• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Biología Molecular y Biotecnología
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2888
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGarcés Parada, Tatiana María.-
    dc.date.accessioned2022-09-25T00:07:34Z-
    dc.date.available2019-11-15-
    dc.date.available2022-09-25T00:07:34Z-
    dc.date.issued2020-
    dc.identifier.citationGarcés Parada, T. M. (2019). Purificación y caracterización de las proteínas no capsidales del virus de la Fiebre Aftosa y obtención de anticuerpos policlonales: Su implicación en el control de calidad de la vacuna anti-Aftosa [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2888es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2888-
    dc.descriptionLas proteínas no capsidales (PNC) del virus de la fiebre aftosa se utilizan como marcadoras en la evaluación de animales que han estado en contacto con el virus, a diferencia de los inmunizados, que no deben presentar anticuerpos contra estas proteínas, debido a que en el proceso de elaboración vacunal deben ser eliminadas según la normativa internacional. El objetivo del presente trabajo de grado fue, buscar el mejor método de purificación para una proteína no capsidal del virus de la fiebre aftosa y así mismo inducir la producción de sus anticuerpos policlonales in vivo y monitorear su inmunodetección, para la realización de una curva estándar que sirva de referencia en una prueba inmunoenzimática de ELISA. El aislamiento y purificación se hizo del cultivo de virus inactivo, por cromatografía de intercambio iónico. La elución de los picos fue sometida a electroforesis para su posterior identificación por espectrofotometría de masas; las proteínas encontradas del proceso fueron las pertenecientes al hospedador (Rodentia), albumina bovina, la proteína capsidal VP3 y la proteína no capsidal 3D-3B en complejo y esta misma 3D en estado puro en el serotipo VA24C. Demostrando esta última tener un alto grado de pureza (> 95%) en el pico tres del cromatograma; su identificación se hizo por la técnica de electroespray de trampa iónica. La proteína purificada 3D, se inoculó en cabras y el suero hiperinmune fue precipitado y sometido a cromatografía de afinidad para la obtención de inmunoglobulinas (IgG); la reacción inmunitaria se confirmó por medio de inmunodifusión, Western blot y una prueba inmunoenzimática que confirmo el grado de afinidad que hubo entre el antígeno y el anticuerpo purificado. Con este último se realizó una curva estándar con cada una de las réplicas mostrando una tendencia lineal, con un R= 0,942 y una desviación estándar muy baja, lo que permitió validar un modelo inicial, para que en próximos experimentos se pueda establecer la especificidad y sensibilidad del método, y asi logre medir el remanente que queda de las PNC en cada uno de las etapas de producción vacunal, lo cual garantizaría antes de evaluarla por los métodos indirectos tradicionales, tener un producto de alta calidad sin contaminantes.es_CO
    dc.description.abstractNon-capsid proteins (PNC) of the foot-and-mouth disease virus are used as markers in the evaluation of animals that have been in contact with the virus, unlike those immunized, which should not present antibodies against these proteins, because in The vaccination process must be eliminated according to international regulations. The objective of the present grade work was to look for the best purification method for a non capsidal FMD virus protein and also induce the production of its polyclonal antibodies in vivo and monitor its immunodetection, for the realization of a standard curve to serve as a reference in an ELISA immunoenzymatic test. Isolation and purification was done from the inactive virus culture, by ion exchange chromatography. The elution of the peaks was subjected to electrophoresis for subsequent identification by mass spectrophotometry; the proteins found in the process were those belonging to the host (Rodentia), bovine albumine, the capsid protein VP3 and the non-capsidal protein 3D 3B in complex and this same 3D in its pure state in the serotype VA24C. Demonstrating the latter have a high degree of purity (> 95%) at peak three of the chromatogram; Its identification was made by the ion trap electro-spray technique. The purified 3D protein was inoculated in goats and the hyperimmune serum was precipitated and subjected to affinity chromatography to obtain immunoglobulins (IgG); the immune reaction was confirmed by immunodiffusion, Western blotting and an immunoenzymatic test that confirmed the degree of affinity between the antigen and the purified antibody. With the latter, a standard curve was made with each of the replicas showing a linear trend, with an R = 0.942 and a very low standard deviation, which allowed validating an initial model, so that in future experiments the specificity can be established and sensitivity of the method, and thus manage to measure the remaining remnants of the NCPs in each of the stages of vaccine production, which would ensure before evaluating it by traditional indirect methods, to have a high quality product without contaminants.es_CO
    dc.format.extent93es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Basicas.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titlePurificación y caracterización de las proteínas no capsidales del virus de la Fiebre Aftosa y obtención de anticuerpos policlonales: Su implicación en el control de calidad de la vacuna anti-Aftosa.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2019-08-15-
    dc.relation.referencesFlather, D., Semler BL. (2015). Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus. Front. Microbiol. 6: 594. doi: 10.3389/fmicb.2015.00594es_CO
    dc.relation.references2. Cao Y, Lu Z, Liu Z. (2016). Foot-and-mouth disease vaccines: progress and problems, Expert Review of Vaccines, 15:6, 783-789, DOI: 10.1586/14760584.2016.1140042es_CO
    dc.relation.referencesWorld Organization for Animal Health. (OIE). 2018. Manual of for Terrestrial Animals. Chapter 3.1.8. Fiebre aftosa (Infeccion por el virus de la fiebre aftosa).es_CO
    dc.relation.referencesOIE. Organización mundial de sanidad animal (OIE). 2018. Estatus oficial. http://www.oie.int/es/sanidad-animal-en-el-mundo/estatus-sanitario-oficial/fiebre aftosa/suspensionrestitucion-del-estatuses_CO
    dc.relation.referencesHosamani, M., Basagoudanavar, S.H., Tamil Selvan, R.P. (2015) A multi-species indirect ELISA for detection of non-structural protein 3ABC specific antibodies to foot-and-mouth disease viruset al. Arch Virol 160: 937. https://doi.org/10.1007/s00705-015-2339-9es_CO
    dc.relation.referencesFukai K, Nishi T, Morioka K, Yamada M, Yoshida K, kitano R, Yamazoe R, kanno T. (2016). Further evaluation of an ELISA kit for detection of antibodies to a nonstructural protein of foot-and-mouth disease virus. J Vet Med Sci. Mar; 78(3): 365–373es_CO
    dc.relation.referencesFukai K, Nishi T, Morioka K, Yamada M, Yoshida K, kitano R, Yamazoe R, kanno T. (2016). Further evaluation of an ELISA kit for detection of antibodies to a nonstructural protein of foot-and-mouth disease virus. J Vet Med Sci. Mar; 78(3): 365–373es_CO
    dc.relation.referencesBergmann I E, Malirat V, Neitzert E, Beck E, Panizzutti N, Sanchez C , Falczuk A. (2000). “Improvement of a serodiagnostic strategy for foot and mouth disease virus surveillance in cattle under systematic vaccination: a combined system of an indirect ELISA 3ABC with an enzyme-linked immunoelectrotransfer blot assay”, Arch. Virol., 145, 473-489.es_CO
    dc.relation.referencesGelkop, S., Sobarzo, A., Brangel, P., Vincke, C., Romão, E., Fedida-Metula, S., Lobel, L. (2018). The Development and Validation of a Novel Nanobody-Based Competitive ELISA for the Detection of Foot and Mouth Disease 3ABC Antibodies in Cattle. Frontiers in veterinary science, 5, 250. doi:10.3389/fvets.2018.00250es_CO
    dc.relation.referencesChung, C. J., Clavijo, A., Bounpheng, M. A., Uddowla, S., Sayed, A., Dancho, B. (2018). An improved, rapid competitive ELISA using a novel conserved 3B epitope for the detection of serum antibodies to foot-and-mouth disease virus. Journal of Veterinary Diagnostic Investigation, 30 (5), 699–707. https://doi.org/10.1177/1040638718779641es_CO
    dc.relation.referencesV. Malirat, E. Neitzert, I. E. Bergmann, E. Maradei, and E. Beck (1998). “Detection of cattle exposed to foot-and-mouth disease virus by means of an indirect ELISA test using bioengineered nonstructural polyprotein 3ABC”, Vet. Q., 20 Suppl 2, S24-S26es_CO
    dc.relation.referencesArlingi-Iaus, R. B. & Polatnick, J. (1969a). In vitro products of a membrane-free foot and-mouth disease virus ribonucleic acid polymerase. Virology 37, z5z.es_CO
    dc.relation.referencesRuoslahti, E. & Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science 238, 491497.es_CO
    dc.relation.referencesRen, R., F. C. Costantini, E. J. Gorgacz, J. J. Lee, and V. R. Racaniello. (1990). Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353-362.es_CO
    dc.relation.referencesRacaniello, V.R. (2001). Picornaviridae: The Virus and Their Replication, In: Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Martin, M.A., Roizman, B., Straus, S.E. (Eds.) Fields Virology. Lippincott Williams & Wilkins., Philadelphia, PA, USAes_CO
    dc.relation.referencesForman, A.J. and Gibbs, E.P.J. (1974). Studies with foot-and-mouth disease virus in british deer (red, fallow and roe). I. Clinical disease. Journal of Comparative Pathology 84: 215-220es_CO
    dc.relation.referencesLoeffler, F. Y Frosch, P. (1964). Report of the Commission for Research on foot‐andmouth disease. En Selected papers on virology. Pág. 64‐68. Editado por N. Hahon: Englewood Cliffs, NJ: Prentice‐Hall.es_CO
    dc.relation.referencesArzt J, Baxt B, Grubman MJ, Jackson T, Juleff N, Rhyan J, Rieder E, Waters R, Rodriguez LL. (2011). The pathogenesis of foot-and-mouth disease II: viral pathways in swine, small ruminants, and wildlife; myotropism, chronic syndromes, and molecular virus host interactions. Transbound Emerg Dis;58(4):305-26.es_CO
    dc.relation.referencesKitching RP. (2005). Global epidemiology and prospects for control of foot-and-mouth disease. Curr Top Microbiol Immunol.;288:133-48es_CO
    dc.relation.referencesShahan, M.S. (1962). The virus of foot-and-mouth disease. Ann N Y Acad Sci 101, 444- 454.es_CO
    dc.relation.referencesBurrows, R. (1968). The persistence of foot-and mouth disease virus in sheep. J Hyg (Lond) 66, 633-640es_CO
    dc.relation.referencesSellers, R.F. (1971), Quantitative aspects of the spread of foot-and-mouth disease. Vet. Bull. 41, 431es_CO
    dc.relation.referencesCottral, G.E., Cox, B.F., Baldwin, D.E., (1960). The survival of foot-and-mouth disease virus in cured and uncured meat. Am J Vet Res 21, 288-297.es_CO
    dc.relation.referencesAbubakar M, Manzoor S, Ahmed A. (2018). Interplay of foot and mouth disease virus with cell-mediated and humoral immunity of host. Rev Med Virol;28(2):e1966.es_CO
    dc.relation.referencesSutmoller, P., McVicar, J.W., Cottral, G.E (1968). The epizootiological importance of foot-and-mouth disease carriers. I. Experimentally produced foot-and-mouth disease carriers in susceptible and immune cattle. Arch Gesamte Virusforsch 23, 227-235.es_CO
    dc.relation.referencesVan Bekkum, J.G. (1969). Correlation between serum antibody level and protection against challenge with FMDV. (Rome), pp. 38-41es_CO
    dc.relation.referencesGebauer, F., de la Torre, J.C., Gomes, I., Mateu, M.G., Barahona, H., Tiraboschi, B., Bergmann, I., de Mello, P.A., Domingo, E. (1988). Rapid selection of genetic and antigenic variants of foot-and-mouth disease virus during persistence in cattle. J Virol 62, 2041-2049.es_CO
    dc.relation.referencesReid, S.M., Ferris,N.P., Hutchings,G.H., Samuel,A.R. and Knowles,N.J. (2000). Primary diagnosis of foot‐and‐mouth disease by reverse transcription polymerase chain reaction. J. Virol. Methods, 89, 167‐176es_CO
    dc.relation.referencesAlexandersen,S., Zhang,Z., Donaldson,A.I. and Garland,A.J. (2003). The pathogenesis and diagnosis of foot‐and‐mouth disease. J. Comp Pathol., 129, 1‐36.es_CO
    dc.relation.referencesWoodbury E.L. (1995). A review of the possible mechanisms for the persistence of foot and-mouth disease virus. Epidemiol. Infect., 114, 1-13.es_CO
    dc.relation.referencesHamblin,C., Barnett,I.T. and Crowther,J.R. (1986a). A new enzyme‐linked immunosorbent assay (ELISA) for the detection of antibodies against foot‐and‐mouth disease virus. II. Application. J. Immunol. Methods, 93, 123‐129.es_CO
    dc.relation.referencesHamblin,C., Barnett,I.T. and Hedger,R.S. (1986b). A new enzyme‐linked immunosorbent assay (ELISA) for the detection of antibodies against foot‐and‐mouth disease virus. I. Development and method of ELISA. J. Immunol. Methods, 93, 115‐121es_CO
    dc.relation.referencesRobiolo,B., Griega,P.R., Periolo, O., Seki, C., Bianchi, T., Maradei, E., La Torre, J. (1995). Assessment of foot and mouth disease vaccine potency by liquid phase blockig ELISA: a proposal for an alternative to the challenge procedure in Argentina. Vaccine, Vol. 13. N°14. pp 1346‐1352.es_CO
    dc.relation.referencesAlonso-Fernandez A, Sondahl MS, Giacometti H, Ferreira MEV (1984). Identificación de anticuerpos VIA de la fiebre aftosa. Serie de Manuales Técnicos N°6. Cent Panam de Fiebre Aftosa. Rio de Janeiro. OPS/OMS.es_CO
    dc.relation.referencesAlonso-Fernandez A, Gomes MPD, Martins MA,Sondahl MS (1990). Detection of foot and-mouth disease virus infection-associated antigen antibodies: comparison of the enzyme linked immunosorbent assay and agar gel immunodifusion tests. Prev Vet Med 9, 233-240es_CO
    dc.relation.referencesMackay DKJ, Madekurozwa RL. (1992). Assessment of the VIAA ELISA for FMD. Report for the Community Reference Laboratory for FMD. Pirbright: Institute for Animal Healthes_CO
    dc.relation.referencesNeitzert E, Beck E, Augé de Mello P, Gomes I, Bergmann IE. (1991). Expression of the aphthovirus RNA polymerase gene in E. coli and its use together with other bioengineered non-structural antigens in detection of late persistent infections. Virology;184:799-804es_CO
    dc.relation.referencesBergmann IE.1 , Malirat V, Falczuk A2 , Sondahl MS. (2001). Uso de una proteína recombinante del virus de la fiebre aftosa, la polimerasa 3D, en una prueba de inmunodifusión en gel de agar. Bol. Centr. Panam. Fiebre Aftosa, 64-67: 30-34es_CO
    dc.relation.referencesSilberstein,E., Kaplan,G., Taboga,O., Duffy,S. and Palma,E. (1997). Foot‐and‐mouth disease virus infected but not vaccinated cattle develop antibodies against recombinant 3AB1 nonstructural protein. Arch. Virol., 142, 795‐805.es_CO
    dc.relation.referencesSorensen,K.J., Madsen,K.G., Madsen,E.S., Salt,J.S., Nqindi, J. and Mackay, D.K. (1998). Differentiation of infection from vaccination in foot‐and‐mouth disease by the detection of antibodies to the non‐structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus. Arch. Virol., 143, 1461‐1476.es_CO
    dc.relation.referencesMackay,D.K., Forsyth,M.A., Davies,P.R., Berlinzani,A., Belsham,G.J., Flint, M. and Ryan,M.D. (1998). Differentiating infection from vaccination in foot‐and‐mouth disease using a panel of recombinant, non‐structural proteins in ELISA. Vaccine, 16, 446‐459es_CO
    dc.relation.referencesBergmann IE, Malirat V, Neitzert E, Beck E, Panizzutti N, Sánchez C, Falczuk A. (2000). Improvement of a serodiagnostic strategy for foot-and-mouth disease virus surveillance in cattle under systematic vaccination: a combined system of an indirect ELISA-3ABC with an enzyme-linked immunoelectrotransfer blot assay. Arch Virol.145(3):473-89es_CO
    dc.relation.referencesBahnemann HG (1975). Binary ethylenimine as an inactivant for foot-and-mouth disease virus and its application for vaccine production. Arch. Virol.47: 47-56.es_CO
    dc.relation.referencesOrganización mundial de sanidad animal (OIE). 2018. Manual de las Pruebas de Diagnóstico y de las Vacunas para los Animales Terrestres. Capítulo 1.1.8. Principios de producción de vacunas veterinarias.es_CO
    dc.relation.referencesSmith PK, Krohn RI, Hermanson GT, et al (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry.; Pages 76-8.es_CO
    dc.relation.referencesLaemmli UK. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; 227 (5259): 680–685es_CO
    dc.relation.referencesO'Farrell PH. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.; 250: 4007-21. PMC 2874754.es_CO
    dc.relation.referencesShevchenko, A., Wilm, M., Vorm, O., Mann, M (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858es_CO
    dc.relation.referencesShevchenko A, Wilm M, Vorm O, Mann M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem.; 68:850-858.es_CO
    dc.relation.referencesPerkins DN, Pappin DJ, Creasy DM, Cottrell JS. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis.; 20:3551-3367.es_CO
    dc.relation.referencesJorge I, Casas EM, Villar M, et al. (2007). High-sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: application to biological studies. Journal of Mass Spectrometry. 42(11): 1391-403es_CO
    dc.relation.referencesWarr GW (1982). Preparation of antigens and principles of immunization. In: Antibody as a Tool. John Wiley, New York. pp. 21-58.es_CO
    dc.relation.referencesGrodzki AC, Berenstein E. (2010). Antibody purification: ammonium sulfate fractionation or gel Protocols, Methods Mol Biol. 588:15-26. doi: 10.1007/978-1-59745-32403. filtration. In: C. Oliver and M.C. Jamur (eds), Immunocytochemical Methods andes_CO
    dc.relation.referencesCuatrecasas P. (1970). Protein purification by affinity chromatography: derivatizations of agarose and polyacryfamide beads. J. Biol. Chem. 245:3059-65es_CO
    dc.relation.referencesCatty D, Raykundalia C. (1988) Production and quality control of polyclonal antibodies. In: Catty, D eds Antibodies. Vol. I. A Practical Approach. IRL Press, Oxford, pp. 19- 80.es_CO
    dc.relation.referencesKirschenbaum DM. (1976) in “Handbook of biochemistry and molecular biology” (G. D. Fasman, ed.). CRC Press, Cleveland, Ohio. 3rd Ed., Vol. 2, p.383es_CO
    dc.relation.referencesHarlow E, Lane D. (1996). Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.Gagnon, Pes_CO
    dc.relation.referencesOuchterlony O, Nilsson LA (1978). lmmunodiffusion and immunoelectrophoresis. In: Weir, D.M. (Edit.) Handbook of immunological methods, Vol. 1: Immunochemistry. Blackwell Scientific Publications, Oxford,; 1 9:1.es_CO
    dc.relation.referencesTowbin H, Staehelin T, Gordon J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America,; 76 (9), 4350–4354.es_CO
    dc.relation.referencesGuesdon JL, Avrameas S. (1981a). Solid phase enzyme immunoassays. Appl Biochem Bioeng 2: 207-232es_CO
    dc.relation.referencesGuesdon JL, Avrameas S. (1981b). Magnetic solid-phase enzyme immunoassay for the quantitation of antigens and antibodies: application to human immunoglobulin E. Meth Enzymol 73: 471-482.es_CO
    dc.relation.referencesEngvall E, Perlman P. (1971). Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 8:871-4.es_CO
    dc.relation.referencesKumar R, Hosamani M, Sreenivasa BP, et al. (2012) Expression of Foot-and-Mouth Disease Virus Non-Structural Protein, 3D in Insect Cells and its Application in Detection of Anti-FMDV Antibodies. Indian journal of virology : an official organ of Indian Virological Society.;23(3):326-332. doi:10.1007/s13337-012-0098-8es_CO
    dc.relation.referencesTrotta MV. (2009). Desarrollo y evaluación de tecnología para la detección de proteínas no estructurales del Virus de la Fiebre Aftosa en formulaciones vacunales. Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias del Instituto Nacional de Tecnología Agropecuaria.es_CO
    dc.relation.referencesMondragón N, Vera V, Restrepo G. (2006). Evaluación de dos formulaciones de vacuna antiaftosa oleosa bivalente (O1 campos y A24 cruzeiro), preparadas con dos sistemas diferentes de purificación y concentración. Rev Col Cienc Pec Vol. 19:4.es_CO
    dc.relation.referencesWorld Organisation for animal health (OIE). (2018). Principles of validation of diagnostic assays for infectious diseases. In: OIE Manual of Standards for Diagnostic Tests and Vaccines, Third Edition. OIE, Paris, France, 8–15es_CO
    dc.relation.referencesICA. Instituto Colombiano Agropecuario. (2008). Resolución No. 02319 [7 de Julio de 2008] URL: http://www.ica.gov.co/es_CO
    dc.relation.referencesOrganización Mundial de Sanidad Animal (OIE) (2015). – Código Sanitario para los Animales Terrestres, Capítulo 8.8. Fiebre aftosa. OIE, París, Francia. Página web:www.oie.int/ fileadmin/Home/esp/Health_standards/tahc/2010/chapitre_ fmd.pdfes_CO
    dc.relation.referencesKnight TJD, Rushtonb J. (2013) The economic impacts of foot and mouth disease – What are they, how big are they and where do they occur? Preventive Veterinary Medicine. Volume 112, Issues 3–4, Pages 161-173es_CO
    dc.relation.references. Federación Colombiana de Ganaderos- Fedegan. (2017). [Diapositivas de PowerPoint]., de www.fedegan.org.coes_CO
    dc.relation.referencesCentro panamericano de fiebre aftosa – OPS. El Plan Hemisférico de Erradicación de la Fiebre Aftosa PHEFA, 2011 - 2020. https://www.paho.org/panaftosa/index.php?option=com_content&view=article&id=55:progra ma-hemisferico-de-erradicacion-de-la-fiebre-aftosa&Itemid=281es_CO
    dc.relation.referencesDomingo, E., Escarmis,C., Baranowski, E., Ruiz‐Jarabo, C.M., Carrillo, E., Nunez, J.I. and Sobrino, F. (2003). Evolution of foot and mouth disease virus. Virus Res., 91, 47‐63.es_CO
    dc.relation.referencesKnowles, N.J., Samuel, A.R. (2003). Molecular epidemiology of footand- mouth disease virus. Virus 91, 65- 80.es_CO
    dc.relation.referencesJackson, T., Stuart, D.I., Fry, E. (2003). Structure and receptor binding. Virus 91, 33-/46.es_CO
    dc.relation.referencesRobertson, B.H., Grubman, M.J., Weddell, G.N., Moore, D.M., Welsh, J.D., Fischer, T., Dowbenko, D.J., Yansura, D.G., Small, B., Kleid, D.G., (1985). Nucleotide and amino acid sequence coding for polypeptides of foot-and-mouth disease virus type A12. J. Virol. 54, 651_/660.es_CO
    dc.relation.referencesWitwer, C., S. Rauscher, I. L. Hofacker & P. F. Stadler. (2001) Conserved RNA secondary structures in Picornaviridae genomes. Nucleic Acids Res, 29, 5079-89es_CO
    dc.relation.referencesMason,P.W., Grubman,M.J. and Baxt,B. (2003). Molecular basis of pathogenesis of FMDV. Virus Res., 91, 9‐32es_CO
    dc.relation.referencesEscarmis, C., J. Dopazo, M. Davila, E. L. Palma & E. Domingo (1995) Large deletions in the 5'-untranslated region of foot-and-mouth disease virus of serotype C. Virus Res, 35, 155 67.es_CO
    dc.relation.referencesNayak A, Goodfellow IG, Woolaway KE, et al. (2006). Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication. J Virol.; 80: 9865-75es_CO
    dc.relation.referencesPaul, A. V., Peters, J., Mugavero, J., Yin, J., van Boom, J. H., and Wimmer, E. (2003). Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol 77(2), 891-904es_CO
    dc.relation.referencesTiley, L., King, A. M., and Belsham, G. J. (2003). The foot-and-mouth disease virus cis acting replication element (cre) can be complemented in trans within infected cells. J Virol 77(3), 2243-6.es_CO
    dc.relation.referencesWimmer, E., Hellen, C. U., and Cao, X. (1993). Genetics of poliovirus. Annu Rev Genet 27, 353-436.es_CO
    dc.relation.referencesMartínez-Salas, E., Quinto, S. L., Ramos, R., and Fernandez-Miragall, O. (2002). IRES elements: features of the RNA structure contributing to their activity. Biochimie 84(8), 755 63es_CO
    dc.relation.referencesBelsham, G. J., and Sonenberg, N. (2000). Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol 8(7), 330-5.es_CO
    dc.relation.referencesKuhn, R. J., Luz, N., and Beck, E. (1990). Functional analysis of the internal translation initation site of foot-and-mouth disease virus. J Virol 64, 4625-4631es_CO
    dc.relation.referencesKuhn, R. J., Luz, N., and Beck, E. (1990). Functional analysis of the internal translation initation site of foot-and-mouth disease virus. J Virol 64, 4625-4631es_CO
    dc.relation.referencesPalmenberg, A. C. (1990) Proteolytic processing of picornaviral polyprotein. Annu Rev Microbiol, 44, 603-23es_CO
    dc.relation.referencesBelsham, G.J (1993). Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Progress in Biophysics and Molecular Biology 60(3):241-260.es_CO
    dc.relation.referencesForss, S., K. Strebel, E. Beck & H. Schaller (1984) Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res, 12, 6587-601es_CO
    dc.relation.referencesMalik N, Kotecha A, Gold S, et al. (2017). Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation. PLoS pathogens.; 13(9), e1006607. doi:10.1371/journal.ppat.1006607es_CO
    dc.relation.referencesF. Sobrino, and E. Domingo (2004) “Foot-and-mouth disease: Current Perspectives, Horizon Bioscience”, Wymondham, Englandes_CO
    dc.relation.referencesCurry, S., E. Fry, W. Blakemore, R. Abu-Ghazaleh, T. Jackson, A. King, S. Lea, J. Newman & D. Stuart (1997). Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J Virol, 71, 9743-52.es_CO
    dc.relation.referencesGao Y, Sun S, and Guo HC. (2016). Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Virology journal; 13, 107. doi:10.1186/s12985-016-0561-zes_CO
    dc.relation.referencesde Felipe, P., Hughes, L. E., Ryan, M. D. y Brown, J. D. (2003). Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. The Journal of biological chemistry 278, 11441-11448.es_CO
    dc.relation.referencesTeterina NL, Gorbalenya AE, Egger D, et al. (2006). Testing the modularity of the N terminal amphipathic helix conserved in picornavirus 2C proteins and hepatitis C NS5A protein. Virology; 344: 453-67.es_CO
    dc.relation.referencesGromeier M., Bossert B., Arita M., Nomoto A., Wimmer E. (1999). Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence J Virol 73 958–964 .es_CO
    dc.relation.referencesXiang, W., A. Cuconati, D. Hope, K. Kirkegaard & E. Wimmer (1998) Complete protein linkage map of poliovirus P3 proteins: interaction of polymerase 3Dpol with VPg and with genetic variants of 3AB. J Virol, 72, 6732-4es_CO
    dc.relation.referencesDoedens, J. R. & K. Kirkegaard (1995) Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J, 14, 894-907.es_CO
    dc.relation.referencesChatterjee, N. K., H. L. Bachrach & J. Polatnick (1976) Foot-and-mouth disease virus RNA. Presence of 3'-terminal polyriboadenylic acid and absence of amino acid binding ability. Virology, 69, 369-77es_CO
    dc.relation.referencesSangar, D. V., D. N. Black, D. J. Rowlands & F. Brown (1977) Biochemical mapping of the foot-and-mouth disease virus genome. J Gen Virol, 35, 281-97.es_CO
    dc.relation.referencesSaiz, M., S. Gomez, E. Martinez-Salas & F. Sobrino (2001) Deletion or substitution of the aphthovirus 3' NCR abrogates infectivity and virus replication. J Gen Virol, 82, 93-101.es_CO
    dc.relation.referencesBarton, D. J., B. J. O'Donnell & J. B. Flanegan (2001) 5' cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J, 20, 1439 48.es_CO
    dc.relation.referencesHerold, J. & R. Andino (2001) Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol Cell, 7, 581-91.es_CO
    dc.relation.referencesFerrer-Orta, C., D. Ferrero & N. Verdaguer (2015) RNA-Dependent RNA Polymerases of Picornaviruses: From the Structure to Regulatory Mechanisms. Viruses, 7, 4438-60es_CO
    dc.relation.referencesFerrer-Orta, C., A. Arias, C. Escarmis & N. Verdaguer (2006b) A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol, 16, 27-34.es_CO
    dc.relation.referencesFerrer-Orta, C., A. Arias, R. Agudo, R. Perez-Luque, C. Escarmis, E. Domingo & N. Verdaguer (2006a) The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J, 25, 880-8.es_CO
    dc.relation.referencesNayak, A., I. G. Goodfellow & G. J. Belsham (2005) Factors required for the Uridylylation of the foot-and-mouth disease virus 3B1, 3B2, and 3B3 peptides by the RNA dependent RNA polymerase (3Dpol) in vitro. J Virol, 79, 7698-706.es_CO
    dc.relation.referencesFerrer-Orta, C., A. Arias, R. Perez-Luque, C. Escarmis, E. Domingo & N. Verdaguer (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem, 279, 47212-21.es_CO
    dc.relation.referencesFerrer-Orta, C., Agudo, R., Domingo, E. & Verdaguer, N. (2009). Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Curr. Opin. Struct. Biol. 19, 752–758.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Biología Molecular y Biotecnología

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Garcés_2019_TG.pdfGarcés_2019_TG5,23 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.