Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2866
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Bautista Rico, Leidy Pola. | - |
dc.date.accessioned | 2022-09-23T19:53:47Z | - |
dc.date.available | 2019-02-16 | - |
dc.date.available | 2022-09-23T19:53:47Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Bautista Rico, L. P. (2018). Biodegradación microbiana de carbofurano en suelos de cultivos de papa criolla Solanum phureja [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2866 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2866 | - |
dc.description | El uso excesivo de agroquímicos es una de las principales causas de contaminación para los suelos, lo que origina un desequilibrio socioambiental debido al deterioro que estos ejercen sobre la biota. Una alternativa biológica para reducir la contaminación del suelo es la biodegradación. El desarrollo de esta investigación permitió evaluar la capacidad de degradación de la microbiota presente en el suelo, frente al compuesto químico carbofurano, el cual ha sido usado para controlar plagas en los cultivos de papa criolla Solanum phureja (Juz. et Buk) de la vereda San Agustín municipio de Mutiscua, provincia de Pamplona. Inicialmente se evaluaron las condiciones fisicoquímicas y ambientales del suelo puesto que estos parámetros influyen en la actividad metabólica de los microorganismos, posteriormente se aislaron e identificaron microorganismos autóctonos y se evaluó su capacidad de crecer en tres concentraciones diferentes de carbofurano; los microorganismos más eficientes fueron caracterizados por espectroscopía infrarroja transformada de Fourier (FT-IR) y con ellos se realizaron ensayos de biodegradación. Mediante el uso de reactores biológicos, se determinó la capacidad de degradación de cada microorganismo hacia el carbofurano, la cuantificación del compuesto se realizó por espectrofotometría UV/Vis, el crecimiento bacteriano se controló por conteo de UFC/ml, mientras que en los hongos se estimó el peso seco. La biodegración por consorcios de microorganismos se hizo directamente en suelos y se evaluó por cromatografía de gases acoplada a espectrometría de masas (GC/MS). Se encontró que el suelo con antecedentes de fumigación presenta variación en los parámetros fisicoquímicos respecto al suelo control, lo que pueden afectar o favorecer la actividad de los microorganismos. En el aislamiento e identificación se encontraron siete bacterias y siete hongos. Por su capacidad de tolerar el carbofurarno las bacterias Bacillus mycoide, Pseudomonas sp. Serratia marcescens, y los hongos Aspergillus niger, Mucor sp. y Trichoderma sp. fueron seleccionados para los ensayos de degradación. Se encontró que durante quince días la remoción de carbofurano ocurre en porcentajes de 54 %, 71 % y 56 % en el orden de las bacterias descritas, mientras que los hongos degradan respectivamente el 57 %, 73% y 81,6 % del xenobiótico. Por otra parte, la degradación por parte del consorcio de microorganismos, indica que en quince días logran remover el 91,7% del pesticida en el suelo. La degradación biológica del carbofurano, se debe posiblemente a que los microorganismos utilizan el compuesto como fuente de nutrientes (carbono y/o nitrógeno), y para ello han adaptado sus mecanismos genéticos a procesos metabólicos enzimáticos que por síntesis oxidan, hidrolizan e hidroxilan el carbofurano, reduciendo la toxicidad del compuesto mediante actividad cometabólica o por mineralización completa. | es_CO |
dc.description.abstract | The overuse of agrochemicals is one of the main causes of soil contamination, which causes a socio-environmental imbalance due to the deterioration they exert on the biota. One of the biological alternatives to reduce soil contamination is the biodegradation. The development of this research allowed evaluating the degradation capacity of the microbiota present in the soil, compared to the chemical compound carbofuran, which has been used to control pests in ´´papa criolla” crops (Solanum phureja) in the village of San Agustín municipality of Mutiscua, province of Pamplona. The physicochemical and environmental conditions of the soil were evaluated initially since these parameters influence the metabolic activity of the microorganisms, later autochthonous microorganisms were isolated and identified and their ability to grow in three different concentrations of carbofuran was evaluated, the most efficient microorganisms were characterized by Fourier transform infrared spectroscopy (FT-IR) and biodegradation tests were carried out with them. Through the use of biological reactors, the degradation capacity of each microorganism towards carbofuran was determined, the quantification of the compound was performed by UV/Vis spectrophotometry, bacterial growth was controlled by CFU /ml count, while in fungi it was estimated the dry weight. The biodegradation by consortiums of microorganisms was done directly in soils and it was evaluated by gas chromatography coupled to mass spectrometry (GC/MS). It was found that the soil with a fumigation background presents variation in the physicochemical parameters with respect to the control soil, which may affect or favor the activity of the microorganisms. In the isolation and identification process, seven bacteria and seven fungi were found. Due to its ability to tolerate carbofuran, Bacillus mycoides, Pseudomonas sp. Serratia marcescens, and the fungi Aspergillus niger, Mucor sp. and Trichoderma sp. were selected for the degradation tests. It was also found that during fifteen days the removal of carbofuran occurs in percentages of 54%, 71% and 56% in the order of the bacteria described, while the fungi degrade respectively 57%, 73% and 81.6% of the xenobiotic. Furthermore, the degradation on the part of the consortium of microorganisms indicates that in fifteen days they achieve to remove 91, 7% of the pesticide in the soil. The biological degradation of carbofuran is possibly due to the fact that microorganisms use the compound as a source of nutrients (carbon and / or nitrogen), and for this they have adapted their genetic mechanisms to enzymatic metabolic processes that synthesize, hydrolyze and hydroxylase carbofuran, reducing the toxicity of the compound through cometabolic activity or completed mineralization. | es_CO |
dc.format.extent | 125 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | Cinética. | es_CO |
dc.subject | Degradación. | es_CO |
dc.subject | Microorganismos. | es_CO |
dc.subject | Pesticidas. | es_CO |
dc.title | Biodegradación microbiana de carbofurano en suelos de cultivos de papa criolla Solanum phureja. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2018-11-16 | - |
dc.relation.references | Acebo González. D, Hernández García. A.T. (2013). Los métodos Turbidimétricos y sus aplicaciones en las ciencias de la vida. Revista CENIC ciencias biológicas, versión electrónica. Volumen 44 (1). | es_CO |
dc.relation.references | Abass. K, Turpeinen. M, Rautio. A, Hakkola. J, Pelkonen. O. (2012). Metabolism of pesticides by human cytochrome P450 enzymes in vitro – a survey F. Perveen (Ed.), Insecticides – Advances in Integrated Pest Managemen, InTech, Austria. | es_CO |
dc.relation.references | Afify, A.E.M.R., Ibrahim, G.M., Abo El Seoud, M.A., Helal, I.M.M., & Kassem, B.W. (2012). Exposing of Trichoderma spp to gamma radiation for stimulating its pesticide biodegradation activity. Proceeding of The Third International on Radiation Sciences and Applications, (p. 920). Egypt. | es_CO |
dc.relation.references | Alvarez, Ordoñez A, Prieto M. 2010. Changes in ultrastructure and fourier transform infrared spectrum of Salmonella enterica serovar typhimurium cells after exposure to stress conditions. Applied and Environmental Microbiology 76: 7598-7607. | es_CO |
dc.relation.references | Alvarez. A, Mouwen. D.J, López. M, Prieto. M. (2011). Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. Journal of Microbiological Methods. 84, 369-378, https://doi.org/10.1016/ j.mimet.2011.01.009 | es_CO |
dc.relation.references | Bano, N. and J. Musarrat. (2004). Characterization of a novel carbofuran degrading Pseudomonas sp. with collateral biocontrol and plant growth promoting potential. FEMS Microbiol. Lett. 231, 13-17. | es_CO |
dc.relation.references | Bansal OP. (2012). Degradation of pesticides Editorial CRC Press. | es_CO |
dc.relation.references | Barnett, H., and Hunter, B. (1972). Illustrated genera of imperfect fungi. Third edition. pp. v+241. Recuperado de https://www.cabdirect.org/cabdirect/abstract/19721103191 | es_CO |
dc.relation.references | Barratt, S., Ennos, A., Greenhalgh, M., Robson, G., & Handley, P. (2003). Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. Journal of Applied Microbiology, 95(1), 78-85. doi: 10.1046/j.1365-2672.2003.01961.x | es_CO |
dc.relation.references | Beekes Michael, Lasch Peter, Naumann Dieter. (2007). Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Veterinary Microbiology, Elsevier, 123 (4), pp.305. | es_CO |
dc.relation.references | Beibei, W., Ying, T., Yongfeng, X., Wei, Ch., Wenjie, R., Yan, L., Peter, C., Yongming, L. (2018). Effect of mixed soil microbiomes on pyrene removal and the response of the soil microorganisms. Science of The Total Environment 640–641, 9-17. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.290. | es_CO |
dc.relation.references | Dong, J.F., Ping L., Jian S., Sai, Y. Z., Han, Z.X (2018). Mechanisms of synergistic neurotoxicity induced by two high risk pesticide residues – Chlorpyrifos and Carbofuran via oxidative stress. Toxicology in Vitro. DOI: 10.1016/j.tiv.2018.10.016 | es_CO |
dc.relation.references | Drobnik, T., Greiner, L., Keller, A., Grêt R. A. (2018). Soil quality indicators From soil functions to ecosystem services. Ecological Indicators, 94, (1) 151-169. https://doi.org/10.1016/j.ecolind.2018.06.052. | es_CO |
dc.relation.references | EPA, E. P. (2007). Insecticidas Carbamatos de N-Metilo. Recuperado de http://www.epa.gov/ oppfead1/safety/spanish/healthcare/handbook/Spch5.pdf. | es_CO |
dc.relation.references | Evert, S. (2002). Environmental fate of carbofuran environmental monitoring branch. Department of pesticide regulation. Sacramento. Disponible en: http://www.cdpr.ca. gov/ docs/emon/ pubs/fatememo/carbofuran.pdf. | es_CO |
dc.relation.references | Fan, X., Liu, X., Huang, R., Liu, Y., (2012). Identification and characterization of a novel termostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb. Cell Fact. 11, 33–44. | es_CO |
dc.relation.references | Fang, H., Zhang, H., Han, L., Mei, J., Ge, Q., Long, Z., Yu, Y. (2018). Exploring bacterial communities and biodegradation genes in activated sludge from pesticide wastewater treatment plants via metagenomic analysis. Environmental Pollution. 243 (B), 1206-1216. DOI https://doi.org/10.1016/j.envpol.2018.09.080. | es_CO |
dc.relation.references | Fernández, L., Rojas, N., Rold n, T., Ramírez, E., Zegarra, H., Uribe, R., … Arce J. (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. México: Instituto Mexicano del Petróleo. | es_CO |
dc.relation.references | Fernández, A., García, C., Sáenz, J., & Valdezate, S. (2010). Métodos de identificación bacteriana en el laboratorio de microbiología. Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. Recuperado de https://www.seimc.org/contenidos/ documentoscientificos/procedimientosmicrobiologia/seimcprocedimientomicrobiologia37.Pdf | es_CO |
dc.relation.references | Fishel, F.M. (2017). Pesticide Characteristics. Gainesville: University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu. | es_CO |
dc.relation.references | Fondo para el financiamiento del sector agropecuario (Finagro). 2014. Perspectiva del sector agropecuario colombiano. Bogota, Colombia. Recuperado en https://www.finagro.com.co/sites/default/files/2014_09_09_perspectivas_agropecuarias.pdf | es_CO |
dc.relation.references | Lecellier. A, Gaydou. V, Mounier. J, Hermet. A, Castrec. L, Barbier. G, Ablain. W, Manfait. M, Toubas. D, Sockalingum. G.D. (2015). Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds. Food Microbiology. Volume 45, Part A,126-134. https://doi.org/10.1016/j.fm.2014.01.002. | es_CO |
dc.relation.references | Jaramillo, B., Bermúdez, A., & Tirado, I. (2016). Bacterias degradadoras de pesticidas organofosforados presentes en suelos contaminados. Ciencias Técnicas Agropecuaria, 25(3), 13-22. Doi: 10.13140/RG.2.2.20023.73126. | es_CO |
dc.relation.references | Food and Agriculture Organization (FAO). (2018). FAO soils portal. Recuperado de http://www.fao.org/soils-portal. | es_CO |
dc.relation.references | Flores Gallegos C; Contreras Esquivel JC; Reyes Valdes M; Rodriguez Herrera R. (2012). Aislamiento e identificación de cepas nativas del suelo mexicano del género Azotobacter. Revista Científica de la Universidad Autónoma de Coahuila. Volumen 4, No. 8. | es_CO |
dc.relation.references | Gandarilla, F. L., Galán, L. J., Arévalo, K., Elías, Myriam., & Quintero, I. (2013). Evaluación de aislados nativos mexicanos de Beauveria bassiana (Bals.) Vuill. (Hypocreales: Cordycipitaceae) provenientes de zonas citrícolas para su producción masiva en cultivo sumergido y bifásico. Agrociencia, 47(3), 255-266. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S140531952013000300005&lng=es&tlng=es. | es_CO |
dc.relation.references | Gao J, Kane L and Turnbul M. (2008). Universidad de Minnesota, Base de datos de biocatalisis y Biodegradación. Recuperado de http://eawagbbd.ethz.ch/cbf/cbf_map.html. | es_CO |
dc.relation.references | Garip. S, Cetin Gozen. A, Severcan. F. (2009). Use of Fourier transform infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates, Food Chemistry, Volume 113, Issue 4, 1301-1307, https://doi.org/10.1016/j.foodchem.2008.08.063. | es_CO |
dc.relation.references | Gbadegesin, M.A., Owumi, S.E., Akinseye, V., Odunola, O.A., (2014). Evaluation of hepatotoxicity and clastogenicity of carbofuran in male Wistar rats. Food Chem. Toxicol. 65, 115–119. | es_CO |
dc.relation.references | Gianfreda, L., Rao, M.A., Scelza, R., De La Luz Mora, M. (2016). Chapter 6 - Role of Enzymes in Environment Cleanup/Remediation. Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass, Volume undefined, Issue undefined, Academic Press, 133-155. DOI:https://doi.org/10.1016/B978-0-12-802392-1.00006-X. | es_CO |
dc.relation.references | Glick, B.R. (2018). Soil Microbes and Sustainable Agriculture. Pedosphere, 28, (2),167-169. DOI: https://doi.org/10.1016/S1002-0160(18)60020-7. | es_CO |
dc.relation.references | Gong T, Liu R, Che Y, Xu X, Zhao F, Yu H, Song C, Liu Y, Yang C. (2016). Engineering Pseudomonas putida KT2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microbial biotechnology, 9(6):792-800. doi: 10.1111/1751-7915.12381. | es_CO |
dc.relation.references | Liu. L, Xu. D, Hu. Y, Liu. S, Wei. H, Zheng. J, Wang. G, Hu. X, Wang. Ch. (2015). Construction of an impedimetric immunosensor for label-free detecting carbofuran residual in agricultural and environmental samples, Food Control, 53,72-80, https://doi.org/10. 1016/j.foodcont.2015.01.009. | es_CO |
dc.relation.references | Gouma, S., Fragoeiro, S., Bastos, AC, Magan, N. (2014). Book Chapter 13. Bacterial and Fungal Bioremediation Strategies. Editor: Surajit Das. Microbial Biodegradation and Bioremediation, Elsevier. 301-323. DOI: https://doi.org/10.1016/B978-0-12-800021-2.00013-3. | es_CO |
dc.relation.references | Jiménez, A. (2014 . “Degradación de los plaguicidas endosulfán y malatión por cepas bacterianas aisladas de suelo agrícola”. (Tesis de posgrado . Universidad Veracruzana. Tuxpan. | es_CO |
dc.relation.references | Gray, John., Bewers, J.M., He, Xiaojia. (2018). Pollution: Approaches to Pollution Control, Reference Module in Earth Systems and Environmental Sciences, Elsevier. DOI https://doi.org/10.1016/B978-0-12-409548-9.11286-2. | es_CO |
dc.relation.references | Grube, A., Donaldson, D., Kiely, T., Wu, L. (2011). Pesticides industry sales and usage: 2006 and 2007 market estimates. Biological and economic analysis division. Office of pesticide programs. Office of chemical safety and pollution prevention. U.S Enviromental protection agency. Washington, DC 20460. | es_CO |
dc.relation.references | Guiraud, P., Villemain, D., Kadri, M., Bordjiba, O., & Steiman, R. (2003). Biodegradation capability of Absidia fusca Linnemann towards environmental pollutants. Chemosphere, 52(4), 663-671. doi: 10.1016/S0045-6535(03)00229-7. | es_CO |
dc.relation.references | Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, Sen K, Shibai H.(2005). Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng. 99(5):485-92. DOI: 10.1263/jbb.99.485. | es_CO |
dc.relation.references | Hernandeza, A.F., Parr onb, T., Tsatsakisd, A.M., Requenab, M., Alarconc, R., and Lopez-Guarnidoa, O. (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307: 136–145. | es_CO |
dc.relation.references | Hmimou, Abderrahim and Maslouhi, Abdellatif and Tamoh, Karim and Candela, Lucila. (2014). Experimental monitoring and numerical study of pesticide (carbofuran) transfer in an agricultural soil at a field site. Comptes Rendus Geosciences 346. 9-10. DOI: 10.1016/j.crte.2014.03.003. | es_CO |
dc.relation.references | Hoff, RB, Pizzolato, TM. (2018). Combining extraction and purification steps in sample preparation for environmental matrices: A review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications. Trends in Analytical Chemistry, 109,83-96. DOI: https://doi.org/10.1016/j.trac.2018.10.002. | es_CO |
dc.relation.references | Hong-yan, L., Chang-Ping, Y., & Zu-Liang, C. (2013). Aerobic and anaerobic biodegradation of TNT by newly isolated Bacillus mycoides. Ecological engineering, 52, 270-277. doi: 10.1016/j.ecoleng.2012.11.004. | es_CO |
dc.relation.references | Lopez-Goñi. D.I. (2015). Los microbios que te rodean. Unidad IV; Microbios Biotecnología. Universidad de Navarra. Recuperado https://www.academia.edu/11067240/Los_ microbios_que_te_rodean. | es_CO |
dc.relation.references | Instituto Colombiano Agropecuario (ICA). 2017. Químicos/registros-de-venta Recuperado de: https://www.ica.gov.co/Areas/Agricola/Servicios/Regulacion-y-Control-de-Plaguicidas. | es_CO |
dc.relation.references | Julca-Otiniano, A., Meneses-Florián, L., Blas-Sevillano, R., & Bello-Amez, S. (2006). La materia orgánica, importancia y experiencia de su uso en la agricultura. Idesia, 24(1), 49-61. doi: 10.4067/S0718-34292006000100009. | es_CO |
dc.relation.references | Jyoti Prakash Maity, Sandeep Kar, Chao-Ming Lin, Chen-Yen Chen, Young-Fo Chang, Jiin-Shuh Jean, Thomas R. Kulp. (2013). Identification and discrimination of bacteria using Fourier transform infrared spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 116, 478-484. doi.org/10.1016/j.saa.2013.07.062. | es_CO |
dc.relation.references | Kadri, T., Rouissi, T., Kau- Brar, S., Cledon, M., Sarma, S., Verma, M. (2017). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes. Journal of Environmental Sciences, 51, 52-74. DOI: https://doi.org/10.1016/j.jes.2016.08.023. | es_CO |
dc.relation.references | Koneman, E., Allen, S., Janda, W., Schreckenberger, P., Winn, W., Procop, G., & Woods, G. (2008). Diagnóstico Microbiológico. Buenos Aires: Editorial Médica Panamericana. | es_CO |
dc.relation.references | Laboratories EAG. (2018). Gas Chromatography - Mass Spectrometry (GC-MS).Recuperado de: https://www.eag.com/techniques/mass-spec/gas-chromatography-mass-spectrometry-gc-ms/. | es_CO |
dc.relation.references | Lara-Sandoval, A., Chaparro-Acuña, S. (2017). Cuantificación voltamétrica de carbofurano en papa Solanum tuberosum L., Solanaceae. Corpoica. Ciencia y Tecnología Agropecuaria, 18 (2), 275-284. DOI: http://dx.doi.org/10.21930/rcta.vol18_num2_art:627 | es_CO |
dc.relation.references | Leal, A., Álvarez, C., Cortes, J., & Ovalle, M. (2014). Boletín informativo Grupo para el control de la resistencia bacteriana de Bogotá. Recuperado de http://www.grebo.org/ documentos/ Boletin_Grebo_2014.pdf. | es_CO |
dc.relation.references | Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R. (2011). Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. Reviews of Environmental Contamination and Toxicology, 211: 63-120. | es_CO |
dc.relation.references | Mäntele, W., Deniz, E. (2017). UV–VIS absorption spectroscopy: Lambert-Beer reloaded, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 965-968. DOI: https://doi.org/10.1016/j.saa.2016.09.037. | es_CO |
dc.relation.references | Mariño. D.J., (2015). Plaguicidas, letales para los humanos. Unimedios. Ciencia & Tecnología. Agencia de noticias Universidad Nacional de Colombia. N°269. Recuperado en http://agenciadenoticias.unal.edu.co/detalle/article/plaguicidas-letales-para-los-humanos.html- | es_CO |
dc.relation.references | McFarland latex standards, The Hardy Diagnostics. (1996). Recuperado de https://catalog.hardydiagnostics.com/cp_prod/Content/hugo/McFarlandStds.htm. Consultado febrero/2016. | es_CO |
dc.relation.references | Mendoza J.C., Perea Y.S., Salvador J.A., Morales J.A y Pérez G. (2011). Biodegradación bacteriana de plaguicidas permetrina y cipermetrina en cultivo lote. Avances en ciencias e ingeniería. 2(3), pp. 45-55. | es_CO |
dc.relation.references | Menezes A, Neves F, Pereira P. (2010). Development, validation and application of a method based on DI-SPME and GC–MS for determination of pesticides of different chemical groups in surface and groundwater samples, Microchemical Journal, 96, 139-145. https://doi.org/10.1016/j.microc.2010.02.018. | es_CO |
dc.relation.references | Ministerio del Ambiente, Vivienda y Desarrollo Territorial. Dirección de Licencias, Permisos y Trámites Ambientales República de Colombia. (2010). Auto 0149. Recuperado de http://www.minambiente.gov.co/images/normativa/Otros/Autos/2010/auto_0149_250110.pdf. | es_CO |
dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible, Grupo de Divulgación de Conocimiento y Cultura Ambiental – Centro de documentación. (2016). Política para la gestión sostenible del suelo. Bogotá, D.C.: Colombia. Recuperado de http://www.andi.com.co/Uploads/Pol%C3%ADtica_para_la_gesti%C3%B3n_sostenible_del_suelo_FINAL.pdf | es_CO |
dc.relation.references | Santucho, N. (2012). The carbofurane controversy. Chemistry and Industry. 76(2), 12-14. | es_CO |
dc.relation.references | Ramesh, M., Narmadha, S., Poopal, R.K. (2015) Toxicity of furadan (carbofuran 3% g) in Cyprinus carpio: Haematological, biochemical and enzymological alterations and recovery response. Beni-Suef University Journal of Basic and Applied Sciences, 4, (4), 314-326. DOI:https://doi.org/10.1016/j.bjbas.2015.11.008. | es_CO |
dc.relation.references | Muhammad Kashif Javaid, Mehrban Ashiq y Muhammad Tahir. (2016). Potential of Biological Agents in Decontamination of Agricultural Soil. Scientifica (Cairo). 2016:1598325. doi: 10.1155/2016/1598325. | es_CO |
dc.relation.references | Neerja, Jasneet Grewal, Amrik Bhattacharya, Sumit Kumar, Dileep K. Singh & Sunil K. Khare (2016) Biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) by using Serratia marcescens NCIM 2919, Journal of Environmental Science and Health, Part B, 51:12, 809-816, DOI: 10.1080/03601234.2016.1208455. | es_CO |
dc.relation.references | NIST Mass Spectrometry Data Center Collection (C). (2014). copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. ACCUSTANDARD Chemicals / NIST MS Data Center Recuperado de: https://webbook.nist.gov/cgi/cbook.cgi?ID=C1563662&Mask=200. | es_CO |
dc.relation.references | Observatorio latinoamericano de conflictos ambientales. (2014). Lista provisoria de plaguicidas registrados en chile que están prohibidos o severamente restringidos por gobiernos y sus efectos sanitarios y ambientales. Recuperado de: http://www.olca.cl/oca/ plaguicidas /plag03.htm. | es_CO |
dc.relation.references | Onunga, D., Kowino, I., Ngigi, A.N., Osogo, A., Orata, F., Getenga, Z y Were, H. (2015) Biodegradation of carbofuran in soils within Nzoia River Basin, Kenya, Journal of Environmental Science and Health, Part B, 50:6, 387-397, DOI: 10.1080/03601234.2015.1011965. | es_CO |
dc.relation.references | OPS Diagnostics LLC. (2017). Bacteria Freeze Drying Protocol. Recuperado de: https://opsdiagnostics.com/notes/ranpri/rpbacteriafdprotocol.htm. | es_CO |
dc.relation.references | Ortiz, H., Sánchez, S. (2010). Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Revista internacional de contaminación ambiental. 26 (1). 27-38. | es_CO |
dc.relation.references | Ortiz, Hernández ML, Sánchez, Salinas E, Dantán, González E, Castrejón, Godínez ML. (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegradation-life science. Intech-publishing, Rijeka, pp. 251–287. | es_CO |
dc.relation.references | Palacios, M., Lupiola, P., Del Nero, E., Pardo, A., Rodríguez, F., Pita, M. & Tejedor M. (1999). Primeros resultados del estudio de la persistencia de Salmonella en la zona no saturada del suelo agrícola. Estudios de la zona no saturada del suelo. (pp. 127-130). Recuperado de http://abe.ufl.edu/carpena/files/pdf/zona_no_saturada/ estudios_de_la_zona_v4/iii-05.pdf. | es_CO |
dc.relation.references | Satar, S., Seydaoglu, G., Alparslan, N. (2005). Frequency and mortality risk factors of acute adult poisoning in Adana, Turkey, 1997-2002. The Mount Sinai Journal of Medicine 72, 393-401. | es_CO |
dc.relation.references | Pam. A.A. (2015). Degradation Kinetics Study of Monocrotophos Pesticide (MCP) In Unsterilized Soil in Nigeria. Chemical & Environmental Sciences. 8-13. http://dx.doi.org/10.15242/IICBE.C0915019. | es_CO |
dc.relation.references | Rui, Li., Rui, T., Ning, L., Guixin,Ch. (2017). Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil and Tillage Research, 167, 30-38. DOI: https://doi.org/10.1016/j.still.2016.11.001. | es_CO |
dc.relation.references | Patcharaporn Pimmata, Alissara Reungsang, Pensri Plangklang (2013). Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. International Biodeterioration & Biodegradation. 85, 196-204. https://doi.org/10.1016/j.ibiod.2013.07.009. | es_CO |
dc.relation.references | Paul, E. (2014). Soil microbiology, ecology and biochemistry. San Diego: Academic press. Recuperado de http://www.sciencedirect.com/science/book/9780124159556. | es_CO |
dc.relation.references | Pernía, B., Demey, J., Inojosa, Y., & Naranjo, L. (2012). Biodiversidad y potencial hidrocarbonoclástico de hongos aislados de crudo y sus derivados: un metaanálisis. Revista Latinoamericana de Biotecnología Ambiental y Algal, 3(1), 1-40. Recuperado de http://www.solabiaa.org/ojs3/index.php/RELBAA/issue/view/9. | es_CO |
dc.relation.references | Peter Kusch. (2017). Application of gas chromatography/mass spectrometry (GC/MS) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) in failure analysis in the automotive industry. Engineering Failure Analysis. 82, 726-732, https://doi.org/ 10.1016/j.engfailanal.2017.06.033. | es_CO |
dc.relation.references | Pinilla, Monsalve GD, Manrique, Hernández EF, Caballero, Carvajal AJ, Gómez, Rodríguez E, Marín, Hernández LR, Portilla, Portilla A, Sierra, Avendaño JA, Prieto, Serrano HJ, Oviedo, Pastrana DF, Gamboa, Toloza N. (2014). Neurotoxicología de Plaguicidas Prevalentes en la Región Andina Colombiana. MÉD.UIS ;27(3):57-67. | es_CO |
dc.relation.references | Plan de Desarrollo (2012-2015) "Un Norte Pa'lante". Gobernación del Norte de Santander. Recuperado de: http://www.nortedesantander.gov.co/Gobernaci%C3%B3n/Documentos-de-la-Entidad/Plan-Estrat%C3%A9gico-Sectorial. | es_CO |
dc.relation.references | Prashar, P., Shah, S. (2016). Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. Sustainable Agriculture Reviews. 19, 331–362. doi: 10.1007/978-3-319-26777-7_8 | es_CO |
dc.relation.references | Qi, J., Zhang, X., McCarty, GW, Sadeghi, AM, Cosh, MH, Zeng, X., Gao, F., Daughtry, CST, Huang, C., Lang, MW, Arnold, JG. (2018). Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessment Tool. Environmental Modelling & Software. 109, 329-341. DOI: https://doi.org/10.1016/j.envsoft.2018.08.024. | es_CO |
dc.relation.references | Seminis. (2016). ¿Qué Es El Suelo? Recuperado de http://www.seminis.mx/blog-que-es-el-suelo/. | es_CO |
dc.relation.references | Qui, Xiang, Y., Qing, H., Peng, H., Xiao, Jun, D., Yu, Jia, S., & Shun, Peng, L. (2007). Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp.FND-3. Federation of European Microbiological Societies, Vol.5, 207–213. | es_CO |
dc.relation.references | Riya P, Jagatpati T. (2012). Biodegradation and bioremediation of pesticides in Soil: Its Objectives,Classification of Pesticides, Factors and Recent Developments. World Journal of Science and Technology. 2(7): 36-41. | es_CO |
dc.relation.references | Robert P. Smith, Yu Tanouchi, Lingchong You. (2013). Chapter 13 - Synthetic Microbial Synthetic Biology Academic Press. 243-258. Doi.org/10.1016/B978-0-12-394430-6.00013-3. | es_CO |
dc.relation.references | Rodríguez Gómez, L. (2015). Informe: Así es el mundo de la papa colombiana. Diario: Contexto ganadero. Recuperado de https://www.contextoganadero.com/ | es_CO |
dc.relation.references | Rodríguez Pérez, S.; M.A. Crescencia Arone; J. Soria Calzadillo; I.A. Aguilera Rodríguez; M.J Serrat Díaz. (2017). "Determinación de biomasa fúngica y su utilidad en procesos biotecnológicos." Afinidad [online], Vol. 74, Núm. 577. https://www.raco.cat/index.php/ afinidad/article/view/320783/411265 [Views: 15-05-18. | es_CO |
dc.relation.references | Rousseaux, S., Hartmann, A., & Soulas, G. (2001). Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS. Microbiology Ecology, 36(2-3), 211-222. doi: 10.1016/S0168-6496(01)00135-0. | es_CO |
dc.relation.references | Ruíz-Hidalgo, K., Masís-Mora M., Barbieri, E., Carazo-Rojas, C. Rodríguez-Rodríguez. E. (2016). Ecotoxicological analysis during the removal of carbofuran in fungal bioaugmented matrices. Chemosphere 144, 864-871. DOI: https://doi.org/10.1016/j.chemosphere.2015.09.056. | es_CO |
dc.relation.references | Sarmah Ajit K, Müller Karin Ahmad Riaz (2004) Fate and behaviour of pesticides in the agroecosystem a review with a New Zealand perspective. Soil Research 42, 125-154. https://doi.org/10.1071/SR03100. | es_CO |
dc.relation.references | Betancur, B. Peñuela, G. Cardona, S.A. (2013). Biorremediación de suelo contaminado con pesticidas caso:DDT. Gestión y Ambiente, 68, 119-135. | es_CO |
dc.relation.references | Seo, Jiyoung and Jeon, Junho and Kim, Sang-Don and Kang, Suil and Han, Jaehong and Hur, Hor-Gil (2007). Fungal biodegradation of carbofuran and carbofuran phenol by the fungus Mucor ramannianus: identification of metabolites. Water science and technology: a journal of the International Association on Water Pollution Research, 55(1-2):163-7. Doi: 10.2166/wst.2007.051. | es_CO |
dc.relation.references | Shin, D., Kim, D., Seong, C., Song, H., & Ka, J. (2012). Genetic and phenotypic diversity of carbofuran-degrading bacteria isolated from agricultural soils. J Microbiology Biotechnology, 22(4), 448-456. http://dx.doi.org/10.4014/jmb.1108.08087. | es_CO |
dc.relation.references | Shiri, J., Keshavarzi, A., Kisi, O., Iturraran-Viveros, U., Bagherzadeh, A., Mousavi, R., Karimi, S. (2017). Modeling soil cation exchange capacity using soil parameters: Assessing the heuristic models. Computers and Electronics in Agriculture, 135, 242-251. DOI: https://doi.org/10.1016/j.compag.2017.02.016. | es_CO |
dc.relation.references | Shen YJ, Lu P, Mei H, Yu HJ, Hong Q, Li SP. (2010). Isolation of a methyl-parathion degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation. 21: 785-792. Doi:10.1007/s10532-010-9343-2. | es_CO |
dc.relation.references | Shi H, Pei L, Gu S, Zhu S, Wang Y, Zhang Y, Li B. (2012). Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics 100(5): 327-335. | es_CO |
dc.relation.references | Shukla KP, Singh NK and Sharma S. (2010). Biorremediation: Developments, current practices and perspectives. Genetic Engineering and Biotechnology journal 3: 1-20. | es_CO |
dc.relation.references | Sing, N., Zulkharnain, A., Roslan, H., Assim, Z., & Husaini, A. (2014). Bioremediation of PCP by Trichoderma and Cunninghamella Strains Isolated from Sawdust. Brazilian Archives of Biology and Technology, 57(6), 811-820. doi:10.1590/S1516-8913201402852. | es_CO |
dc.relation.references | Castellanos, J., Galvis, J., Carreno, A. (2016). Biodegradación de carbofuran y carbaril por Sphingomonas sp., S8-M3-13. Agronomía & Ambiente. 36, 42-52. | es_CO |
dc.relation.references | Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource Technology 74, 63- 67. https://doi.org/10.1016/S0960-8524(99)00144-3. | es_CO |
dc.relation.references | Sivagnanam Silambarasan, Jayanthi Abraham. (2013). Kinetic studies on enhancement of degradation of chlorpyrifos and its hydrolyzing metabolite TCP by a newly isolated Alcaligenes sp. JAS1, Journal of the Taiwan Institute of Chemical Engineers,Volume 44, Issue 3, Pages 438-445, doi.org/10.1016/j.jtice.2012.12.002. | es_CO |
dc.relation.references | Song, X. (2014) Carbofuran, Encyclopedia of Toxicology (Third Edition). Editor(s): Philip Wexler. Academic Press, Pages 673-674. DOI: https://doi.org/10.1016/B978-0-12-386454-3.00108-1. | es_CO |
dc.relation.references | Stamatiu, Sánchez, K., Alarcón, A., Ferrera, Cerrato, R., Nava, Díaz, C., Sánchez, Escudero, J., Cruz, Sánchez, J., & Castillo, M. (2015). Tolerancia de hongos filamentosos a endosulfán, clorpirifós y clorotalonil en condiciones in vitro. Revista internacional de contaminación ambiental, 31(1), 23-37. Recuperado de http://www.redalyc.org/pdf/370/37036860002.pdf. | es_CO |
dc.relation.references | Stratford, J., Woodley, M., & Park, S. (2013). Variation in the morphology of Bacillus mycoides due to applied force and substrate structure. PLOS ONE, 8(12), e81549. doi: 0.1371/journal.pone.0081549. | es_CO |
dc.relation.references | Sun, X., Zhu, Y., & Wang, X. (2012). Amperometric immunosensor based on deposited gold nanocrystals/4, 4’-thiobisbenzenethiol for determination of carbofuran. Food Control, 28, 184-191. https://doi.org/10.1016/j.foodcont.2012.04.027. | es_CO |
dc.relation.references | Tamrakar. U. Pillai. A.K. Gupta. V. (2007). A simple colorimetric method for the determination of carbo¬furan and its application in environmental and bio¬logical samples. J Braz Chem Soc, 18(2), 337-341. doi: 10.1590/S0103-50532007000200014. | es_CO |
dc.relation.references | Vanwalleghem, T., Gómez, J.A., Infante, J. González, M., Vanderlinden, K., Guzmán, G., Laguna A., Giráldez, J.V. (2017) Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene 17, 13-29. DOI: https://doi.org/10.1016/j.ancene.2017.01.002 | es_CO |
dc.relation.references | Venton, B.J. (2018). Fundamentos de la química analítica. Espectroscopia ultravioleta-visible (UV-Vis). Recuperado de https://www.jove.com/science-education/10204/espectroscopia-ultravioleta-visible-uv-vis. | es_CO |
dc.relation.references | Vischetti C, Casucci C, Perucci P. (2002). Relationship between changes of soil microbial biomass content and imazamox and benfluralin degradation. Biology and Fertility of Soils 35(1):13-17. DOI: 10.1007/s00374-001-0433-5. | es_CO |
dc.relation.references | Castro, V., Masís, M., Caminal, G., Vicent, T., Carazo, E., Rojas, M., López, C., & Rodríguez, E. (2016). A microbial consortium from a biomixture swiftly degrades high concentrations of carbofuran in fluidized-bed reactors. Process Biochemistry, 51(10), 1585-1593. doi: 10.1016/j.procbio.2016.07.003. | es_CO |
dc.relation.references | Wackett, L., & Gibson, D. (1982). Metabolism of xenobiotic compounds by enzymes in cell extracts of the fungus Cunninghamella elegans. Biochemical Journal, 205(1), 117-122. Recuperado de https://www.ncbi.nlm.nih.gov/pmc/.../biochemj00372-0121.pdf. | es_CO |
dc.relation.references | Brady, N., & Weil, R. (2016). The Nature and Properties of Soils. Columbus, USA: Pearson. | es_CO |
dc.relation.references | Wenning, M., Scherer, S., (2013). Identification of microorganisms by FTIR spectroscopy:perspectives and limitations of the method. Appl. Microbiol. Biotechnol. 97,7111–7120. | es_CO |
dc.relation.references | Wenning, M., Breitenwieser, F., Konrad, R., Huber, I., Busch, U., Scherer, S. (2014). Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. Journal of Microbiological Methods, 103,44-52. DOI: https://doi.org/10.1016/j.mimet.2014.05.011. | es_CO |
dc.relation.references | Wessman, P., Håkansson, S., Leifer, K., & Rubino, S. (2013). Formulations for Freeze-drying of Bacteria and Their Influence on Cell Survival. Journal of Visualized Experiments: JoVE, (78), 4058. Advance online publication. http://doi.org/10.3791/4058. | es_CO |
dc.relation.references | Wolfaardt G.M., Korber D.R., Lawrence J.R. (2007). Cultivation of microbial consortiaand communities, in: C.J. Hurst, R.L. Crawford, J.L. Garland, D.A. Lipson, A.L.Mills, L.D. Stetzenbach (Eds.), Manual of Environmental Microbiology, ASMPress, Washington DC, , pp. 101–111 | es_CO |
dc.relation.references | Yan Q-X, Hong Q, Han P, Dong X-J, Shen YJ. Li SP. (2007). Isolation and characterization of a carbofuran degrading strain Novosphingobium sp. FND-3. FEMS Microbiol Lett.271: 207-213. | es_CO |
dc.relation.references | Zdenek Filip, Susanne Hermann. (2001). An attempt to differentiate Pseudomonas spp. and other soil bacteria by FT-IR spectroscopy. European Journal of Soil Biology, 37 (3)137-143, https://doi.org/10.1016/S1164-5563(01)01078-0. | es_CO |
dc.relation.references | Zhai, Y., Li, K., Song, J., Shi, Y., Yan, Y., (2012). Molecular cloning, purification and biochemical characterization of a novel pyrethroid-hydrolyzing carboxylesterase gene from ochrobactrum anthropi YZ-1. J. Hazard. Mater. 221–222, 206–212. | es_CO |
dc.relation.references | Zhang, H., Watts, S., Philix, M.C., Snyder, S.A., Ong, C.N. (2018). Occurrence and distribution of pesticides in precipitation as revealed by targeted screening through GC-MS/MS. Chemosphere, 211, 210-217. DOI: https://doi.org/10.1016/j.chemosphere.2018.07.151. | es_CO |
dc.relation.references | Chaparro, García AL, Rodriguez, Martinez R, Quijano-Parra A, Lizarazo-Gutierrez LF. (2017). Desarrollo y validación de un método ambientalmente amigable para la determinación de carbofurano en suelos. Corpoica Cienc Tecnol Agropecuaria. 18(1):89-102 Doi: http://dx.doi.org/10.21930/rcta.vol18_num1_art:560. | es_CO |
dc.relation.references | Zhu, Y., Cao, Y., Sun, X., & Wang, X. (2013). Amperometric immunosensor for carbofuran detection based on MWCNTs/GS-PEI-Au and AuNPs-antibody conjugate. Sensor, 13, 5286-5301; doi:10.3390/s130405286 | es_CO |
dc.relation.references | Bustillo A. E. (2010). Método para cuantificar suspensiones de esporas de hongos y otros organismos. Reporte técnico. Universidad Nacional de Colombia - Palmira, Colombia. DOI: 10.13140/RG.2.1.3594.5128 Report number: 2, Affiliation: Universidad Naciona de Colombia - Palmira, Colombia. | es_CO |
dc.relation.references | Camacho, A., M. Giles, A. Ortegón, M. Palao, B. Serrano y O. Velázquez. (2009). Técnicas para el Análisis Microbiológico de Alimentos. 2ª ed. Facultad de Química, UNAM. México. Recuperado de http://depa.fquim.unam.mx/amyd/archivero/TecnicBasicas-Cuenta-en-placa_ 6527.pdf. | es_CO |
dc.relation.references | Campillo, R., & Sadzawaka, R. (2006). La acidificación de los suelos, origen y mecanismos involucrados. Recuperado de http://www.profertilnutrientes.com.ar/archivos/la-acididificaci on-de-los-suelos-origen-y-mecanismos-involucrados. | es_CO |
dc.relation.references | Cantón, R., Gómez, L., Martínez, L., Rodríguez, C., Vila, J., & García, J. (2000) Métodos básicos para el estudio de la sensibilidad a los antimicrobianos. Recuperado de http://www.seimc.org. | es_CO |
dc.relation.references | Capriotti A L, Cavaliere C, Giansanti P, Gubbiotti R, Samperi R, Laganà A. (2010). Recent developments in matrix solid-phase dispersion extraction. Journal of Chromatography A. 1217, 16 2521-2532, https://doi.org/10.1016/j.chroma.2010.01.030. | es_CO |
dc.relation.references | Capriotti A L, Cavaliere C, Laganà A, Piovesana S, Samperi R. (2013). Recent trends in matrix solid-phase dispersion, TrAC, Trends Anal. Chem. 43 53-66. | es_CO |
dc.relation.references | Carrillo, L. (2003). Clave especies de mohos comunes en alimentos y forrajes. En: Carrillo L. Los hongos de los alimentos y forrajes, primera edición (pp. 44-69). Argentina: Universidad Nacional de Salta. | es_CO |
dc.relation.references | Castellanos, Rozo, J., and L. Y. Rache Cardenal. (2013). Microorganismos, enzimas, plásmidos y genes involucrados en la degradación de plaguicidas N-metilcarbamatos. Rev. Int. Contam. Ambie., 29 (SPEC.ISSUE), 105-119. | es_CO |
dc.relation.references | Chaudhry, G.R. and Ali, H.D. (1988) Bacterial metabolism of carbofuran. Applied and Environmental Microbiology 54, 1414-1419. | es_CO |
dc.relation.references | Corporación Colombiana de investigación agraria [Corpoica]. (2013). Guía toma de muestras de suelos. Recuperado de https://asociados.porkcolombia.co/porcicultores/ images/porcicultores/ convenios/corpoica/VC_G_06_Guia_toma_muestras_de_suelo.pdf. | es_CO |
dc.relation.references | Cycoń, M. Żmijowska, A. Wójcik, M. Piotrowska, Z. (2013). Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils, Journal of Environmental Management, 117; 7-16. doi.org/10.1016/j.jenvman.2012.12.031. | es_CO |
dc.relation.references | Das, A., Chakravarty, A., Sukul, P., & Mukherjee, D. (1995). Insecticides: their effect on microorganisms and persistence in rice soil. Microbiological Research, 150(2), 187-194. https://doi.org/10.1016/S0944-5013(11)80055-8. | es_CO |
dc.relation.references | Del Puerto Rodríguez, Asela M, Suárez Tamayo, Susana, y Palacio Estrada, Daniel E. (2014). Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiología 52(3), 372-387. versión On-line ISSN 1561-3003. | es_CO |
dc.relation.references | Desmond-Le Quéméner, E., Bouchez, T. (2014). A thermodynamic theory of microbial growth. The ISME journal International Society for Microbial Ecology, 8(8), 1747-51. doi: [10.1038/ismej.2014.7]. | es_CO |
dc.relation.references | Dhouib, I.B. Annabi, A., Jallouli, M., Marzouki, S., Gharbi, N., Elfazaa, S., Lasram, M.M. (2016). Carbamates pesticides induced immunotoxicity and carcinogenicity in human: A review. Journal of Applied Biomedicine.14 (2) 85-90. https://doi.org/10.1016/j.jab.2016.01.001. | es_CO |
dc.relation.references | Instituto de hidrología, meteorología y estudios ambientales [IDEAM]. (2004). El medio ambiente en Colombia. 3a Edición. Bogotá Colombia. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Biología Molecular y Biotecnología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Bautista_2018_TG.pdf | Bautista_2018_TG | 3,04 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.