• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Biología Molecular y Biotecnología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2890
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorAldana Bohórquez, Sandra Milena.-
    dc.date.accessioned2022-09-25T02:01:49Z-
    dc.date.available2019-04-24-
    dc.date.available2022-09-25T02:01:49Z-
    dc.date.issued2019-
    dc.identifier.citationAldana Bohórquez, S. M. (2019). Estudio del efecto de la subunidad Gα del subgrupo 1 codificada por aga1 de Acremonium chrysogenum en la respuesta a diferentes tipos de estrés fisiológico [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2890es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2890-
    dc.descriptionLas proteínas Gα heterotriméricas median la transducción de señales que regulan diversos procesos del desarrollo de los hongos y de la repuesta a estrés ambiental. A. chrysogenum, es el productor de uno de los antibióticos más comercializados en el mundo, la cefalosporina C, y del que poco se conoce sobre sus rutas de señalización, y de su respuesta a condiciones de estrés, por lo que se construyeron alelos que dan una señal constitutivamente activa de la proteína Gα del subgrupo 1, los alelos aga1G42R y aga1Q204L. Para cada alelo se obtuvieron colonias que fueron expuestas a diversos agentes, (KCl, NaCl y Glicerina al 0,5M y 1M; H2O2 50mM y 100mM), se usó la cepa silvestre como control. Los resultados obtenidos se analizaron con pruebas no paramétricas, y sugieren que la proteína Gα heterotrimérica regula negativamente la tolerancia a ambientes hiperosmóticos y oxidativos, haciendo más sensible al hongo a los factores de estrés, lo cual se refleja en la disminución de la tasa de extensión radial. La respuesta a estrés lumínico bajo luz constante, y fotoperiodo 12horas Luz/12 oscuridad, no mostró alteración significativa sobre la tasa de crecimiento e indica una posible ausencia de ritmo circadiano en A chrysogenum.es_CO
    dc.description.abstractLa autora no proporciona la información sobre este ítem.es_CO
    dc.format.extent102es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Basicas.es_CO
    dc.subjectGTPasa heterotrimérica.es_CO
    dc.subjectSubunidad Gα.es_CO
    dc.subjectAcremonium chrysogenum.es_CO
    dc.subjectExtensión hifal.es_CO
    dc.subjectEstrés fisiológico.es_CO
    dc.titleEstudio del efecto de la subunidad Gα del subgrupo 1 codificada por aga1 de Acremonium chrysogenum en la respuesta a diferentes tipos de estrés fisiológico.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2019-01-24-
    dc.relation.referencesAdams, T., Wieser, J., & Yu, J. (1998). Asexual Sporulation in Aspergillus nidulans. Microbiology and Molecular Biology Reviews, 62(1):35-54.es_CO
    dc.relation.referencesAharon, G., Gelli, A., Snedden, W., & Blumwald, E. (1998). Activation of a Plant Plasma Membrane Ca+2. Channel by TGK1, Heterotrimeric G Protein α-Subunit Homologue Federation of European Biochemical Societies FEBS. Letters, 424:17-21es_CO
    dc.relation.referencesAmare, M., & Keller, N. (2014). Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genetics and Biology, 66:11-18es_CO
    dc.relation.referencesAnantharaman, V., Abhiman, S., de Souza, R., & Aravind, L. (2011). Comparative Genomics Uncovers Novel Structural and Functional Features of the Heterotrimeric GTPase Signaling System. Gene, 475:63–78.es_CO
    dc.relation.referencesArenas, R. (2014). Micología Médica Quinta edición. Ed McGraw-Hill interamericana S.A de C.V. Mexico D.F.es_CO
    dc.relation.referencesAsilonu, E., Bucke, C., & Keshavarz, T. (2010). Enhancement of chrysogenin production in cultures of Penicillium chrysogenum by uronic acid oligosaccharides Biotechnology Letters 22: 931–936.es_CO
    dc.relation.referencesAtoui, A., Kastner, C., Larey, C., Thokala, R., Etxebeste, O., Espeso, E., Fischer, R., & Calvo, A. (2010). Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genetics and Biology, 47:962–972es_CO
    dc.relation.referencesAzevedo, R., Souza, R., Braga, G., & Rangel, D. (2014). Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. Fungal Biology, 118:990-995.es_CO
    dc.relation.referencesBahn, Y. (2008). Master and Commander in Fungal Pathogens: the Two-Component System and the HOG Signaling Pathway Eukaryotic Cell 7(12) p. 2017–2036es_CO
    dc.relation.referencesBahn, Y., & Jung, K. (2013). Stress Signaling Pathways for the Pathogenicity of Cryptococcus Eukaryotic Cell 12:1564–1577es_CO
    dc.relation.referencesBaidya, S., Duran, R., Lohmar, J., Harris, P., Cary, J., Hong, S., Roze, L., Linz, E., & Calvo, A. (2014). VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryotic Cell doi:10.1128/EC.00099-14es_CO
    dc.relation.referencesra, A., Tótola, M., & Borges, A. (2007). Physiological implications of trehalose in the ectomycorrhizal fungus Pisolithus sp. under thermal stress. Journal of Thermal Biology 32:34–41es_CO
    dc.relation.referencesFox, E., & Howlett, B. (2008). Secondary metabolism: regulation and role in fungal biology. Current of Microbiolo. Current Opinion in Microbiology 11:481–487es_CO
    dc.relation.referencesFriedman, E., Temple, B.., Hicks, S., Sondek, J., Jones, C., & Jones, A. (2009). Prediction of Protein–Protein Interfaces on G-Protein β Subunits Reveals a Novel Phospholipase C β2 Binding Domain. Journal Molecular Biology, 392:1044–1054es_CO
    dc.relation.referencesFukuda, T.., Naka, W.., Tajima, S., & Nishikawa, T. (1996). Neutral red assay in minimum fungicidal concentrations of antifungal agents. Journal of Medical & Veterinary Mycology, 34:353-356es_CO
    dc.relation.referencesFurukawa, K., Hoshi, Y., Maeda, T., Nakajima, T., & Abe, K. (2005). Aspergillus nidulans HOG pathway is activated only bytwo-component signalling pathway in response to osmotic stress. Molecular Microbiology 56(5), 1246–1261es_CO
    dc.relation.referencesGarcía, O., Chávez, R., Fierro, F., & Martín, J. (2009). Effect of a heterotrimeric G protein α subunit on Conidia Germination, Stress Response, and Roquefortine C Production in Penicillium roqueforti. International Mycrobiology, 12:123-129.es_CO
    dc.relation.referencesGarcía, O., Martín, J., & Fierro, F. (2007). The pga1 Gene of Penicillium chrysogenum NRRL 1951 Encodes a Heterotrimeric G Protein Alpha Subunit that Controls Growth and Development. Research in Microbiology, 158:437-446.es_CO
    dc.relation.referencesGarcía, E., Marin, S., Sanchis, V., Crespo, A., & Ramos, A. (2015). Effect of Ultraviolet Radiation A and B On Growth and Mycotoxin Production by Aspergillus carbonarius and Aspergillus parasiticus in Grape and Pistachio Media. Fungal Biology, 119:67-78es_CO
    dc.relation.referencesGarcía, O & Fierro, F. (2017). Papel de las subunidades alfa de proteínas G en los procesos morfogénicos de hongos filamentosos de la división Ascomycota. Rev Iberoam Micol.34(1):1–9es_CO
    dc.relation.referencesGarcía, O., Gil, C, Rojas, J., Vaca, I, Figueroa, L., Levic, G., & Chavez, R. (2017). Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. fungal biology 121:754-762.es_CO
    dc.relation.referencesMcCormick, A., Jacobsen, I., Broniszewska, M., Beck, J., Heesemann, J., & Ebel, F. (2012). The Two-Component Sensor Kinase TcsC and Its Role in Stress Resistance of the Human-Pathogenic Mold Aspergillus fumigatus PLoS One. 7(6):e38262. doi: 10.1371es_CO
    dc.relation.referencesGarcía, O., Martín, J., & Fierro, F. (2011). Heterotrimeric Gα Protein Pga1 from Penicillium chrysogenum Triggers Germination in Response to Carbon Sources and Affects Negatively Resistance to Different Stress Conditions Fungal Genetics and Biology, 48:641–649.es_CO
    dc.relation.referencesGarcía-Rico, R. O., Chávez, R., Fierro, F., & Martín, J. F. (2009). Effect of a heterotrimeric G protein α subunit on conidia germination, stress response, and roquefortine C production in Penicillium roqueforti. International Microbiology, 12(2), 123–129. https://doi.org/10.2436/20.1501.01.89es_CO
    dc.relation.referencesGarcía-Rico, R. O., Fierro, F., & Martín, J. F. (2008a). Heterotrimeric G α protein Pga1 of Penicillium chrysogenum controls conidiation mainly by a cAMP-independent mechanism. Biochemistry and Cell Biology, 86(1), 57–69. https://doi.org/10.1139/O07-148es_CO
    dc.relation.referencesGarcía-Rico, R. O., Fierro, F., Mauriz, E., Gómez, A., Fernández-Bodega, M. A., & Martín, J. F. (2008). The heterotrimeric Gα protein Pga 1 regulates biosynthesis of penicillin, chrysogenin and roquefortine in Penicillium chrysogenum. Microbiology, 154(11), 3567–3578. https://doi.org/10.1099/mic.0.2008/019091-0es_CO
    dc.relation.referencesGarcía-Rico, R. O., Gil-Durán, C., Rojas-Aedo, J. F., Vaca, I., Figueroa, L., Levicán, G., & Chávez, R. (2017). Heterotrimeric G protein alpha subunit controls growth, stress response, extracellular protease activity, and cyclopiazonic acid production in Penicillium camemberti. Fungal Biology, 121(9), 754–762. https://doi.org/10.1016/J.FUNBIO.2017.05.007es_CO
    dc.relation.referencesGarcía-Rico, R. O., Martín, J. F., & Fierro, F. (2007). The pga1 gene of Penicillium chrysogenum NRRL 1951 encodes a heterotrimeric G protein alpha subunit that controls growth and development. Research in Microbiology, 158(5), 437–446. https://doi.org/10.1016/j.resmic.2007.03.001es_CO
    dc.relation.referencesGarcía-Rico, R. O., Martín, J. F., & Fierro, F. (2011). Heterotrimeric Gα protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genetics and Biology, 48(6), 641–649. https://doi.org/10.1016/j.fgb.2010.11.013es_CO
    dc.relation.referencesGronover, S., C., Kasulke, D., Tudzynski, P., & Tudzynski, B. (2001). The Role of G Protein Alpha Subunits in the Infection Process of the of the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact. 2001 Nov;14(11):1293-302es_CO
    dc.relation.referencesGruber, S., Omann, M., Escobar, C., Radebner, T., & Zeilinger, S. (2012). Generation of Trichoderma atroviride Mutants with Constitutively Activated G Protein Signaling by Using Geneticin Resistance as Selection Marker. BioMed Central Research Notes, 5:641-649es_CO
    dc.relation.referencesGummer, J., Trengove, R., Oliver, R., & Solomon, P. (2013). Dissecting the Role of G-Protein Signalling in Primary Metabolism in the Wheat Pathogen Stagonospora nodorum. Microbiology, 159(9):1972-1985.es_CO
    dc.relation.referencesMilligan, G., & Kostenis, E. (2006). Heterotrimeric G-proteins: A short history. British Journal of Pharmacology, 147(SUPPL. 1). https://doi.org/10.1038/sj.bjp.0706405es_CO
    dc.relation.referencesGutiérrez, S., Velasco, A., Marcos, F., Fernández, F., Fierro, F., Barredo, J., Díez, B., & Martín, J. (1997). Expression of the cefG gene is limiting for cephalosporin biosynthesis in Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 48:606-614.es_CO
    dc.relation.referencesHagiwara, D., Suzuki, S., Kamei, K., Gonoi, T., & Kawamoto, S. (2014). The role of AtfA and HOG MAPK pathway in stress tolerance in conidia of Aspergillus fumigatus. Fungal Genetics and Biology, 73:138–149es_CO
    dc.relation.referencesHan, K., Kim, J., Moon, H., Kim, S., Lee, S., Han, D., Jahng, K., & Chae, K. (2008). The Aspergillus nidulans esdC (early sexual development) Gene is Necessary for Sexual Development and is Controlled by veA and a Geterotrimeric G protein. Fungal Genetics and Biology, 45:310–318.es_CO
    dc.relation.referencesHarashima, T., & Heitman, J. (2002). The Gα Protein Gpa2 Controls Yeast Differentiation by Interacting with Kelch Repeat Proteins that Mimic Gβ Subunits. Molecular Cell, 10:163–173.es_CO
    dc.relation.referencesHengen, P. (1996). Methods and reagents: Preparing ultra-competent Escherichia coli. Trends in Biochem. Science. 21(2):75-76.es_CO
    dc.relation.referencesHoff, B., Schmitt, E., & Kück, U. (2005). CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum. Molecular Microbiology 56(5),1220–1233es_CO
    dc.relation.referencesHorwitz, B., Sharon, A., Lu, S., Ritter, V., Sandrock, T., Yoder, O., & Turgeon, B. (1998). A G Protein Alpha Subunit from Cochliobolus heterostrophus Involved in Mating and Appressorium Formation. Fungal Genetics and Biology, 26:19–32.es_CO
    dc.relation.referencesHu, Y., Liu, G., Li, Z., Qin, Y., Qu, Y., & Song, X. (2013). G protein-cAMP Signaling Pathway Mediated by PGA3 Plays Different Roles in Regulating the Expressions of Amylases and Cellulases in Penicillium decumbens. Fungal Genetics and Biology, 58(59):62–70.es_CO
    dc.relation.referencesInoue, H., Nojima, H., & Okayama. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene. 96:23-28.es_CO
    dc.relation.referencesIvey, F., Hodge, R., Turner, G., & Borkovich, K. (1996). The Gai Homologue gna-1 Controls Multiple Differentiation Pathways in Neurospora crassa. Molecular Biology of the Cell 7:1283-1297.es_CO
    dc.relation.referencesMoore, E. (1996). Fundamentals of the fungi. Cuarta edición Ed. Prentice Hall, Inc. New Jersey.es_CO
    dc.relation.referencesIvey, F., Kays, A., & Borkovich, K. (2002). Shared and Independent Roles for a Gi Protein and Adenylyl Cyclase in Regulating Development and Stress Responses in Neurospora crassa. Eukaryotic Cell, 1(4): 634–642es_CO
    dc.relation.referencesJain, S., Akiyama, K., Takata, R., & Ohguchi, T. (2005). Signaling via the G Protein α Subunit FGA2 is Necessary for Pathogenesis in Fusarium oxysporum. FEMS Microbiology Letters, 243:165–172es_CO
    dc.relation.referencesJamora, C., Takizawa, P., Zaarour, R., Denesvre, C., Faulkner, D., & Malhotra, V. (1997). Regulation of Golgi Structure through Heterotrimeric G Proteins. Cell, 91:617–626es_CO
    dc.relation.referencesJančič, S., Frisvad, J. C., Kocev, D., Gostinčar, C., Džeroski, S., & Gunde, N. (2016). Production of secondary metabolites in extreme environments: Food- and airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS ONE, 11(12), 1–20. https://doi.org/10.1371/journal.pone.0169116es_CO
    dc.relation.referencesJeraj, N., Stilla, A., Petric, S., Di Girolamo, M., Cresnara, B., & Lenasi, H. (2012). Identification and Partial Characterization of Rhizopus nigricans Gβ Proteins and Their Expression in the Presence of Progesterone. Journal of Steroid Biochemistry & Molecular Biology, 129:99–105.es_CO
    dc.relation.referencesJin, T., Peng, L., Mirshahi, T., Rohacs, T., Chan, K., Sanchez, R., & Logothetis, D. (2002). The Subunits of G Proteins Gate a K Channel by Pivoted Bending of a Transmembrane Segment. Molecular Cell 10:469–481es_CO
    dc.relation.referencesJones, C., Greer, S., & Borkovich, K. (2007). The Response Regulator RRG-1 Functions Upstream of a Mitogen-activated Protein Kinase Pathway Impacting Asexual Development, Female Fertility, Osmotic Stress, and Fungicide Resistance in Neurospora crass. Molecular Biology of the Cell, 18:2123–2136es_CO
    dc.relation.referencesJung, K., Strain, A., Nielsen, K., Jung, K., & Bahn, Y. (2012). Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genetics and Biology 49 :332–345es_CO
    dc.relation.referencesKaneko, I., Iyama, M., Togashi, K., Yamaguchi, I., Teraoka, T., & Arie, T. (2013). Heterotrimeric G protein β subunit GPB1 and MAP-kinase MPK1 Regulate Hyphal Growth and Female Fertility in Fusarium sacchari. Mycoscience, 54:148-157.es_CO
    dc.relation.referencesKaraffa, L., Sándor, E., Fekete, E., Kozma, J., Szentirmai, & A., Pócsi, I. (2003). Stimulation of the cyanide-resistant alternative respiratory pathway by oxygen in Acremonium chrysogenum correlates with the size of the intracellular peroxide pool Can. J. Microbiol. 49: 216–220.es_CO
    dc.relation.referencesNance, M., Kreutz, B., Tesmer, V., Sterne, R., Kozasa, T., & Tesmer, J. (2013). Structural and Functional Analysis of the Regulator of G Protein Signaling 2-Gaq Complex. Structure, 21:438–448.es_CO
    dc.relation.referencesKirk., P. (2013). Species Fungorum (version 9.0, Sep 2010). In: Species 2000 & ITIS Catalogue of Life, 11th March 2013 (Roskov Y., Kunze T., Paglinawan L., Orrell T., Nicolson D., Culham A., Bailly N., Kirk P., Bourgoin T., Baillargeon G., Hernandez F., De Wever A., eds). Digital resource at www.catalogueoflife.org/col/. Species 2000: Reading, UKes_CO
    dc.relation.referencesKluge, J & Kück, U. AcAxl2 and AcMst1 regulate arthrospore development and stress resistance in the cephalosporin C producer Acremonium chrysogenum Current Genetics https://doi.org/10.1007/s00294-017-0790-8es_CO
    dc.relation.referencesKopke, K.., Hoff, B., Bloemendal S, Katschorowski A, & Kamerewerd J, et al. (2013) Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell, 12:299–310es_CO
    dc.relation.referencesKrijgsheld, P., Bleichrodt, R., van Veluw, G. J., Wang, F., Müller, W. H., Dijksterhuis, J., & Wösten, H. A. B. (2013). Development in Aspergillus. Studies in Mycology, 74(1), 1–29. https://doi.org/10.3114/sim0006es_CO
    dc.relation.referencesLafon, A., Han, K., Seo, J., Yu, J., & d’Enfert, C. (2006). G-Protein and cAMPMediated Signaling in Aspergilli: A genomic perspective. Fungal Genetics and Biology, 43:490–502.es_CO
    dc.relation.referencesLambright, D., Noel, J., Hamm, H., & Sigler, P. (1994). Structural Determinants for Activation of the α-subunit of a Heterotrimeric G Protein. Nature, 369:621-628.es_CO
    dc.relation.referencesLambright, D., Sondek, J., Bohm, A., Skiba, N., Hamm, H., & Sigler, P. (1996). The 2.0A Crystal Structure of a Heterotrimeric G Protein. Nature, 379:311-319.es_CO
    dc.relation.referencesLaxalt, A., Latijnhouwers, M., van Hulten, M., & Govers, F. (2002). Differential Expression of G Protein α and β Subunit Genes During Development of Phytophthora infestans. Fungal Genetics and Biology, 36:137–146.es_CO
    dc.relation.referencesLee, J, Yoo, H: Yang, X., Kim, D., Lee, Ju., Lee, S., Han S., & Kim, S. (2016). Utilization of Algal Sugars and Glycerol for Enhanced Cephalosporin C Production by Acremonium chrysogenum M35. Letters in Applied Microbiology. Doi: 10.1111/lam.12684es_CO
    dc.relation.referencesLee, K., Singh, P., Chung, W., Ash, J., Kim, T., Hang, L., & Park, S. (2006). Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genetics and Biology, 43:694–706es_CO
    dc.relation.referencesNeer, E. J. (1995). Heterotrimeric C proteins: Organizers of transmembrane signals. Cell, 80(2), 249–257. https://doi.org/10.1016/0092-8674(95)90407-7es_CO
    dc.relation.referencesLew, R., Giblon, R., & Lorenti, M. (2015). The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol. 82:158-67. doi: 10.1016/j.fgb.2015.07.007es_CO
    dc.relation.referencesLi, L., Wright, S., Krystofova, S., Park, G., & Borkovich, K. (2007). Heterotrimeric G Protein Signaling in Filamentous Fungi Annual Review in Microbiology, 61:423–52es_CO
    dc.relation.referencesLiu, Li., Long, L., An, Y., Yang, J., Xu, X., Hu, C., & Liu, G. (2013). The thioredoxin reductase-encoding gene ActrxR1 is involved in the cephalosporin C production of Acremonium chrysogenum in methionine-supplemented medium. Applied Microbiolgy and Biotechnolgy, 97(6):25512562es_CO
    dc.relation.referencesLiu, S., & Dean, R. a. (1997). G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Molecular PlantMicrobe Interactions: MPMI, 10(9), 1075–1086. https://doi.org/10.1094/MPMI.1997.10.9.1075es_CO
    dc.relation.referencesLiu, Y., Yang, K., Qin, Q., Lin G, Hu, T., Xu, Z., & Wang, S. (2018). Protein Subunit GpaB is Required for Asexual Development, Aflatoxin Biosynthesis and Pathogenicity by Regulating cAMP Signaling in Aspergillus flavus. Toxins 10:117., doi:10.3390/toxins10030117.es_CO
    dc.relation.referencesLiu, W., Soulié, M., Perrino, C., & Fillinger, S. (2012). The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light. Fungal Genetics and Biology 48:377–387es_CO
    dc.relation.referencesLokhandwala, J., Hopkins, H., Rodriguez, A., Dattenbock, C., Schmoll, M., & Zoltowski, B. (2015). Structural Biochemistry of a Fungal LOV Domain Photoreceptor Reveals an Evolutionarily Conserved Pathway Integrating Light and Oxidative Stress. Structure, 23:116–125es_CO
    dc.relation.referencesLozano, D., Rodríguez, A., Bernáldez, V., Córdoba, J., & Rodríguez, M. (2013). Influence of temperature and substrate conditions on the omt-1 gene expression of Aspergillus parasiticus in relation to its aflatoxin production. International Journal of Food Microbiology 166:263–269es_CO
    dc.relation.referencesMah, J. H., & Yu, J. H. (2006). Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryotic Cell, 5(10), 1585– 1595. https://doi.org/10.1128/EC.00192-06es_CO
    dc.relation.referencesMahmoud, Y., Mohamed, E., & Abd E. (2007). Response of the Higher Basidiomycetic Ganoderma resinaceum to Sodium Chloride Stress. Mycobiology 35(3):124-128es_CO
    dc.relation.referencesNeves, S., Ram, P., & Iyengar R. (2002). G protein pathways. Science. 31296(5573):1636-9es_CO
    dc.relation.referencesNguyen, C., Zhao, P., Sobiesiak, A., & Chidiac, P. (2012). RGS2 is a Component of the Cellular Stress Response. Biochemical and Biophysical Research Communications, 426:129–134.es_CO
    dc.relation.referencesNi, M., Rierson, S., Seo, J., & Yu, J. (2005). The pkaB Gene Encoding the Secondary Protein Kinase A Catalytic Subunit Has a Synthetic Lethal Interaction with pkaA and Plays Overlapping and Opposite Roles in Aspergillus nidulans Eukaryotic Cell, 4(8):1465–1476.es_CO
    dc.relation.referencesNichols, A., Floyd, D., Bruinsma, S., Narzinski, K., & Baranski, T. (2013). Frizzled Receptors Signal Through G proteins. Cellular Signalling, 25:1468–1475.es_CO
    dc.relation.referencesOchiai, N., Tokai, T., Nishiuchi, T., Takahashi, N., Fujimura, M., & Kimura, M. (2007). Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochemical and Biophysical Research Communications, 363:639–644es_CO
    dc.relation.referencesBakti, F., Király, A., Orosz, E., Miskei, M., Emri, T., Leiter, E., & Pócsi, I. (2017). Study On the Glutathione Metabolism of the Filamentous Fungus Aspergillus Nidulans Acta Microbiologica et Immunologica Hungarica. Doi: 10.1556/030.64.2017.003es_CO
    dc.relation.referencesOmero, C., Inbar, J., Rocha, V., Herrera, A., Chet, I., & Horwitz, B. (1999). G Protein Activators and cAMP Promote Mycoparasitic Behaviour in Trichoderma harzianum Mycology. Researchs, 103(12):1637-1642es_CO
    dc.relation.referencesPark, A., Cho, A., Seo, J., Min, K., Son, H., Lee, J., Choi, G., Kim, J., & Lee, Y. (2010). Functional Analyses of Regulators of G Protein Signaling in Gibberella zeae. Fungal Genetics and Biology, 49:511–520.es_CO
    dc.relation.referencesPeberdy J. (1987). Penicillium and Acremonium. En: Biotechnology Handbooks. Peberdy J. F. (Ed.). Plenum Press, Springer, vol. 1, New Yorkes_CO
    dc.relation.referencesPeeters, T., Versele, M., & Thevelein, J. (2007). Directly from Gα to Protein kinase A: The Kelch Repeat Protein Bypass of Adenylate Cyclase. Trends in Biochemical Sciences. 32(12):547-554es_CO
    dc.relation.referencesPérez, L., González, E., Colón, E., González, W., González, R., & Rodríguez, N. (2010). Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay. BMC Microbiology, 10:317es_CO
    dc.relation.referencesPoli, A., Di Pietro, A., Zigonc, D., & Lenasi., H. 82009). Possible Involvement of G-Proteins and cAMP in the Induction of Progesterone Hydroxylating Enzyme System in the Wascular Wilt Fungus Fusarium oxysporum. Journal of Steroid Biochemistry and Molecular Biology, 113:241–247es_CO
    dc.relation.referencesPrados, R., Serena, C., Delgado, J., Guarro, Josep., & Di Pietro, A. (2006). Distinct signalling pathways coordinately contribute to virulence of Fusarium oxysporum on Mammalian Hosts. Microbes and Infection, 8:2825-2831.es_CO
    dc.relation.referencesRaju, E., Lalmahammed, N., Sateesh, J., Swetha, C., Swethaprathusha G., & Srujana, D. (2012). Optimization and Production of Cephalosporin P From Acremonium Chrysogenum NCIM 893 by Using Different Agro Industrial Wastes in Solid State Fermentation International Journal Of Pharmaceutical And Chemical Sciences 1(2):704-803.es_CO
    dc.relation.referencesRamsdale, M. (2001). Fungi with a sense of time: Molecular genetics of temporal organization in Neurospora crassa. Mycologist 15(1):10-15es_CO
    dc.relation.referencesRangel, D., Alston, D., & Roberts, D. (2008). Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus Mycological Research, 112:1355–1361.es_CO
    dc.relation.referencesBaltoumas, F., Theodoropoulou, M., & Hamodrakas, S., (2013). Interactions of the α-Subunits of Heterotrimeric G-Proteins with GPCRs, Effectors and RGS Proteins: A Critical Review and Analysis of Interacting Surfaces, Conformational Shifts, Structural Diversity and Electrostatic Potentials. Journal of Structural Biology, 182:209–218.es_CO
    dc.relation.referencesRaw A. S., D. E. Coleman, A. G. Gilman, y S. R. Sprang. 1997. Structural and biochemical characterization of the GTP gamma S-, GDP.Pi-, and GDPbound forms of a GTPase deficient Gly42→Val mutant of Gialpha1. Biochem. 36:15660-1566es_CO
    dc.relation.referencesReithner, B., Brunner, K., Schuhmacher, R., Peissl, I., Seidl, V., Krska, R., & Zeilinger, S. (2005). The G protein α Subunit Tga1 of Trichoderma atroviride is Involved in Qhitinase Formation and Differential Production of Antifungal Metabolites. Fungal Genetics and Biology, 42:749–760.es_CO
    dc.relation.referencesRoss, E., & Wilkie, T. (2000). GTPase-Activating Proteins for Heterotrimeric G Proteins: Regulators of G Protein Signaling (RGS) and RGS-Like Proteins. Annual Review of Biochemestry, 69:795–8es_CO
    dc.relation.referencesSándor, E., Szentirmai, A., Paul, G., Thomas, C., Pócsi, I., & Karaffa, L. (2001). Analysis of the relationship between growth, cephalosporin C production, and fragmentation in Acremonium chrysogenum. Canadian. Journal of. Microbiolgy. 47: 801–806es_CO
    dc.relation.referencesSchmidt, M., Stoll, D., Schütz, P., & Geisen, R. (2015). Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. International Journal of Food Microbiology, 192:1–6es_CO
    dc.relation.referencesSchmoll, M, Franchi, L. & Kubicek C. (2005). Envoy, a PAS/LOV Domain Protein of Hypocrea jecorina (Anamorph Trichoderma reesei), Modulates Cellulase Gene Transcription in Response to Light. Eukaryot Cell. 4(12): 1998–2007. Doi: 10.1128/EC.4.12.1998-2007.2005es_CO
    dc.relation.referencesSegers, G. C., & Nuss, D. L. (2003). Constitutively activated Gα negatively regulates virulence, reproduction and hydrophobin gene expression in the chestnut blight fungus Cryphonectria parasitica. Fungal Genetics and Biology, 38(2), 198–208. https://doi.org/10.1016/S1087-1845(02)00534-0es_CO
    dc.relation.referencesSeibel, C., Gremel, G., do Nascimento, R., Schuster, A., Kubicek, C., & Schmoll, M. (2009). Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anaorph Trichoderma reesei). Bio Med Central Biology 1-15es_CO
    dc.relation.referencesSeibt, B., Schiedel, A., Thimm, D., Hinz, S., Sherbiny, F., & Müller, C. (2013). The Second Extracellular Loop of GPCRs Determines Subtype-Selectivity and Controls Efficacy as Evidenced by Loop Exchange Study at A2 Adenosine Receptors. Biochemical Pharmacology, 85:1317–1329.es_CO
    dc.relation.referencesShin, K., & Yu, J. (2013). Expression and Activity of Catalases Is Differentially Affected by GpaA (Ga) and FlbA (Regulator of G Protein Signaling) in Aspergillus fumigatus. Mycobiology, 41(3):145-148es_CO
    dc.relation.referencesBaranyi, J., & Roberts, T. (1994). A dynamic approach to predicting bacterial growth in food. International journal of food microbiology, 23(3),277294es_CO
    dc.relation.referencesSilverman, G., & Lew, R. (2003). Calcium gradient dependence of Neurospora crassa hyphal growth. Microbiology. 149(9):2475-85.es_CO
    dc.relation.referencesSpringer, M., & Yanofsky, C. (1989). A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes and Development 3:559-571es_CO
    dc.relation.referencesSummerbell, R., Gueidan, C., Schroers, H., de Hoog, G., Starink, M., Arocha, Y., Guarro, J., & Scott, J. (2011). Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Studies in Mycology, 68:139–162es_CO
    dc.relation.referencesSvanström, A., & Melin, P. (2013). Intracellular trehalase activity is required for development, germination and heat-stress resistance of Aspergillus niger conidia. Research in Microbiology, 164:91-99es_CO
    dc.relation.referencesTag, A., Hicks, J., Garifullina, G., Ake, C., Phillips, T. D., Beremand, M., & Keller, N. (2000). G-protein signalling mediates differential production of toxic secondary metabolites. Molecular Microbiology, 38(3), 658–665. https://doi.org/10.1046/j.1365-2958.2000.02166.xes_CO
    dc.relation.referencesTan, K., Heazlewood, J., Millar, A., Oliver., & Solomon, P. (2009). Proteomic Identification of Extracellular Proteins Regulated by the Gna1 Gα Subunit in Stagonospora nodorum. Mycological Search, 113:523–531.es_CO
    dc.relation.referencesThevissen, K., Ghazi, A., De Samblanx, G., Brownleei, C., Osborn, R., & Broekaert, W. (1996). Fungal Membrane Responses Induced by Plant Defensins and Thionins. THE Journal Of Biological Chemistry 271(25)21:15018–15025,es_CO
    dc.relation.referencesTisch, D., Kubicek, C., & Schmoll, M. (2011). New Insights into the Mechanism of Light Modulated Signaling by Heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP Levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genetics and Biology, 48:631–640.es_CO
    dc.relation.referencesTrinci, A. (1971). Influence of the Width of the Peripherial Growth Zone on the Radial Growth Rate of Fungal Colonies on Solid Media. Journal of General Microbiology, 67:325-344.es_CO
    dc.relation.referencesTrinci, A. (1971). Exponential Growth of the Germ tubes of Fungal Spores. Journal of General Microbiology, 67:345-348.es_CO
    dc.relation.referencesBarman A., & Tamuli, R. (2015). Multiple cellular roles of Neurospora crassa plc-1, splA2, and cpe-1 in regulation of cytosolic free calcium, carotenoid accumulation, stress responses, and acquisition of thermotolerance. Journal of Microbiology. DOI 10.1007/s12275-015-4465-1es_CO
    dc.relation.referencesTruesdell, G., Yang, Z & Dickman, M. (2000). Gα Subunit Gene from the Phytopathogenic Gungus Colletotrichum trifolii is Required for Conidial Germination. Physiological and Molecular Plant Pathology, 56:131-140es_CO
    dc.relation.referencesTurner, G., & Borkovich, K. (1993). Identification of a G Protein α Subunit from Neurospora crassa That Is a Member of the Gi Family. The Journal of Biological Chemestry, 268(20):14805-14811.es_CO
    dc.relation.referencesTzima, A., Paplomatas, E., Tsitsigiannis, D., & Kang, S. (2012). The G Protein β Subunit Controls Virulence and Multiple Growth and Development-Related Traits in Verticillium dahliae. Fungal Genetics and Biology, 49:271–283.es_CO
    dc.relation.referencesUnidad Iztapalapa, & División de Ciencias Biológicas y de la Salud. (2010). Lineamientos para la conducción ética de la investigación, la docencia y la difusión en la División de Ciencias Biológicas y de la Salud. Retrieved from http://cbsuami.org/documentos/comisiones/lin_etica.pdfes_CO
    dc.relation.referencesUribe, D., & Khachatourians, G. (2008). Identification and characterization of an alternative oxidase in the entomopathogenic fungus Metarhizium anisopliae. Canadian Journal of Microbiology, 54:119-127.es_CO
    dc.relation.referencesGams, W. (1971). In: Cephalosporium-artige Schimmelpilze (Stuttgart):10es_CO
    dc.relation.referencesWall, M., Coleman, D., Lee, E., Iñiguez, J., Posner, B., Gilman, A., & Sprang, S. (1995). The Structure of the G Protein Heterotrimer Giα1β1 γ2 Cell, 83:1047-1058es_CO
    dc.relation.referencesWauson, E., Dbouk, H., Ghosh, A., & Cobb, M. (2014). G Protein-coupled Receptors and the Regulation of Autophagy. Trends in Endocrinology and Metabolism, 25(5):274-282.es_CO
    dc.relation.referencesXu, W., & Mitchell, A. (2012). Fungal Morphogenesis: In Hot Pursuit. Current Biology 22(7):225-227.es_CO
    dc.relation.referencesYang, Q., & Borkovich, K. A. (1999). Mutational activation of a Gα(i) causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics, 151(1), 107– 117.es_CO
    dc.relation.referencesBloemendal, S., Löper, D., Terfehr, D., Kopke, K., Kluge, J., Teichert, I., & Kück, U. (2014). Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. Journal of Biotechnology, 169:51-62es_CO
    dc.relation.referencesYang, Y., Li, X., Shao, Y., & Chen, F. (2012). mrflbA, encoding a Putative FlbA, is Involved in Aerial Hyphal Development and Secondary Metabolite Production in Monascus ruber M-7. Fungal Biology, 116:225-233.es_CO
    dc.relation.referencesYang, Q., Poole, S., & Borkovich, K. (2002). A G-Protein Subunit Required for Sexual and Vegetative Development and Maintenance of Normal G Protein Levels in Neurospora crassa. Eukaryotic Cell, 1(3): 378–390es_CO
    dc.relation.referencesYu, J. H., Wieser, J., & Adams, T. H. (1996). The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. The EMBO Journal, 15(19), 5184–5190. https://doi.org/10.1002/j.1460-2075.1996.tb00903.xes_CO
    dc.relation.referencesYu, J.-H. (2006). Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. The Journal of Microbiology The Microbiological Society of Korea, 44(2), 145–154.es_CO
    dc.relation.referencesYu, J.-H., Wieser, J., & Adams1, T. H. (1996). The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. The EMBO Journal, 15(19), 5184–5190. https://doi.org/10.1002/j.1460-2075.1996.tb00903.xes_CO
    dc.relation.referencesYu, J., Wieser, J., & Adams, T. (1996). The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development.The EMBO Journal, 15(19):5184-5190es_CO
    dc.relation.referencesZampieri, E., Balestrini, R., Kohler, A., Abbà, S., Martin, F., & Bonfante, P. (2011). The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genetics and Biology, 48:585–591.es_CO
    dc.relation.referencesZhao, X., Mehrabi, R., & Xu, J. (2007). Mitogen-Activated Protein Kinase Pathways and Fungal Pathogenesis. Eukaryotic Cell, 6(10):1701-1714.es_CO
    dc.relation.referencesZuber, S., Hynes, M. J., & Andrianopoulos, A. (2002). G-protein signaling mediates asexual development at 25 degrees C but has no effect on yeast-like growth at 37 degrees C in the dimorphic fungus Penicillium marmeffei. Eukaryotic Cell, 1(3), 440–447. https://doi.org/10.1128/EC.1.3.440447.2002es_CO
    dc.relation.referencesZuñiga, J. 2014. Estudio de la relación entre la subunidad Ga Aga1 y el proceso de formación de artrosporas en Acremonium chrysogenum. Tesis para optar por el título de Maestría, Departamento de Ciencias Biológicas y de la Salud. Universidad Autonomo Metropolitana unidad Iztapalapa. México D.Fes_CO
    dc.relation.referencesBorges, M., & Walmsley, A. (2000). cAMP Signalling in Pathogenic Fungi: Control of Dimorphic Switching and Pathogenicity. Trends In Microbiology, 8(3):133-141.es_CO
    dc.relation.referencesBosch, D. E., Willard, F. S., Ramanujam, R., Kimple, A. J., Willard, M. D., Naqvi, N. I., & Siderovski, D. P. (2012). A P-loop mutation in Gα subunits prevents transition to the active state: Implications for G-protein signaling in fungal pathogenesis. PLoS Pathogens, 8(2). https://doi.org/10.1371/journal.ppat.1002553es_CO
    dc.relation.referencesBoudreau, B., Larson, T., Brown, D., Busman, M., Roberts, E., Kendra, D., & McQuade, K. (2013). Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: Role of trehalose-6-phosphate synthase. Fungal Genetics and Biology, 57:1– 10.es_CO
    dc.relation.referencesBrotzu G. (1948). Ricerche Su di un Nuovo Antibiotico. Lavori Dell'Instituto D'Igiene du Cagliari. 1-11.es_CO
    dc.relation.referencesCabrera-Vera, T. M., Vanhauwe, J., Thomas, T. O., Medkova, M., Preininger, A., Mazzoni, M. R., & Hamm, H. E. (2003). Insights into G Protein Structure, Function, and Regulation. Endocrine Reviews, 24(6), 765–781. https://doi.org/10.1210/er.2000-0026es_CO
    dc.relation.referencesCalvo, A. M., Wilson, R. A., Bok, J. W., & Keller, N. P. (2002). Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews: MMBR, 66(3), 447–59, table of contents. https://doi.org/10.1128/MMBR.66.3.447-459.2002es_CO
    dc.relation.referencesCalvo, A., Wilson, R., Bok, J., & Keller, N. (2000). Relationship between secondary metabolism and fungal development. Microbiology and Molecula Biolology Rev. 66(3):447-59es_CO
    dc.relation.referencesCastrillo, M., & Avalos, J. (2014). Light-Mediated Participation of the VIVIDlike Protein of Fusarium fujikuroi VvdA in Pigmentation and Sevelopment. Fungal Genetics and Biology, 71:9–20.es_CO
    dc.relation.referencesChoi, G., Chen, B., & Nuss, D. (1995). Virus-mediated or transgenic suppression of a G-protein a subunit and attenuation of fungal virulence. Proc. National Academic.of Science, USA, 92:305-309.es_CO
    dc.relation.referencesConsejo Académico UAM-I. (2009). Instructivo del funcionamiento interno y operativo para regular el uso de los servicios e instalaciones de los laboratorios de docencia. Retrieved from http://www2.izt.uam.mx/conacad/doc_relevantes/instructivos/Instructivo_Lab_Doc_09.pdfes_CO
    dc.relation.referencesCruz, J. (2014). Informe de Avances del proyecto de Investigación titulado Regulación De La Morfogénesis Y Biosíntesis De Antibióticosβ-Lactámicos Por La Subunidad Alfa De Una Proteína G Heterotrimérica De Acremonium chrysogenum. Presentado a la Universidad Autonoma Metropolitana UAM-I. Mexico D. F:es_CO
    dc.relation.referencesd’Enfert, C. (1997). Fungal Spore Germination: Insights from the Molecular Genetics ofAspergillus nidulansandNeurospora crassa. Fungal Genetics and Biology, 21(2), 163–172. https://doi.org/10.1006/FGBI.1997.0975es_CO
    dc.relation.referencesDantigny, P., Marín, S., Beyer, M., & Magan, N. (2007). Mould germination: data treatment and modelling. International journal of food microbiology, 114(1):17-24.es_CO
    dc.relation.referencesDantigny, P., Nanguy, S., Judet, D., & Bensoussan, M. (2011). A new model for germination of fungi. International journal of food microbiology, 146(2):176-181.es_CO
    dc.relation.referencesDe Bioseguridad En, M., & Laboratorio, E. L. (2005). Organización Mundial de la Salud. Ginebra. Retrieved from http://www.who.int/topics/medical_waste/manual_bioseguridad_laboratorio.pdfes_CO
    dc.relation.referencesDegani, O. (2013). Cochliobolus heterostrophus G-Protein Alpha and ¨Beta Subunit Double Mutant Reveals Shared and Distinct Roles in Development and Virulence. Physiological and Molecular Plant Pathology, 82:35-45es_CO
    dc.relation.referencesDelgado, J., Martínez, A., Roldán, R., Roncero, M., & Di Pietro, A. (2005). Fusarium oxysporum G-Protein β Ssubunit Fgb1 Regulates Hyphal Growth, Development, and Virulence Through Multiple Signalling Pathways. Fungal Genetics and Biology, 42:61–72.es_CO
    dc.relation.referencesDemain, A. (2009). Antibiotics: Natural products essential to human health. Medial Research Reviews, 29(6):821-824.es_CO
    dc.relation.referencesDiezmann, S. (2014). Oxidative stress response and adaptation to H2O2 in the model eukaryote Saccharomyces cerevisiae and its human pathogenic relatives Candida albicans and Candida glabrata. Fungal Biology reviews, 28 :126-136es_CO
    dc.relation.referencesDoehlemann, G., Berndt, P., & Hahn, M. (2006). Different signalling pathways involving a G?? protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Molecular Microbiology, 59(3), 821–835. https://doi.org/10.1111/j.1365-2958.2005.04991.xes_CO
    dc.relation.referencesDreyer, J., Eichhorn, H., Friedlin, E., Kürnsteiner, H., & Kück, U. (2007). Applied Environmental Microbiolgy, 73(10):3412-22es_CO
    dc.relation.referencesDuran, R., Cary, J., & Calvo, A. (2010). Role of the Osmotic Stress Regulatory Pathway in Morphogenesis and Secondary Metabolism in Filamentous Fungi. Toxins 2:367-381es_CO
    dc.relation.referencesEngh, I., Nowrousian, M., & Kück, U. (2010). Sordaria macrospora, a Model Organism to Study Fungal Cellular Development. European Journal of Cell Biology, 89:864–872.es_CO
    dc.relation.referencesFang, C., & Dean, A. (2000). Site-Directed Mutagenesis of the magB Gene Affects Growth and Development in Magnaporthe grisea. Molecular PlantMicrobe Interactions, 13(11), 1214–1227. https://doi.org/10.1094/MPMI.2000.13.11.1214es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Biología Molecular y Biotecnología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Aldana_2019_TG.pdfAldana_2019_TG1,29 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.