• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Física
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2959
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorPáez Amaya, Darby.-
    dc.date.accessioned2022-09-27T21:05:21Z-
    dc.date.available2019-03-06-
    dc.date.available2022-09-27T21:05:21Z-
    dc.date.issued2019-
    dc.identifier.citationPáez Amaya, D. (2018). Análisis teórico de una pinza óptica en las aproximaciones de Rayleighy Mie para un haz de captura Doughnut-Shaped tipo TEM01 [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2959es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2959-
    dc.descriptionUna Pinza Óptica es un instrumento que usa un haz láser altamente enfocado para capturar y manipular objetos micrométricos o nanométricos. Desde su invención, ha demostrado ser una herramienta de primer nivel para la investigación en varios campos como la Biología, y la Microbiología, entre otros. La predicción del comportamiento de las fuerzas responsables de este fenómeno se ha planteado como un problema actual y de continua evolución, sumado al uso reciente de haces con vórtices ópticos que poseen propiedades exóticas como el Momento Angular Orbital, con ventajas como la manipulación rotacional de las micro partículas capturadas y reducción del daño óptico en muestras biológicas (Opticution) respecto a las Pinzas Ópticas de tipo Gradiente, hacen aun más complejo el problema. Por lo tanto, en este trabajo se realizo´ un análisis de las fuerzas presentes en la captura óptica de una esfera dieléctrica por un haz de luz Laguerre Gaussiano modo Doughnut-Shaped tipo TEM∗ 01 mediante la deducción de expresiones matemáticas calculadas bajo las aproximaciones en el Regimen de Rayleigh y el Regimen de Mie, además, de analizar el torque debido a la transferencia de Momento Angular Orbital de este haz a la micro partícula. Finalmente, se desarrolla una interfaz gra´fica de usuario en MATLAB que permite el an´alisis de las fuerzas presentes en la captura bajo las aproximaciones del Regimen de Rayleigh y el Regimen de Mie. Adicionalmente, se presentan resultados experimentales de medición de fuerzas, observación del torque producido por un haz Laguerre Gaussiano e implementación de una pinza óptica, obtenidos en el Óptica Trapping Lab-Grup de Biofotonica (BIOPT), del Departamento de Física Aplicada, de la Facultad de Física de la Universidad de Barcelona, en Barcelona-España.es_CO
    dc.description.abstractAn Optical Tweezer is an instrument that uses a focused highly laser beam to capture and to manipulate micrometric and nanometric objects. From its invention has demonstrated to be a tool of first level for the investigation in several fields as Biology, and the Microbiology amoung others. The prediction of the behavior of the forces present in this phenomenon is a current problem and of continuous evolution, this added to the recent use of beams with optical vortexes that possess exotic properties as the Angular Orbital Moment, with advantages as the manipulation rotacional of the micro captured particles and reduction of the optical damage in biological samples (Opticution), with regard to gradient Optical Tweezer, make the problem even more complex. Therefore, in this work is realized an analysis of the light forces in the optical capture of a dielectric sphere with a beam Laguerre Gaussian mode Doughnut-Shaped type TEM∗ 01 by means of the deduction of mathematical expressions calculated in the approximations of Rayleigh Regime and Mie Regime, in addition, is analyzed the torque due to the transfer at the Orbital Angular Moment of this beam to the micro particle. Finally, is develop a user’s graphical interface in MATLAB that allows the analysis of the forces present in the capture in the approximations of Rayleigh Regime and Mie Regime. Additionally are presents experimentals results of measurement of forces, observation of the torque generated for a beam Laguerre Gaussian, implementation of an optical tweezer obtained in the Optical Trapping Lab-Grup de Biofot´onica (BIOPT), del Departamento de Física Aplicada, de la Facultad de Física de la Universidad de Barcelona, in Barcelona-España.es_CO
    dc.format.extent155es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Basicas.es_CO
    dc.subjectPinza optica.es_CO
    dc.subjectRegimen de Rayleigh.es_CO
    dc.subjectRegimen de Mie.es_CO
    dc.subjectHaz Laguerre Gaussiano tipo TEM∗ 01.es_CO
    dc.titleAnálisis teórico de una Pinza óptica en las aproximaciones de Rayleighy Mie para un Haz de Captura Doughnut-Shaped tipo TEM01.Trabajo de grado Universidad de Pamplona.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2018-12-06-
    dc.relation.referencesA treatise on Electricity and Magnetism. London, 1873es_CO
    dc.relation.referencesE. F. Nichols and G. F. Hull, “A preliminary communication on the pressure of heat and light radiation,” Phys. Rev. (Series I), vol. 13, pp. 307–320, Nov 1901.es_CO
    dc.relation.referencesA. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett., vol. 24, pp. 156–159, Jan 1970.es_CO
    dc.relation.referencesA. Ashkin and J. M Dziedzic, “Optical levitation of liquid drops by radiation pressure,” vol. 187, pp. 1073–5, 04 1975.es_CO
    dc.relation.referencesA. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, vol. 235, no. 4795, pp. 1517–1520, 1987.es_CO
    dc.relation.referencesA. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett., vol. 11, pp. 288–290, May 1986es_CO
    dc.relation.referencesA. Ashkin, “Atomic-beam deflection by resonance-radiation pressure,” Phys. Rev. Lett., vol. 25, pp. 1321–1324, Nov 1970es_CO
    dc.relation.referencesR. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express, vol. 13, pp. 8906–8912, Oct 2005.es_CO
    dc.relation.referencesK. Dholakia and P. Zema´nek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys., vol. 82, pp. 1767–1791, Jun 2010.es_CO
    dc.relation.referencesD. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proceedings of the National Academy of Sciences, vol. 107, no. 3, pp. 1005–1010, 2010.es_CO
    dc.relation.referencesC. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single dna molecules,” Proceedings of the National Academy of Sciences, vol. 94, no. 12, pp. 6185–6190, 1997.es_CO
    dc.relation.referencesY. Hao, C. Canavan, S. S. Taylor, and R. A. Maillard, “Integrated method to attach dna handles and functionally select proteins to study folding and protein-ligand interactions with optical tweezers,” in Scientific Reports, 2017.es_CO
    dc.relation.referencesJ. E Molloy, J. Burns, J. Kendrick-Jones, R. T Tregear, and D. C. S. White, “Movement and force produced by single myosin head,” vol. 378, pp. 209–12, 12 1995es_CO
    dc.relation.referencesL. Gardini, S. M. Heissler, C. Arbore, Y. Yang, J. R. Sellers, F. S. Pavone, and M. Capitanio, “Dissecting myosin-5b mechanosensitivity and calcium regulation at the single molecule level,” Nature Communications, 2018.es_CO
    dc.relation.referencesM.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z. qiang Wang, and Y.-M. Li, “Trapping red blood cells in living animals using optical tweezers.,” Nature communications, vol. 4, p. 1768, 2013.es_CO
    dc.relation.referencesI. A. Favre-Bulle, A. B. Stilgoe, H. Rubinsztein-Dunlop, and E. K. Scott, “Optical trapping of otoliths drives vestibular behaviours in larval zebrafish,” vol. 8, Springer US, 2017es_CO
    dc.relation.referencesJ. Curtis, B. Koss, and D. Grier, “Dynamic holographic optical tweezers,” Optics Communications, vol. 207, pp. 169–175, 6 2002.es_CO
    dc.relation.referencesGrier and D. G., “A revolution in optical manipulation,” Nature, vol. 424, pp. 810–816, 08 2003es_CO
    dc.relation.referencesG. Sergio and F. J. Kevin, Noninvasive techniques in cell biology.es_CO
    dc.relation.referencesS. Sato, M. Ishigure, and H. Inaba, “Application of higher-order-mode nd:yag laser beam for manipulation and rotation of biological cells,” in Conference on Lasers and Electro-Optics, p. CWF49, Optical Society of America, 1991.es_CO
    dc.relation.referencesD. W. Zhang and X.-C. Yuan, “Optical doughnut for optical tweezers,” Opt. Lett., vol. 28, pp. 740–742, May 2003.es_CO
    dc.relation.referencesK. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electronics Letters, vol. 43, pp. 107–108, January 2007.es_CO
    dc.relation.referencesR. Dasgupta, S. Ahlawat, R. Shanker, S. Shukla, and P. Gupta, “Optical trapping of spermatozoa using laguerre-gaussian laser modes,” vol. 15, p. 065010, 11 2010.es_CO
    dc.relation.referencesM. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics, vol. 5, pp. 343–348, 08 2011.es_CO
    dc.relation.referencesC. Fury, C. Harfield, P. H. Jones, E. Stride, and G. Memoli, “Experimental characterisation of holographic optical traps for microbubbles,” 2014.es_CO
    dc.relation.referencesL. M. Zhou, K. W. Xiao, J. Chen, and N. Zhao, “Optical levitation of nanodiamonds by doughnut beams in vacuum,” Laser and Photonics Reviews, vol. 11, no. 2, pp. 1–8, 2017.es_CO
    dc.relation.referencesX. Zhou, Z. Chen, Z. Liu, and J. Pu, “Experimental investigation on optical vortex tweezers for microbubble trapping,” Open Physics, vol. 16, p. 52, July 2018.es_CO
    dc.relation.references“The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 82, no. 557, pp. 560–567, 1909.es_CO
    dc.relation.referencesR. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev., vol. 50, pp. 115–125, Jul 1936.es_CO
    dc.relation.referencesL. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A, vol. 45, pp. 8185–8189, Jun 1992.es_CO
    dc.relation.referencesH. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms,” Journal of Modern Optics, vol. 42, pp. 217–223, Jan. 1995es_CO
    dc.relation.referencesH. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett., vol. 75, pp. 826–829, Jul 1995.es_CO
    dc.relation.referencesL. Charron, Integrated Microfluidic Optical Manipulation Technique: Towards High Throughput Single Cell Analysis. PhD thesis, University of Toronto, 2012.es_CO
    dc.relation.referencesK. Svoboda and S. M. Block, “Biological applications of optical forces,” Annual Review of Biophysics and Biomolecular Structure, vol. 23, no. 1, pp. 247–285, 1994. PMID: 7919782.es_CO
    dc.relation.referencesY. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the rayleigh scattering regime,” Optics Communications, vol. 124, no. 5, pp. 529 – 541, 1996.es_CO
    dc.relation.referencesA. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophysical Journal, vol. 61, no. 2, pp. 569 – 582, 1992.es_CO
    dc.relation.referencesA. Callegari, M. Mijalkov, A. B. Go¨k¨oz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” J. Opt. Soc. Am. B, vol. 32, pp. B11–B19, May 2015es_CO
    dc.relation.referencesM. Kerker, “Lorenz-mie scattering by spheres: Some newly recognized phenomena,” Aerosol Science and Technology, vol. 1, no. 3, pp. 275–291, 1982.es_CO
    dc.relation.referencesG. Gouesbet, “Generalized lorenz-mie theory and applications,” Particle & Particle Systems Characterization, vol. 11, no. 1, pp. 22–34, 1994.es_CO
    dc.relation.referencesT. Nieminen, V. Loke, G. Knoener, and A. Branczyk, “Toolbox for calculation of optical forces and torques,” vol. 3, 01 2007.es_CO
    dc.relation.referencesM. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-x computations of light scattering by nonspherical particles: A review,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 55, no. 5, pp. 535 – 575, 1996. Light Scattering by Non-Spherical Particles.es_CO
    dc.relation.referencesN. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers.,” Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 75 2 Pt 1, p. 021914, 2007es_CO
    dc.relation.referencesA. A. de Thomaz, A. Fontes, C. V. Stahl, L. Y. Pozzo, D. C. Ayres, D. B. Almeida, P. M. A. Farias, B. S. Santos, J. Santos-Mallet, S. A. O. Gomes, S. Giorgio, D. Feder, and C. L. Cesar, “Optical tweezers for studying taxis in parasites,” Journal of Optics, vol. 13, no. 4, p. 044015, 2011.es_CO
    dc.relation.referencesR. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Absolute calibration of forces in optical tweezers,” Phys. Rev. A, vol. 90, p. 013825, Jul 2014es_CO
    dc.relation.referencesA. Lizana, H. Zhang, A. Turpin, A. Van Eeckhout, F. A. Torres-Ruiz, A. Vargas, C. Ramirez, F. Pi, and J. Campos, “Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures,” Scientific Reports, vol. 8, no. 1, p. 11263, 2018.es_CO
    dc.relation.referencesN. A. C. Rojas, “Manipulacion de objetos micrometricos por medio de pinzas opticas,” Master’s thesis, Universidad Nacional de Colombia-Sede Medellin, 2012es_CO
    dc.relation.referencesM. I. A. C., “Implementacion de pinzas opticas holograficas para manipulacion de microsistemas,” Master’s thesis, Universidad Nacional de Colombia-Sede Medellin, 2012.es_CO
    dc.relation.referencesM. L. M. P. Darby P´aez Amaya, N´estor A. Arias Hernandez, “INTERFAZ GRAFICA PARA EL AN´ALISIS DE LAS FUERZAS DE CAPTURA EN UNA PINZA ´OPTICA USANDO LAS APROXIMACIONES DE RAYLEIGH Y MIE,” Bistua:Revista de la Facultad de Ciencias B´asicas, vol. 14, no. 0120-4211, pp. 182–193, 2016es_CO
    dc.relation.referencesE. Dufresne and D. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” vol. 69, pp. 1974–1977, 05 1998.es_CO
    dc.relation.referencesM. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett., vol. 24, pp. 608–610, May 1999.es_CO
    dc.relation.referencesD. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express, vol. 14, pp. 4175–4181, May 2006.es_CO
    dc.relation.referencesH. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt., vol. 5, pp. 1550–1567, Oct 1966.es_CO
    dc.relation.referencesD. P. Amaya, “An´alisis teo´rico de las pinzas o´pticas bajo las aproximaciones de rayleigh y mie,” 2015.es_CO
    dc.relation.referencesB. Saleh and M. Teich, Fundamentals of Photonics. Wiley Series in Pure and Applied Optics, Wiley, 2007.es_CO
    dc.relation.referencesG. Gbur, Singular Optics. Brain, Behaviour and Cognition, CRC Press, 2016.es_CO
    dc.relation.referencesG. Arfken, H. Weber, and F. Harris, Mathematical Methods for Physicists: A Comprehensive Guide. Elsevier Science, 2013es_CO
    dc.relation.referencesA. Siegman, Lasers. University Science Books, 1986.es_CO
    dc.relation.referencesM. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Optics Communications, vol. 112, no. 5, pp. 321 – 327, 1994.es_CO
    dc.relation.referencesG. Turnbull, D. Robertson, G. Smith, L. Allen, and M. Padgett, “The generation of free-space laguerre-gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate,” Optics Communications, vol. 127, no. 4, pp. 183 – 188, 1996es_CO
    dc.relation.referencesJ. Oton, E. Oton, X. Quintana, and M. Geday, “Liquid-crystal phase-only devices,” Journal of Molecular Liquids, vol. 267, 11 2017es_CO
    dc.relation.referencesE. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” vol. 94, pp. 231124 – 231124, 07 2009.es_CO
    dc.relation.referencesM. L., K. Ebrahim, S. S., P. B., S. Enrico, N. Eleonora, and S. Fabio, “Spin-to-orbital optical angular momentum conversion in liquid crystal q-plates: Classical and quantum applications,” Molecular Crystals and Liquid Crystals, vol. 561, pp. 48–56, 06 2012.es_CO
    dc.relation.referencesN. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett., vol. 17, pp. 221–223, Feb 1992.es_CO
    dc.relation.referencesA. V. Carpentier, H. Michinel, J. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” vol. 76, 10 2008.es_CO
    dc.relation.referencesB. A. Knyazev and V. G. Serbo, “Beams of photons with nonzero projections of orbital angular momenta: new results,” Physics-Uspekhi, vol. 61, no. 5, p. 449, 2018.es_CO
    dc.relation.referencesJ. Goodman, Introduction to Fourier optics. McGraw-Hill physical and quantum electronics series, McGraw-Hill, 1988.es_CO
    dc.relation.referencesN. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, and T. Hara, “Generation of high-quality higher-order laguerre-gaussian beams using liquid-crystal-on-silicon spatial light modulators,” J. Opt. Soc. Am. A, vol. 25, pp. 1642–1651, Jul 2008es_CO
    dc.relation.referencesV. Garbin, D. Cojoc, R. Kulkarni, R. Malureanu, E. Ferrari, M. Nadasan, and E. Di Fabrizio, “Numerical analysis of forces in optical tweezers in the rayleigh regime,” 08 2005.es_CO
    dc.relation.referencesZ. Liu and D. Zhao, “Optical trapping rayleigh dielectric spheres with focused anomalous hollow beams,” Appl. Opt., vol. 52, pp. 1310–1316, Feb 2013es_CO
    dc.relation.referencesJ. Stratton, Electromagnetic theory. International series in pure and applied physics, McGraw-Hill book company, inc., 1941.es_CO
    dc.relation.referencesP. Jones, O. Marag, and G. Volpe, Optical Tweezers: Principles and Applications. Cambridge University Press, 2015.es_CO
    dc.relation.referencesL. Andrews and R. Phillips, Laser beam propagation through random media. Press Monographs, SPIE Press, 2005.es_CO
    dc.relation.referencesK.-B. Im, D.-Y. Lee, H.-I. Kim, C.-H. Oh, S.-H. Song, P.-S. Kim, and B.-C. Park, “Calculation of optical trapping forces on microspheres in the ray optics regime,” vol. 40, pp. 930–933, 05 2002.es_CO
    dc.relation.referencesE. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt., vol. 36, pp. 6423–6433, Sep 1997es_CO
    dc.relation.referencesA. N. R. Heckenberg, A. M. E. J. Friese, A. T. A. Nieminen, and A. H. Rubinsztein-Dunlop, Mechanical effects of optical vortices.es_CO
    dc.relation.referencesC.-L. Tsai, H.-P. Huang, L. Hsu, and K.-Y. Hsu, “An easier way to improve the trapping performance of optical tweezers by donut-shaped beam,” vol. 7762, pp. 776230–776236, 2010.es_CO
    dc.relation.referencesK. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B, vol. 15, pp. 524–534, Feb 1998.es_CO
    dc.relation.referencesH. Felgner, O. Mu¨ller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt., vol. 34, pp. 977–982, Feb 1995.es_CO
    dc.relation.referencesN. B. Simpson, L. Allen, and M. Padgett, “Optical tweezers and optical spanners with laguerre-gaussian modes,” vol. 43, pp. 2485–2492, 08 1996.es_CO
    dc.relation.referencesN. R. Heckenberg, T. A. Nieminen, M. E. J. Friese, and H. Rubinsztein-Dunlop, “Trapping microscopic particles with singular beams,” 1998es_CO
    dc.relation.referencesI. Optics, “lunamTM t–40i–force sensor module.” https://www.impetux.com/lunam-t-40i-2/, 2018es_CO
    dc.relation.referencesS. B. Smith, Y. Cui, and C. Bustamante, “Optical-trap force transducer that operates by direct measurement of light momentum,” in Biophotonics, Part B, vol. 361 of Methods in Enzymology, pp. 134 – 162, Academic Press, 2003.es_CO
    dc.relation.referencesA. Farr´e and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes,” Opt. Express, vol. 18, pp. 11955–11968, May 2010.es_CO
    dc.relation.referencesA. Farre Flaquer, F. Marsa, and M. Montes-Usategui, “Beyond the hookean spring model: Direct measurement of optical forces through light momentum changes,” vol. 1486, 11 2017.es_CO
    dc.relation.referencesA. Farr´e, F. Mars`a, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express, vol. 20, pp. 12270–12291, May 2012.es_CO
    dc.relation.referencesI. C. D. Lenton, A. Stilgoe, H. Rubinsztein-Dunlop, and T. Nieminen, “Visual guide to optical tweezers,” European Journal of Physics, vol. 38, 2017es_CO
    dc.relation.referencesJ. Jackson and J. Jackson, Wie Classical Electrodynamics, 3rd Edition, Intern Ational Edition. John Wiley & Sons, Limited, 2005.es_CO
    dc.relation.referencesL. Allen, M. Padgett, and M. Babiker, “Iv the orbital angular momentum of light,” vol. 39 of Progress in Optics, pp. 291 – 372, Elsevier, 1999.es_CO
    dc.relation.referencesL. Allen and M. Padgett, “The orbital angular momentum of light: An introduction,” pp. 1–12, 03 2011.es_CO
    dc.relation.referencesM. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A, vol. 54, pp. 1593–1596, Aug 1996.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Física

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Páez_2018_TG.pdfPáez_2018_TG23,89 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.