Jan. 1995 | es_CO |
dc.relation.references | H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett., vol. 75, pp. 826–829, Jul 1995. | es_CO |
dc.relation.references | L. Charron, Integrated Microfluidic Optical Manipulation Technique: Towards High Throughput Single Cell Analysis. PhD thesis, University of Toronto, 2012. | es_CO |
dc.relation.references | K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annual Review of Biophysics and Biomolecular Structure, vol. 23, no. 1, pp. 247–285, 1994. PMID: 7919782. | es_CO |
dc.relation.references | Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the rayleigh scattering regime,” Optics Communications, vol. 124, no. 5, pp. 529 – 541, 1996. | es_CO |
dc.relation.references | A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophysical Journal, vol. 61, no. 2, pp. 569 – 582, 1992. | es_CO |
dc.relation.references | A. Callegari, M. Mijalkov, A. B. Go¨k¨oz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” J. Opt. Soc. Am. B, vol. 32, pp. B11–B19, May 2015 | es_CO |
dc.relation.references | M. Kerker, “Lorenz-mie scattering by spheres: Some newly recognized phenomena,” Aerosol Science and Technology, vol. 1, no. 3, pp. 275–291, 1982. | es_CO |
dc.relation.references | G. Gouesbet, “Generalized lorenz-mie theory and applications,” Particle & Particle Systems Characterization, vol. 11, no. 1, pp. 22–34, 1994. | es_CO |
dc.relation.references | T. Nieminen, V. Loke, G. Knoener, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” vol. 3, 01 2007. | es_CO |
dc.relation.references | M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-x computations of light scattering by nonspherical particles: A review,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 55, no. 5, pp. 535 – 575, 1996. Light Scattering by Non-Spherical Particles. | es_CO |
dc.relation.references | N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers.,” Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 75 2 Pt 1, p. 021914, 2007 | es_CO |
dc.relation.references | A. A. de Thomaz, A. Fontes, C. V. Stahl, L. Y. Pozzo, D. C. Ayres, D. B. Almeida, P. M. A. Farias, B. S. Santos, J. Santos-Mallet, S. A. O. Gomes, S. Giorgio, D. Feder, and C. L. Cesar, “Optical tweezers for studying taxis in parasites,” Journal of Optics, vol. 13, no. 4, p. 044015, 2011. | es_CO |
dc.relation.references | R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of forces in optical tweezers,” Phys. Rev. A, vol. 90, p. 013825, Jul 2014 | es_CO |
dc.relation.references | A. Lizana, H. Zhang, A. Turpin, A. Van Eeckhout, F. A. Torres-Ruiz, A. Vargas, C. Ramirez, F. Pi, and J. Campos, “Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures,” Scientific Reports, vol. 8, no. 1, p. 11263, 2018. | es_CO |
dc.relation.references | N. A. C. Rojas, “Manipulacion de objetos micrometricos por medio de pinzas opticas,” Master’s thesis, Universidad Nacional de Colombia-Sede Medellin, 2012 | es_CO |
dc.relation.references | M. I. A. C., “Implementacion de pinzas opticas holograficas para manipulacion de microsistemas,” Master’s thesis, Universidad Nacional de Colombia-Sede Medellin, 2012. | es_CO |
dc.relation.references | M. L. M. P. Darby P´aez Amaya, N´estor A. Arias Hernandez, “INTERFAZ GRAFICA PARA EL AN´ALISIS DE LAS FUERZAS DE CAPTURA EN UNA PINZA ´OPTICA USANDO LAS APROXIMACIONES DE RAYLEIGH Y MIE,” Bistua:Revista de la Facultad de Ciencias B´asicas, vol. 14, no. 0120-4211, pp. 182–193, 2016 | es_CO |
dc.relation.references | E. Dufresne and D. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” vol. 69, pp. 1974–1977, 05 1998. | es_CO |
dc.relation.references | M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett., vol. 24, pp. 608–610, May 1999. | es_CO |
dc.relation.references | D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express, vol. 14, pp. 4175–4181, May 2006. | es_CO |
dc.relation.references | H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt., vol. 5, pp. 1550–1567, Oct 1966. | es_CO |
dc.relation.references | D. P. Amaya, “An´alisis teo´rico de las pinzas o´pticas bajo las aproximaciones de rayleigh y mie,” 2015. | es_CO |
dc.relation.references | B. Saleh and M. Teich, Fundamentals of Photonics. Wiley Series in Pure and Applied Optics, Wiley, 2007. | es_CO |
dc.relation.references | G. Gbur, Singular Optics. Brain, Behaviour and Cognition, CRC Press, 2016. | es_CO |
dc.relation.references | G. Arfken, H. Weber, and F. Harris, Mathematical Methods for Physicists: A Comprehensive Guide. Elsevier Science, 2013 | es_CO |
dc.relation.references | A. Siegman, Lasers. University Science Books, 1986. | es_CO |
dc.relation.references | M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Optics Communications, vol. 112, no. 5, pp. 321 – 327, 1994. | es_CO |
dc.relation.references | G. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space laguerre-gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Optics Communications, vol. 127, no. 4, pp. 183 – 188, 1996 | es_CO |
dc.relation.references | J. Oton, E. Oton, X. Quintana, and M. Geday, “Liquid-crystal phase-only devices,” Journal of Molecular Liquids, vol. 267, 11 2017 | es_CO |
dc.relation.references | E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” vol. 94, pp. 231124 – 231124, 07 2009. | es_CO |
dc.relation.references | M. L., K. Ebrahim, S. S., P. B., S. Enrico, N. Eleonora, and S. Fabio, “Spin-to-orbital optical angular momentum conversion in liquid crystal q-plates: Classical and quantum applications,” Molecular Crystals and Liquid Crystals, vol. 561, pp. 48–56, 06 2012. | es_CO |
dc.relation.references | N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett., vol. 17, pp. 221–223, Feb 1992. | es_CO |
dc.relation.references | A. V. Carpentier, H. Michinel, J. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” vol. 76, 10 2008. | es_CO |
dc.relation.references | B. A. Knyazev and V. G. Serbo, “Beams of photons with nonzero projections of orbital angular momenta: new results,” Physics-Uspekhi, vol. 61, no. 5, p. 449, 2018. | es_CO |
dc.relation.references | J. Goodman, Introduction to Fourier optics. McGraw-Hill physical and quantum electronics series, McGraw-Hill, 1988. | es_CO |
dc.relation.references | N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order laguerre-gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A, vol. 25, pp. 1642–1651, Jul 2008 | es_CO |
dc.relation.references | V. Garbin, D. Cojoc, R. Kulkarni, R. Malureanu, E. Ferrari, M. Nadasan, and E. Di Fabrizio, “Numerical analysis of forces in optical tweezers in the rayleigh regime,” 08 2005. | es_CO |
dc.relation.references | Z. Liu and D. Zhao, “Optical trapping rayleigh dielectric spheres with focused anomalous hollow beams,” Appl. Opt., vol. 52, pp. 1310–1316, Feb 2013 | es_CO |
dc.relation.references | J. Stratton, Electromagnetic theory. International series in pure and applied physics, McGraw-Hill book company, inc., 1941. | es_CO |
dc.relation.references | P. Jones, O. Marag, and G. Volpe, Optical Tweezers: Principles and Applications. Cambridge University Press, 2015. | es_CO |
dc.relation.references | L. Andrews and R. Phillips, Laser beam propagation through random media. Press Monographs, SPIE Press, 2005. | es_CO |
dc.relation.references | K.-B. Im, D.-Y. Lee, H.-I. Kim, C.-H. Oh, S.-H. Song, P.-S. Kim, and B.-C. Park, “Calculation of optical trapping forces on microspheres in the ray optics regime,” vol. 40, pp. 930–933, 05 2002. | es_CO |
dc.relation.references | E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt., vol. 36, pp. 6423–6433, Sep 1997 | es_CO |
dc.relation.references | A. N. R. Heckenberg, A. M. E. J. Friese, A. T. A. Nieminen, and A. H. Rubinsztein-Dunlop, Mechanical effects of optical vortices. | es_CO |
dc.relation.references | C.-L. Tsai, H.-P. Huang, L. Hsu, and K.-Y. Hsu, “An easier way to improve the trapping performance of optical tweezers by donut-shaped beam,” vol. 7762, pp. 776230–776236, 2010. | es_CO |
dc.relation.references | K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B, vol. 15, pp. 524–534, Feb 1998. | es_CO |
dc.relation.references | H. Felgner, O. Mu¨ller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt., vol. 34, pp. 977–982, Feb 1995. | es_CO |
dc.relation.references | N. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with laguerre-gaussian modes,” vol. 43, pp. 2485–2492, 08 1996. | es_CO |
dc.relation.references | N. R. Heckenberg, T. A. Nieminen, M. E. J. Friese, and H. Rubinsztein-Dunlop, “Trapping microscopic particles with singular beams,” 1998 | es_CO |
dc.relation.references | I. Optics, “lunamTM t–40i–force sensor module.” https://www.impetux.com/lunam-t-40i-2/, 2018 | es_CO |
dc.relation.references | S. B. Smith, Y. Cui, and C. Bustamante, “Optical-trap force transducer that operates by direct measurement of light momentum,” in Biophotonics, Part B, vol. 361 of Methods in Enzymology, pp. 134 – 162, Academic Press, 2003. | es_CO |
dc.relation.references | A. Farr´e and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes,” Opt. Express, vol. 18, pp. 11955–11968, May 2010. | es_CO |
dc.relation.references | A. Farre Flaquer, F. Marsa, and M. Montes-Usategui, “Beyond the hookean spring model: Direct measurement of optical forces through light momentum changes,” vol. 1486, 11 2017. | es_CO |
dc.relation.references | A. Farr´e, F. Mars`a, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express, vol. 20, pp. 12270–12291, May 2012. | es_CO |
dc.relation.references | I. C. D. Lenton, A. Stilgoe, H. Rubinsztein-Dunlop, and T. Nieminen, “Visual guide to optical tweezers,” European Journal of Physics, vol. 38, 2017 | es_CO |
dc.relation.references | J. Jackson and J. Jackson, Wie Classical Electrodynamics, 3rd Edition, Intern Ational Edition. John Wiley & Sons, Limited, 2005. | es_CO |
dc.relation.references | L. Allen, M. Padgett, and M. Babiker, “Iv the orbital angular momentum of light,” vol. 39 of Progress in Optics, pp. 291 – 372, Elsevier, 1999. | es_CO |
dc.relation.references | L. Allen and M. Padgett, “The orbital angular momentum of light: An introduction,” pp. 1–12, 03 2011. | es_CO |
dc.relation.references | M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A, vol. 54, pp. 1593–1596, Aug 1996. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Física |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Páez_2018_TG.pdf | Páez_2018_TG | 23,89 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.