Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2890
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Aldana Bohórquez, Sandra Milena. | - |
dc.date.accessioned | 2022-09-25T02:01:49Z | - |
dc.date.available | 2019-04-24 | - |
dc.date.available | 2022-09-25T02:01:49Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Aldana Bohórquez, S. M. (2019). Estudio del efecto de la subunidad Gα del subgrupo 1 codificada por aga1 de Acremonium chrysogenum en la respuesta a diferentes tipos de estrés fisiológico [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2890 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2890 | - |
dc.description | Las proteínas Gα heterotriméricas median la transducción de señales que regulan diversos procesos del desarrollo de los hongos y de la repuesta a estrés ambiental. A. chrysogenum, es el productor de uno de los antibióticos más comercializados en el mundo, la cefalosporina C, y del que poco se conoce sobre sus rutas de señalización, y de su respuesta a condiciones de estrés, por lo que se construyeron alelos que dan una señal constitutivamente activa de la proteína Gα del subgrupo 1, los alelos aga1G42R y aga1Q204L. Para cada alelo se obtuvieron colonias que fueron expuestas a diversos agentes, (KCl, NaCl y Glicerina al 0,5M y 1M; H2O2 50mM y 100mM), se usó la cepa silvestre como control. Los resultados obtenidos se analizaron con pruebas no paramétricas, y sugieren que la proteína Gα heterotrimérica regula negativamente la tolerancia a ambientes hiperosmóticos y oxidativos, haciendo más sensible al hongo a los factores de estrés, lo cual se refleja en la disminución de la tasa de extensión radial. La respuesta a estrés lumínico bajo luz constante, y fotoperiodo 12horas Luz/12 oscuridad, no mostró alteración significativa sobre la tasa de crecimiento e indica una posible ausencia de ritmo circadiano en A chrysogenum. | es_CO |
dc.description.abstract | La autora no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 102 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Basicas. | es_CO |
dc.subject | GTPasa heterotrimérica. | es_CO |
dc.subject | Subunidad Gα. | es_CO |
dc.subject | Acremonium chrysogenum. | es_CO |
dc.subject | Extensión hifal. | es_CO |
dc.subject | Estrés fisiológico. | es_CO |
dc.title | Estudio del efecto de la subunidad Gα del subgrupo 1 codificada por aga1 de Acremonium chrysogenum en la respuesta a diferentes tipos de estrés fisiológico. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2019-01-24 | - |
dc.relation.references | Adams, T., Wieser, J., & Yu, J. (1998). Asexual Sporulation in Aspergillus nidulans. Microbiology and Molecular Biology Reviews, 62(1):35-54. | es_CO |
dc.relation.references | Aharon, G., Gelli, A., Snedden, W., & Blumwald, E. (1998). Activation of a Plant Plasma Membrane Ca+2. Channel by TGK1, Heterotrimeric G Protein α-Subunit Homologue Federation of European Biochemical Societies FEBS. Letters, 424:17-21 | es_CO |
dc.relation.references | Amare, M., & Keller, N. (2014). Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genetics and Biology, 66:11-18 | es_CO |
dc.relation.references | Anantharaman, V., Abhiman, S., de Souza, R., & Aravind, L. (2011). Comparative Genomics Uncovers Novel Structural and Functional Features of the Heterotrimeric GTPase Signaling System. Gene, 475:63–78. | es_CO |
dc.relation.references | Arenas, R. (2014). Micología Médica Quinta edición. Ed McGraw-Hill interamericana S.A de C.V. Mexico D.F. | es_CO |
dc.relation.references | Asilonu, E., Bucke, C., & Keshavarz, T. (2010). Enhancement of chrysogenin production in cultures of Penicillium chrysogenum by uronic acid oligosaccharides Biotechnology Letters 22: 931–936. | es_CO |
dc.relation.references | Atoui, A., Kastner, C., Larey, C., Thokala, R., Etxebeste, O., Espeso, E., Fischer, R., & Calvo, A. (2010). Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genetics and Biology, 47:962–972 | es_CO |
dc.relation.references | Azevedo, R., Souza, R., Braga, G., & Rangel, D. (2014). Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. Fungal Biology, 118:990-995. | es_CO |
dc.relation.references | Bahn, Y. (2008). Master and Commander in Fungal Pathogens: the Two-Component System and the HOG Signaling Pathway Eukaryotic Cell 7(12) p. 2017–2036 | es_CO |
dc.relation.references | Bahn, Y., & Jung, K. (2013). Stress Signaling Pathways for the Pathogenicity of Cryptococcus Eukaryotic Cell 12:1564–1577 | es_CO |
dc.relation.references | Baidya, S., Duran, R., Lohmar, J., Harris, P., Cary, J., Hong, S., Roze, L., Linz, E., & Calvo, A. (2014). VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryotic Cell doi:10.1128/EC.00099-14 | es_CO |
dc.relation.references | ra, A., Tótola, M., & Borges, A. (2007). Physiological implications of trehalose in the ectomycorrhizal fungus Pisolithus sp. under thermal stress. Journal of Thermal Biology 32:34–41 | es_CO |
dc.relation.references | Fox, E., & Howlett, B. (2008). Secondary metabolism: regulation and role in fungal biology. Current of Microbiolo. Current Opinion in Microbiology 11:481–487 | es_CO |
dc.relation.references | Friedman, E., Temple, B.., Hicks, S., Sondek, J., Jones, C., & Jones, A. (2009). Prediction of Protein–Protein Interfaces on G-Protein β Subunits Reveals a Novel Phospholipase C β2 Binding Domain. Journal Molecular Biology, 392:1044–1054 | es_CO |
dc.relation.references | Fukuda, T.., Naka, W.., Tajima, S., & Nishikawa, T. (1996). Neutral red assay in minimum fungicidal concentrations of antifungal agents. Journal of Medical & Veterinary Mycology, 34:353-356 | es_CO |
dc.relation.references | Furukawa, K., Hoshi, Y., Maeda, T., Nakajima, T., & Abe, K. (2005). Aspergillus nidulans HOG pathway is activated only bytwo-component signalling pathway in response to osmotic stress. Molecular Microbiology 56(5), 1246–1261 | es_CO |
dc.relation.references | García, O., Chávez, R., Fierro, F., & Martín, J. (2009). Effect of a heterotrimeric G protein α subunit on Conidia Germination, Stress Response, and Roquefortine C Production in Penicillium roqueforti. International Mycrobiology, 12:123-129. | es_CO |
dc.relation.references | García, O., Martín, J., & Fierro, F. (2007). The pga1 Gene of Penicillium chrysogenum NRRL 1951 Encodes a Heterotrimeric G Protein Alpha Subunit that Controls Growth and Development. Research in Microbiology, 158:437-446. | es_CO |
dc.relation.references | García, E., Marin, S., Sanchis, V., Crespo, A., & Ramos, A. (2015). Effect of Ultraviolet Radiation A and B On Growth and Mycotoxin Production by Aspergillus carbonarius and Aspergillus parasiticus in Grape and Pistachio Media. Fungal Biology, 119:67-78 | es_CO |
dc.relation.references | García, O & Fierro, F. (2017). Papel de las subunidades alfa de proteínas G en los procesos morfogénicos de hongos filamentosos de la división Ascomycota. Rev Iberoam Micol.34(1):1–9 | es_CO |
dc.relation.references | García, O., Gil, C, Rojas, J., Vaca, I, Figueroa, L., Levic, G., & Chavez, R. (2017). Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. fungal biology 121:754-762. | es_CO |
dc.relation.references | McCormick, A., Jacobsen, I., Broniszewska, M., Beck, J., Heesemann, J., & Ebel, F. (2012). The Two-Component Sensor Kinase TcsC and Its Role in Stress Resistance of the Human-Pathogenic Mold Aspergillus fumigatus PLoS One. 7(6):e38262. doi: 10.1371 | es_CO |
dc.relation.references | García, O., Martín, J., & Fierro, F. (2011). Heterotrimeric Gα Protein Pga1 from Penicillium chrysogenum Triggers Germination in Response to Carbon Sources and Affects Negatively Resistance to Different Stress Conditions Fungal Genetics and Biology, 48:641–649. | es_CO |
dc.relation.references | García-Rico, R. O., Chávez, R., Fierro, F., & Martín, J. F. (2009). Effect of a heterotrimeric G protein α subunit on conidia germination, stress response, and roquefortine C production in Penicillium roqueforti. International Microbiology, 12(2), 123–129. https://doi.org/10.2436/20.1501.01.89 | es_CO |
dc.relation.references | García-Rico, R. O., Fierro, F., & Martín, J. F. (2008a). Heterotrimeric G α protein Pga1 of Penicillium chrysogenum controls conidiation mainly by a cAMP-independent mechanism. Biochemistry and Cell Biology, 86(1), 57–69. https://doi.org/10.1139/O07-148 | es_CO |
dc.relation.references | García-Rico, R. O., Fierro, F., Mauriz, E., Gómez, A., Fernández-Bodega, M. A., & Martín, J. F. (2008). The heterotrimeric Gα protein Pga 1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology, 154(11), 3567–3578. https://doi.org/10.1099/mic.0.2008/019091-0 | es_CO |
dc.relation.references | García-Rico, R. O., Gil-Durán, C., Rojas-Aedo, J. F., Vaca, I., Figueroa, L., Levicán, G., & Chávez, R. (2017). Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. Fungal Biology, 121(9), 754–762. https://doi.org/10.1016/J.FUNBIO.2017.05.007 | es_CO |
dc.relation.references | García-Rico, R. O., Martín, J. F., & Fierro, F. (2007). The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development. Research in Microbiology, 158(5), 437–446. https://doi.org/10.1016/j.resmic.2007.03.001 | es_CO |
dc.relation.references | García-Rico, R. O., Martín, J. F., & Fierro, F. (2011). Heterotrimeric Gα protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genetics and Biology, 48(6), 641–649. https://doi.org/10.1016/j.fgb.2010.11.013 | es_CO |
dc.relation.references | Gronover, S., C., Kasulke, D., Tudzynski, P., & Tudzynski, B. (2001). The Role of G Protein Alpha Subunits in the Infection Process of the of the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact. 2001 Nov;14(11):1293-302 | es_CO |
dc.relation.references | Gruber, S., Omann, M., Escobar, C., Radebner, T., & Zeilinger, S. (2012). Generation of Trichoderma atroviride Mutants with Constitutively Activated G Protein Signaling by Using Geneticin Resistance as Selection Marker. BioMed Central Research Notes, 5:641-649 | es_CO |
dc.relation.references | Gummer, J., Trengove, R., Oliver, R., & Solomon, P. (2013). Dissecting the Role of G-Protein Signalling in Primary Metabolism in the Wheat Pathogen Stagonospora nodorum. Microbiology, 159(9):1972-1985. | es_CO |
dc.relation.references | Milligan, G., & Kostenis, E. (2006). Heterotrimeric G-proteins: A short history. British Journal of Pharmacology, 147(SUPPL. 1). https://doi.org/10.1038/sj.bjp.0706405 | es_CO |
dc.relation.references | Gutiérrez, S., Velasco, A., Marcos, F., Fernández, F., Fierro, F., Barredo, J., Díez, B., & Martín, J. (1997). Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 48:606-614. | es_CO |
dc.relation.references | Hagiwara, D., Suzuki, S., Kamei, K., Gonoi, T., & Kawamoto, S. (2014). The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genetics and Biology, 73:138–149 | es_CO |
dc.relation.references | Han, K., Kim, J., Moon, H., Kim, S., Lee, S., Han, D., Jahng, K., & Chae, K. (2008). The Aspergillus nidulans esdC (early sexual development) Gene is Necessary for Sexual Development and is Controlled by veA and a Geterotrimeric G protein. Fungal Genetics and Biology, 45:310–318. | es_CO |
dc.relation.references | Harashima, T., & Heitman, J. (2002). The Gα Protein Gpa2 Controls Yeast Differentiation by Interacting with Kelch Repeat Proteins that Mimic Gβ Subunits. Molecular Cell, 10:163–173. | es_CO |
dc.relation.references | Hengen, P. (1996). Methods and reagents: Preparing ultra-competent Escherichia coli. Trends in Biochem. Science. 21(2):75-76. | es_CO |
dc.relation.references | Hoff, B., Schmitt, E., & Kück, U. (2005). CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum. Molecular Microbiology 56(5),1220–1233 | es_CO |
dc.relation.references | Horwitz, B., Sharon, A., Lu, S., Ritter, V., Sandrock, T., Yoder, O., & Turgeon, B. (1998). A G Protein Alpha Subunit from Cochliobolus heterostrophus Involved in Mating and Appressorium Formation. Fungal Genetics and Biology, 26:19–32. | es_CO |
dc.relation.references | Hu, Y., Liu, G., Li, Z., Qin, Y., Qu, Y., & Song, X. (2013). G protein-cAMP Signaling Pathway Mediated by PGA3 Plays Different Roles in Regulating the Expressions of Amylases and Cellulases in Penicillium decumbens. Fungal Genetics and Biology, 58(59):62–70. | es_CO |
dc.relation.references | Inoue, H., Nojima, H., & Okayama. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene. 96:23-28. | es_CO |
dc.relation.references | Ivey, F., Hodge, R., Turner, G., & Borkovich, K. (1996). The Gai Homologue gna-1 Controls Multiple Differentiation Pathways in Neurospora crassa. Molecular Biology of the Cell 7:1283-1297. | es_CO |
dc.relation.references | Moore, E. (1996). Fundamentals of the fungi. Cuarta edición Ed. Prentice Hall, Inc. New Jersey. | es_CO |
dc.relation.references | Ivey, F., Kays, A., & Borkovich, K. (2002). Shared and Independent Roles for a Gi Protein and Adenylyl Cyclase in Regulating Development and Stress Responses in Neurospora crassa. Eukaryotic Cell, 1(4): 634–642 | es_CO |
dc.relation.references | Jain, S., Akiyama, K., Takata, R., & Ohguchi, T. (2005). Signaling via the G Protein α Subunit FGA2 is Necessary for Pathogenesis in Fusarium oxysporum. FEMS Microbiology Letters, 243:165–172 | es_CO |
dc.relation.references | Jamora, C., Takizawa, P., Zaarour, R., Denesvre, C., Faulkner, D., & Malhotra, V. (1997). Regulation of Golgi Structure through Heterotrimeric G Proteins. Cell, 91:617–626 | es_CO |
dc.relation.references | Jančič, S., Frisvad, J. C., Kocev, D., Gostinčar, C., Džeroski, S., & Gunde, N. (2016). Production of secondary metabolites in extreme environments: Food- and airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS ONE, 11(12), 1–20. https://doi.org/10.1371/journal.pone.0169116 | es_CO |
dc.relation.references | Jeraj, N., Stilla, A., Petric, S., Di Girolamo, M., Cresnara, B., & Lenasi, H. (2012). Identification and Partial Characterization of Rhizopus nigricans Gβ Proteins and Their Expression in the Presence of Progesterone. Journal of Steroid Biochemistry & Molecular Biology, 129:99–105. | es_CO |
dc.relation.references | Jin, T., Peng, L., Mirshahi, T., Rohacs, T., Chan, K., Sanchez, R., & Logothetis, D. (2002). The Subunits of G Proteins Gate a K Channel by Pivoted Bending of a Transmembrane Segment. Molecular Cell 10:469–481 | es_CO |
dc.relation.references | Jones, C., Greer, S., & Borkovich, K. (2007). The Response Regulator RRG-1 Functions Upstream of a Mitogen-activated Protein Kinase Pathway Impacting Asexual Development, Female Fertility, Osmotic Stress, and Fungicide Resistance in Neurospora crass. Molecular Biology of the Cell, 18:2123–2136 | es_CO |
dc.relation.references | Jung, K., Strain, A., Nielsen, K., Jung, K., & Bahn, Y. (2012). Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genetics and Biology 49 :332–345 | es_CO |
dc.relation.references | Kaneko, I., Iyama, M., Togashi, K., Yamaguchi, I., Teraoka, T., & Arie, T. (2013). Heterotrimeric G protein β subunit GPB1 and MAP-kinase MPK1 Regulate Hyphal Growth and Female Fertility in Fusarium sacchari. Mycoscience, 54:148-157. | es_CO |
dc.relation.references | Karaffa, L., Sándor, E., Fekete, E., Kozma, J., Szentirmai, & A., Pócsi, I. (2003). Stimulation of the cyanide-resistant alternative respiratory pathway by oxygen in Acremonium chrysogenum correlates with the size of the intracellular peroxide pool Can. J. Microbiol. 49: 216–220. | es_CO |
dc.relation.references | Nance, M., Kreutz, B., Tesmer, V., Sterne, R., Kozasa, T., & Tesmer, J. (2013). Structural and Functional Analysis of the Regulator of G Protein Signaling 2-Gaq Complex. Structure, 21:438–448. | es_CO |
dc.relation.references | Kirk., P. (2013). Species Fungorum (version 9.0, Sep 2010). In: Species 2000 & ITIS Catalogue of Life, 11th March 2013 (Roskov Y., Kunze T., Paglinawan L., Orrell T., Nicolson D., Culham A., Bailly N., Kirk P., Bourgoin T., Baillargeon G., Hernandez F., De Wever A., eds). Digital resource at www.catalogueoflife.org/col/. Species 2000: Reading, UK | es_CO |
dc.relation.references | Kluge, J & Kück, U. AcAxl2 and AcMst1 regulate arthrospore development and stress resistance in the cephalosporin C producer Acremonium chrysogenum Current Genetics https://doi.org/10.1007/s00294-017-0790-8 | es_CO |
dc.relation.references | Kopke, K.., Hoff, B., Bloemendal S, Katschorowski A, & Kamerewerd J, et al. (2013) Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell, 12:299–310 | es_CO |
dc.relation.references | Krijgsheld, P., Bleichrodt, R., van Veluw, G. J., Wang, F., Müller, W. H., Dijksterhuis, J., & Wösten, H. A. B. (2013). Development in Aspergillus. Studies in Mycology, 74(1), 1–29. https://doi.org/10.3114/sim0006 | es_CO |
dc.relation.references | Lafon, A., Han, K., Seo, J., Yu, J., & d’Enfert, C. (2006). G-Protein and cAMPMediated Signaling in Aspergilli: A genomic perspective. Fungal Genetics and Biology, 43:490–502. | es_CO |
dc.relation.references | Lambright, D., Noel, J., Hamm, H., & Sigler, P. (1994). Structural Determinants for Activation of the α-subunit of a Heterotrimeric G Protein. Nature, 369:621-628. | es_CO |
dc.relation.references | Lambright, D., Sondek, J., Bohm, A., Skiba, N., Hamm, H., & Sigler, P. (1996). The 2.0A Crystal Structure of a Heterotrimeric G Protein. Nature, 379:311-319. | es_CO |
dc.relation.references | Laxalt, A., Latijnhouwers, M., van Hulten, M., & Govers, F. (2002). Differential Expression of G Protein α and β Subunit Genes During Development of Phytophthora infestans. Fungal Genetics and Biology, 36:137–146. | es_CO |
dc.relation.references | Lee, J, Yoo, H: Yang, X., Kim, D., Lee, Ju., Lee, S., Han S., & Kim, S. (2016). Utilization of Algal Sugars and Glycerol for Enhanced Cephalosporin C Production by Acremonium chrysogenum M35. Letters in Applied Microbiology. Doi: 10.1111/lam.12684 | es_CO |
dc.relation.references | Lee, K., Singh, P., Chung, W., Ash, J., Kim, T., Hang, L., & Park, S. (2006). Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genetics and Biology, 43:694–706 | es_CO |
dc.relation.references | Neer, E. J. (1995). Heterotrimeric C proteins: Organizers of transmembrane signals. Cell, 80(2), 249–257. https://doi.org/10.1016/0092-8674(95)90407-7 | es_CO |
dc.relation.references | Lew, R., Giblon, R., & Lorenti, M. (2015). The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol. 82:158-67. doi: 10.1016/j.fgb.2015.07.007 | es_CO |
dc.relation.references | Li, L., Wright, S., Krystofova, S., Park, G., & Borkovich, K. (2007). Heterotrimeric G Protein Signaling in Filamentous Fungi Annual Review in Microbiology, 61:423–52 | es_CO |
dc.relation.references | Liu, Li., Long, L., An, Y., Yang, J., Xu, X., Hu, C., & Liu, G. (2013). The thioredoxin reductase-encoding gene ActrxR1 is involved in the cephalosporin C production of Acremonium chrysogenum in methionine-supplemented medium. Applied Microbiolgy and Biotechnolgy, 97(6):25512562 | es_CO |
dc.relation.references | Liu, S., & Dean, R. a. (1997). G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Molecular PlantMicrobe Interactions: MPMI, 10(9), 1075–1086. https://doi.org/10.1094/MPMI.1997.10.9.1075 | es_CO |
dc.relation.references | Liu, Y., Yang, K., Qin, Q., Lin G, Hu, T., Xu, Z., & Wang, S. (2018). Protein Subunit GpaB is Required for Asexual Development, Aflatoxin Biosynthesis and Pathogenicity by Regulating cAMP Signaling in Aspergillus flavus. Toxins 10:117., doi:10.3390/toxins10030117. | es_CO |
dc.relation.references | Liu, W., Soulié, M., Perrino, C., & Fillinger, S. (2012). The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light. Fungal Genetics and Biology 48:377–387 | es_CO |
dc.relation.references | Lokhandwala, J., Hopkins, H., Rodriguez, A., Dattenbock, C., Schmoll, M., & Zoltowski, B. (2015). Structural Biochemistry of a Fungal LOV Domain Photoreceptor Reveals an Evolutionarily Conserved Pathway Integrating Light and Oxidative Stress. Structure, 23:116–125 | es_CO |
dc.relation.references | Lozano, D., Rodríguez, A., Bernáldez, V., Córdoba, J., & Rodríguez, M. (2013). Influence of temperature and substrate conditions on the omt-1 gene expression of Aspergillus parasiticus in relation to its aflatoxin production. International Journal of Food Microbiology 166:263–269 | es_CO |
dc.relation.references | Mah, J. H., & Yu, J. H. (2006). Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryotic Cell, 5(10), 1585– 1595. https://doi.org/10.1128/EC.00192-06 | es_CO |
dc.relation.references | Mahmoud, Y., Mohamed, E., & Abd E. (2007). Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress. Mycobiology 35(3):124-128 | es_CO |
dc.relation.references | Neves, S., Ram, P., & Iyengar R. (2002). G protein pathways. Science. 31296(5573):1636-9 | es_CO |
dc.relation.references | Nguyen, C., Zhao, P., Sobiesiak, A., & Chidiac, P. (2012). RGS2 is a Component of the Cellular Stress Response. Biochemical and Biophysical Research Communications, 426:129–134. | es_CO |
dc.relation.references | Ni, M., Rierson, S., Seo, J., & Yu, J. (2005). The pkaB Gene Encoding the Secondary Protein Kinase A Catalytic Subunit Has a Synthetic Lethal Interaction with pkaA and Plays Overlapping and Opposite Roles in Aspergillus nidulans Eukaryotic Cell, 4(8):1465–1476. | es_CO |
dc.relation.references | Nichols, A., Floyd, D., Bruinsma, S., Narzinski, K., & Baranski, T. (2013). Frizzled Receptors Signal Through G proteins. Cellular Signalling, 25:1468–1475. | es_CO |
dc.relation.references | Ochiai, N., Tokai, T., Nishiuchi, T., Takahashi, N., Fujimura, M., & Kimura, M. (2007). Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochemical and Biophysical Research Communications, 363:639–644 | es_CO |
dc.relation.references | Bakti, F., Király, A., Orosz, E., Miskei, M., Emri, T., Leiter, E., & Pócsi, I. (2017). Study On the Glutathione Metabolism of the Filamentous Fungus Aspergillus Nidulans Acta Microbiologica et Immunologica Hungarica. Doi: 10.1556/030.64.2017.003 | es_CO |
dc.relation.references | Omero, C., Inbar, J., Rocha, V., Herrera, A., Chet, I., & Horwitz, B. (1999). G Protein Activators and cAMP Promote Mycoparasitic Behaviour in Trichoderma harzianum Mycology. Researchs, 103(12):1637-1642 | es_CO |
dc.relation.references | Park, A., Cho, A., Seo, J., Min, K., Son, H., Lee, J., Choi, G., Kim, J., & Lee, Y. (2010). Functional Analyses of Regulators of G Protein Signaling in Gibberella zeae. Fungal Genetics and Biology, 49:511–520. | es_CO |
dc.relation.references | Peberdy J. (1987). Penicillium and Acremonium. En: Biotechnology Handbooks. Peberdy J. F. (Ed.). Plenum Press, Springer, vol. 1, New York | es_CO |
dc.relation.references | Peeters, T., Versele, M., & Thevelein, J. (2007). Directly from Gα to Protein kinase A: The Kelch Repeat Protein Bypass of Adenylate Cyclase. Trends in Biochemical Sciences. 32(12):547-554 | es_CO |
dc.relation.references | Pérez, L., González, E., Colón, E., González, W., González, R., & Rodríguez, N. (2010). Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay. BMC Microbiology, 10:317 | es_CO |
dc.relation.references | Poli, A., Di Pietro, A., Zigonc, D., & Lenasi., H. 82009). Possible Involvement of G-Proteins and cAMP in the Induction of Progesterone Hydroxylating Enzyme System in the Wascular Wilt Fungus Fusarium oxysporum. Journal of Steroid Biochemistry and Molecular Biology, 113:241–247 | es_CO |
dc.relation.references | Prados, R., Serena, C., Delgado, J., Guarro, Josep., & Di Pietro, A. (2006). Distinct signalling pathways coordinately contribute to virulence of Fusarium oxysporum on Mammalian Hosts. Microbes and Infection, 8:2825-2831. | es_CO |
dc.relation.references | Raju, E., Lalmahammed, N., Sateesh, J., Swetha, C., Swethaprathusha G., & Srujana, D. (2012). Optimization and Production of Cephalosporin P From Acremonium Chrysogenum NCIM 893 by Using Different Agro Industrial Wastes in Solid State Fermentation International Journal Of Pharmaceutical And Chemical Sciences 1(2):704-803. | es_CO |
dc.relation.references | Ramsdale, M. (2001). Fungi with a sense of time: Molecular genetics of temporal organization in Neurospora crassa. Mycologist 15(1):10-15 | es_CO |
dc.relation.references | Rangel, D., Alston, D., & Roberts, D. (2008). Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus Mycological Research, 112:1355–1361. | es_CO |
dc.relation.references | Baltoumas, F., Theodoropoulou, M., & Hamodrakas, S., (2013). Interactions of the α-Subunits of Heterotrimeric G-Proteins with GPCRs, Effectors and RGS Proteins: A Critical Review and Analysis of Interacting Surfaces, Conformational Shifts, Structural Diversity and Electrostatic Potentials. Journal of Structural Biology, 182:209–218. | es_CO |
dc.relation.references | Raw A. S., D. E. Coleman, A. G. Gilman, y S. R. Sprang. 1997. Structural and biochemical characterization of the GTP gamma S-, GDP.Pi-, and GDPbound forms of a GTPase deficient Gly42→Val mutant of Gialpha1. Biochem. 36:15660-1566 | es_CO |
dc.relation.references | Reithner, B., Brunner, K., Schuhmacher, R., Peissl, I., Seidl, V., Krska, R., & Zeilinger, S. (2005). The G protein α Subunit Tga1 of Trichoderma atroviride is Involved in Qhitinase Formation and Differential Production of Antifungal Metabolites. Fungal Genetics and Biology, 42:749–760. | es_CO |
dc.relation.references | Ross, E., & Wilkie, T. (2000). GTPase-Activating Proteins for Heterotrimeric G Proteins: Regulators of G Protein Signaling (RGS) and RGS-Like Proteins. Annual Review of Biochemestry, 69:795–8 | es_CO |
dc.relation.references | Sándor, E., Szentirmai, A., Paul, G., Thomas, C., Pócsi, I., & Karaffa, L. (2001). Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum. Canadian. Journal of. Microbiolgy. 47: 801–806 | es_CO |
dc.relation.references | Schmidt, M., Stoll, D., Schütz, P., & Geisen, R. (2015). Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. International Journal of Food Microbiology, 192:1–6 | es_CO |
dc.relation.references | Schmoll, M, Franchi, L. & Kubicek C. (2005). Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (Anamorph Trichoderma reesei), Modulates Cellulase Gene Transcription in Response to Light. Eukaryot Cell. 4(12): 1998–2007. Doi: 10.1128/EC.4.12.1998-2007.2005 | es_CO |
dc.relation.references | Segers, G. C., & Nuss, D. L. (2003). Constitutively activated Gα negatively regulates virulence, reproduction and hydrophobin gene expression in the chestnut blight fungus Cryphonectria parasitica. Fungal Genetics and Biology, 38(2), 198–208. https://doi.org/10.1016/S1087-1845(02)00534-0 | es_CO |
dc.relation.references | Seibel, C., Gremel, G., do Nascimento, R., Schuster, A., Kubicek, C., & Schmoll, M. (2009). Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anaorph Trichoderma reesei). Bio Med Central Biology 1-15 | es_CO |
dc.relation.references | Seibt, B., Schiedel, A., Thimm, D., Hinz, S., Sherbiny, F., & Müller, C. (2013). The Second Extracellular Loop of GPCRs Determines Subtype-Selectivity and Controls Efficacy as Evidenced by Loop Exchange Study at A2 Adenosine Receptors. Biochemical Pharmacology, 85:1317–1329. | es_CO |
dc.relation.references | Shin, K., & Yu, J. (2013). Expression and Activity of Catalases Is Differentially Affected by GpaA (Ga) and FlbA (Regulator of G Protein Signaling) in Aspergillus fumigatus. Mycobiology, 41(3):145-148 | es_CO |
dc.relation.references | Baranyi, J., & Roberts, T. (1994). A dynamic approach to predicting bacterial growth in food. International journal of food microbiology, 23(3),277294 | es_CO |
dc.relation.references | Silverman, G., & Lew, R. (2003). Calcium gradient dependence of Neurospora crassa hyphal growth. Microbiology. 149(9):2475-85. | es_CO |
dc.relation.references | Springer, M., & Yanofsky, C. (1989). A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes and Development 3:559-571 | es_CO |
dc.relation.references | Summerbell, R., Gueidan, C., Schroers, H., de Hoog, G., Starink, M., Arocha, Y., Guarro, J., & Scott, J. (2011). Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Studies in Mycology, 68:139–162 | es_CO |
dc.relation.references | Svanström, A., & Melin, P. (2013). Intracellular trehalase activity is required for development, germination and heat-stress resistance of Aspergillus niger conidia. Research in Microbiology, 164:91-99 | es_CO |
dc.relation.references | Tag, A., Hicks, J., Garifullina, G., Ake, C., Phillips, T. D., Beremand, M., & Keller, N. (2000). G-protein signalling mediates differential production of toxic secondary metabolites. Molecular Microbiology, 38(3), 658–665. https://doi.org/10.1046/j.1365-2958.2000.02166.x | es_CO |
dc.relation.references | Tan, K., Heazlewood, J., Millar, A., Oliver., & Solomon, P. (2009). Proteomic Identification of Extracellular Proteins Regulated by the Gna1 Gα Subunit in Stagonospora nodorum. Mycological Search, 113:523–531. | es_CO |
dc.relation.references | Thevissen, K., Ghazi, A., De Samblanx, G., Brownleei, C., Osborn, R., & Broekaert, W. (1996). Fungal Membrane Responses Induced by Plant Defensins and Thionins. THE Journal Of Biological Chemistry 271(25)21:15018–15025, | es_CO |
dc.relation.references | Tisch, D., Kubicek, C., & Schmoll, M. (2011). New Insights into the Mechanism of Light Modulated Signaling by Heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP Levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genetics and Biology, 48:631–640. | es_CO |
dc.relation.references | Trinci, A. (1971). Influence of the Width of the Peripherial Growth Zone on the Radial Growth Rate of Fungal Colonies on Solid Media. Journal of General Microbiology, 67:325-344. | es_CO |
dc.relation.references | Trinci, A. (1971). Exponential Growth of the Germ tubes of Fungal Spores. Journal of General Microbiology, 67:345-348. | es_CO |
dc.relation.references | Barman A., & Tamuli, R. (2015). Multiple cellular roles of Neurospora crassa plc-1, splA2, and cpe-1 in regulation of cytosolic free calcium, carotenoid accumulation, stress responses, and acquisition of thermotolerance. Journal of Microbiology. DOI 10.1007/s12275-015-4465-1 | es_CO |
dc.relation.references | Truesdell, G., Yang, Z & Dickman, M. (2000). Gα Subunit Gene from the Phytopathogenic Gungus Colletotrichum trifolii is Required for Conidial Germination. Physiological and Molecular Plant Pathology, 56:131-140 | es_CO |
dc.relation.references | Turner, G., & Borkovich, K. (1993). Identification of a G Protein α Subunit from Neurospora crassa That Is a Member of the Gi Family. The Journal of Biological Chemestry, 268(20):14805-14811. | es_CO |
dc.relation.references | Tzima, A., Paplomatas, E., Tsitsigiannis, D., & Kang, S. (2012). The G Protein β Subunit Controls Virulence and Multiple Growth and Development-Related Traits in Verticillium dahliae. Fungal Genetics and Biology, 49:271–283. | es_CO |
dc.relation.references | Unidad Iztapalapa, & División de Ciencias Biológicas y de la Salud. (2010). Lineamientos para la conducción ética de la investigación, la docencia y la difusión en la División de Ciencias Biológicas y de la Salud. Retrieved from http://cbsuami.org/documentos/comisiones/lin_etica.pdf | es_CO |
dc.relation.references | Uribe, D., & Khachatourians, G. (2008). Identification and characterization of an alternative oxidase in the entomopathogenic fungus Metarhizium anisopliae. Canadian Journal of Microbiology, 54:119-127. | es_CO |
dc.relation.references | Gams, W. (1971). In: Cephalosporium-artige Schimmelpilze (Stuttgart):10 | es_CO |
dc.relation.references | Wall, M., Coleman, D., Lee, E., Iñiguez, J., Posner, B., Gilman, A., & Sprang, S. (1995). The Structure of the G Protein Heterotrimer Giα1β1 γ2 Cell, 83:1047-1058 | es_CO |
dc.relation.references | Wauson, E., Dbouk, H., Ghosh, A., & Cobb, M. (2014). G Protein-coupled Receptors and the Regulation of Autophagy. Trends in Endocrinology and Metabolism, 25(5):274-282. | es_CO |
dc.relation.references | Xu, W., & Mitchell, A. (2012). Fungal Morphogenesis: In Hot Pursuit. Current Biology 22(7):225-227. | es_CO |
dc.relation.references | Yang, Q., & Borkovich, K. A. (1999). Mutational activation of a Gα(i) causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics, 151(1), 107– 117. | es_CO |
dc.relation.references | Bloemendal, S., Löper, D., Terfehr, D., Kopke, K., Kluge, J., Teichert, I., & Kück, U. (2014). Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. Journal of Biotechnology, 169:51-62 | es_CO |
dc.relation.references | Yang, Y., Li, X., Shao, Y., & Chen, F. (2012). mrflbA, encoding a Putative FlbA, is Involved in Aerial Hyphal Development and Secondary Metabolite Production in Monascus ruber M-7. Fungal Biology, 116:225-233. | es_CO |
dc.relation.references | Yang, Q., Poole, S., & Borkovich, K. (2002). A G-Protein Subunit Required for Sexual and Vegetative Development and Maintenance of Normal G Protein Levels in Neurospora crassa. Eukaryotic Cell, 1(3): 378–390 | es_CO |
dc.relation.references | Yu, J. H., Wieser, J., & Adams, T. H. (1996). The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. The EMBO Journal, 15(19), 5184–5190. https://doi.org/10.1002/j.1460-2075.1996.tb00903.x | es_CO |
dc.relation.references | Yu, J.-H. (2006). Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. The Journal of Microbiology The Microbiological Society of Korea, 44(2), 145–154. | es_CO |
dc.relation.references | Yu, J.-H., Wieser, J., & Adams1, T. H. (1996). The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. The EMBO Journal, 15(19), 5184–5190. https://doi.org/10.1002/j.1460-2075.1996.tb00903.x | es_CO |
dc.relation.references | Yu, J., Wieser, J., & Adams, T. (1996). The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development.The EMBO Journal, 15(19):5184-5190 | es_CO |
dc.relation.references | Zampieri, E., Balestrini, R., Kohler, A., Abbà, S., Martin, F., & Bonfante, P. (2011). The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genetics and Biology, 48:585–591. | es_CO |
dc.relation.references | Zhao, X., Mehrabi, R., & Xu, J. (2007). Mitogen-Activated Protein Kinase Pathways and Fungal Pathogenesis. Eukaryotic Cell, 6(10):1701-1714. | es_CO |
dc.relation.references | Zuber, S., Hynes, M. J., & Andrianopoulos, A. (2002). G-protein signaling mediates asexual development at 25 degrees C but has no effect on yeast-like growth at 37 degrees C in the dimorphic fungus Penicillium marmeffei. Eukaryotic Cell, 1(3), 440–447. https://doi.org/10.1128/EC.1.3.440447.2002 | es_CO |
dc.relation.references | Zuñiga, J. 2014. Estudio de la relación entre la subunidad Ga Aga1 y el proceso de formación de artrosporas en Acremonium chrysogenum. Tesis para optar por el título de Maestría, Departamento de Ciencias Biológicas y de la Salud. Universidad Autonomo Metropolitana unidad Iztapalapa. México D.F | es_CO |
dc.relation.references | Borges, M., & Walmsley, A. (2000). cAMP Signalling in Pathogenic Fungi: Control of Dimorphic Switching and Pathogenicity. Trends In Microbiology, 8(3):133-141. | es_CO |
dc.relation.references | Bosch, D. E., Willard, F. S., Ramanujam, R., Kimple, A. J., Willard, M. D., Naqvi, N. I., & Siderovski, D. P. (2012). A P-loop mutation in Gα subunits prevents transition to the active state: Implications for G-protein signaling in fungal pathogenesis. PLoS Pathogens, 8(2). https://doi.org/10.1371/journal.ppat.1002553 | es_CO |
dc.relation.references | Boudreau, B., Larson, T., Brown, D., Busman, M., Roberts, E., Kendra, D., & McQuade, K. (2013). Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: Role of trehalose-6-phosphate synthase. Fungal Genetics and Biology, 57:1– 10. | es_CO |
dc.relation.references | Brotzu G. (1948). Ricerche Su di un Nuovo Antibiotico. Lavori Dell'Instituto D'Igiene du Cagliari. 1-11. | es_CO |
dc.relation.references | Cabrera-Vera, T. M., Vanhauwe, J., Thomas, T. O., Medkova, M., Preininger, A., Mazzoni, M. R., & Hamm, H. E. (2003). Insights into G Protein Structure, Function, and Regulation. Endocrine Reviews, 24(6), 765–781. https://doi.org/10.1210/er.2000-0026 | es_CO |
dc.relation.references | Calvo, A. M., Wilson, R. A., Bok, J. W., & Keller, N. P. (2002). Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews: MMBR, 66(3), 447–59, table of contents. https://doi.org/10.1128/MMBR.66.3.447-459.2002 | es_CO |
dc.relation.references | Calvo, A., Wilson, R., Bok, J., & Keller, N. (2000). Relationship between secondary metabolism and fungal development. Microbiology and Molecula Biolology Rev. 66(3):447-59 | es_CO |
dc.relation.references | Castrillo, M., & Avalos, J. (2014). Light-Mediated Participation of the VIVIDlike Protein of Fusarium fujikuroi VvdA in Pigmentation and Sevelopment. Fungal Genetics and Biology, 71:9–20. | es_CO |
dc.relation.references | Choi, G., Chen, B., & Nuss, D. (1995). Virus-mediated or transgenic suppression of a G-protein a subunit and attenuation of fungal virulence. Proc. National Academic.of Science, USA, 92:305-309. | es_CO |
dc.relation.references | Consejo Académico UAM-I. (2009). Instructivo del funcionamiento interno y operativo para regular el uso de los servicios e instalaciones de los laboratorios de docencia. Retrieved from http://www2.izt.uam.mx/conacad/doc_relevantes/instructivos/Instructivo_Lab_Doc_09.pdf | es_CO |
dc.relation.references | Cruz, J. (2014). Informe de Avances del proyecto de Investigación titulado Regulación De La Morfogénesis Y Biosíntesis De Antibióticosβ-Lactámicos Por La Subunidad Alfa De Una Proteína G Heterotrimérica De Acremonium chrysogenum. Presentado a la Universidad Autonoma Metropolitana UAM-I. Mexico D. F: | es_CO |
dc.relation.references | d’Enfert, C. (1997). Fungal Spore Germination: Insights from the Molecular Genetics ofAspergillus nidulansandNeurospora crassa. Fungal Genetics and Biology, 21(2), 163–172. https://doi.org/10.1006/FGBI.1997.0975 | es_CO |
dc.relation.references | Dantigny, P., Marín, S., Beyer, M., & Magan, N. (2007). Mould germination: data treatment and modelling. International journal of food microbiology, 114(1):17-24. | es_CO |
dc.relation.references | Dantigny, P., Nanguy, S., Judet, D., & Bensoussan, M. (2011). A new model for germination of fungi. International journal of food microbiology, 146(2):176-181. | es_CO |
dc.relation.references | De Bioseguridad En, M., & Laboratorio, E. L. (2005). Organización Mundial de la Salud. Ginebra. Retrieved from http://www.who.int/topics/medical_waste/manual_bioseguridad_laboratorio.pdf | es_CO |
dc.relation.references | Degani, O. (2013). Cochliobolus heterostrophus G-Protein Alpha and ¨Beta Subunit Double Mutant Reveals Shared and Distinct Roles in Development and Virulence. Physiological and Molecular Plant Pathology, 82:35-45 | es_CO |
dc.relation.references | Delgado, J., Martínez, A., Roldán, R., Roncero, M., & Di Pietro, A. (2005). Fusarium oxysporum G-Protein β Ssubunit Fgb1 Regulates Hyphal Growth, Development, and Virulence Through Multiple Signalling Pathways. Fungal Genetics and Biology, 42:61–72. | es_CO |
dc.relation.references | Demain, A. (2009). Antibiotics: Natural products essential to human health. Medial Research Reviews, 29(6):821-824. | es_CO |
dc.relation.references | Diezmann, S. (2014). Oxidative stress response and adaptation to H2O2 in the model eukaryote Saccharomyces cerevisiae and its human pathogenic relatives Candida albicans and Candida glabrata. Fungal Biology reviews, 28 :126-136 | es_CO |
dc.relation.references | Doehlemann, G., Berndt, P., & Hahn, M. (2006). Different signalling pathways involving a G?? protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Molecular Microbiology, 59(3), 821–835. https://doi.org/10.1111/j.1365-2958.2005.04991.x | es_CO |
dc.relation.references | Dreyer, J., Eichhorn, H., Friedlin, E., Kürnsteiner, H., & Kück, U. (2007). Applied Environmental Microbiolgy, 73(10):3412-22 | es_CO |
dc.relation.references | Duran, R., Cary, J., & Calvo, A. (2010). Role of the Osmotic Stress Regulatory Pathway in Morphogenesis and Secondary Metabolism in Filamentous Fungi. Toxins 2:367-381 | es_CO |
dc.relation.references | Engh, I., Nowrousian, M., & Kück, U. (2010). Sordaria macrospora, a Model Organism to Study Fungal Cellular Development. European Journal of Cell Biology, 89:864–872. | es_CO |
dc.relation.references | Fang, C., & Dean, A. (2000). Site-Directed Mutagenesis of the magB Gene Affects Growth and Development in Magnaporthe grisea. Molecular PlantMicrobe Interactions, 13(11), 1214–1227. https://doi.org/10.1094/MPMI.2000.13.11.1214 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Biología Molecular y Biotecnología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Aldana_2019_TG.pdf | Aldana_2019_TG | 1,29 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.