• Repositorio Institucional Universidad de Pamplona
  • Tesis de maestría y doctorado
  • Facultad de Ciencias Básicas
  • Maestría en Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2703
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorPinzón Parada, Fernando.-
    dc.date.accessioned2022-09-19T21:17:40Z-
    dc.date.available2018-12-20-
    dc.date.available2022-09-19T21:17:40Z-
    dc.date.issued2019-
    dc.identifier.citationPinzón Parada, F. (2018). Caracterización de ceras de siete especies de Abejas nativas de Colombia, por aplicación de análisis multivariado al comportamiento térmico, cristalinidad y composición química [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2703es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2703-
    dc.descriptionSe realizó la caracterización de ceras pertenecientes a siete especies de abejas nativas de Colombia, que permitió mediante análisis termogravimétrico (TGA) simultáneo con calorimetría diferencial de barrido (DSC), calorimetría de combustión, espectroscopía infrarroja con transformada de Fourier (FT-IR), cromatografía de gases acoplado a espectrometría de masas (GC-MS) y difracción de rayos X (XRD); hallar las temperaturas de fusión y calores de fusión en un proceso cíclico de calentamiento, enfriamiento y recalentamiento; determinar la variación de masa en función de la temperatura, establecer la cinética y determinar los parámetros cinéticos de la degradación térmica, calcular el calor de combustión, obtener espectros infrarrojo de referencia, determinar los principales componentes y la fracción de estos, obtener el porcentaje de cristalinidad de muestras de cera de potes de alimento, celdas de cría e involucro para las especies: Melipona favosa favosa, Melipona fuscipes, Melipona compressipes, Trigona (Frieseomelitta) nigra paupera, Trigona (Tetragosnisca) angustula, Bombus (Fervidobombus) atratus y Nanotrigona sp., también, se analizó la cera de Apis mellifera (africanizada) y se tomó como muestra de referencia, ya que, de esta se encuentra información en la literatura. Las diferencias significativas en cada análisis se determinaron por aplicación de análisis de varianza ANOVA a un nivel de significancia de 0,05 y las similitudes se corroboraron con Análisis de Componentes Principales y Análisis Clúster. Se encontraron diferencias significativas en todos los análisis entre las muestras que pertenecen a diferentes tribus, aunque las más notorias entre las muestras de Bombus atratus con la de Apis mellifera (africanizada) y entre estas con las muestras pertenecientes a la tribu Meliponini. Con los análisis no se establece un patrón ordenado en las muestras que pertenecen a una misma especie o género si no que, estas se alternan en diferente orden dependiendo del análisis realizado. Los valores de temperatura de fusión, calor de fusión, calor de combustión y parámetros de Arrhenius son mayores en la muestra de Apis mellifera (africanizada) y menor en las muestras de Bombus atratus y las demás muestras tienen valores intermedios entre estas dos especies sin presentar diferencias marcadas entre ellas. La cinética del proceso de pirólisis es de primer orden y se rige por la ecuación de Arrhenius presentando un incremento en la energía de activación de 38,38 kJ/mol desde la cera de Bombus atratus hasta la de Apis mellifera (africanizada).es_CO
    dc.description.abstractThe characterization of waxes belonging to seven native species of Colombian bees was determined, using thermogravimetric analysis (TGA) simultaneous with differential scanning calorimetry (DSC), combustion calorimetry, infrared spectroscopy with Fourier transform (FT-IR), gas chromatography coupled to mass spectrometry (GC-MS) and X-ray diffraction (XRD) to find melting temperatures and fusion heats in a cyclic heating process, cooling and overheating; to determine the variation of mass according to the temperature, to establish the kinetics and to determine the kinetic parameters of the thermal degradation, to calculate the combustion heat, to obtain reference infrared spectra, to determine the main components and their fraction, to obtain the percentage of crystallinity of waxes used by bees to build food storage pots, brood cells and the involucrum. The wax was collected from the species: Melipona favosa favosa, Melipona fuscipes, Melipona compressipes, Trigona (Frieseomelitta) nigra paupera, Trigona (Tetragosnisca) angustula, Bombus (Fervidobombus) atratus and Nanotrigona sp. In addition the wax of Apis mellifera (Africanized) was analyzed and it was taken as a reference sample, since more information is found in the literature. The significant differences in each analysis were determined by application of ANOVA variance analysis at a significance level of 0.05 and similarities were corroborated using major component analysis and cluster analysis. Significant differences were found in all analyses between the samples belonging to different tribes, highlighting the differences between the samples of Bombus atratus and that of Apis Africanized, the analyses do not establish an ordered pattern in the samples belonging to the same species or genus but these alternate in different order depending on the analysis performed. The values of melting temperature, melting heat, combustion heat and Arrhenius parameters are higher in the sample of Apis Africanized and lower in the samples of Bombus atratus and the other samples tend to have intermediate values between these two species without presenting remarkable differences among them. The kinetic of the pyrolysis process is of first order and is governed by the equation of Arrhenius presenting an increase in the activation energy of 38.38 kJ/mol from the wax of Bombus atratus to the one of Apis mellifera (Africanized).es_CO
    dc.format.extent148es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleCaracterización de ceras de siete especies de Abejas nativas de Colombia, por aplicación de análisis multivariado al comportamiento térmico, cristalinidad y composición química.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_bdcces_CO
    dc.date.accepted2018-09-20-
    dc.relation.referencesM. nacional de medio Ambiente, Mecanismos de Información de Páramos, 2013. http://www.paramo.org/files/recursos/politicabiodiversidad.pdf.es_CO
    dc.relation.referencesC. de noticias ONU, Ban aboga por un crecimiento más verde e inclusivo, (2015). http://www.un.org/spanish/News/story.asp?NewsID=31483#.WQfxrYWcHSF.es_CO
    dc.relation.referencesG. Nates-Parra, V.H. Gonzalez, Las Abejas Silvestres De Colombia: Por Qué Y Cómo Conservarlas, Acta Biológica Colomb. 5 (2000) 33. http://www.revistas.unal.edu.co/index.php/actabiol/article/view/26678.es_CO
    dc.relation.referencesM.D. Ordóñez, El TLC con Corea, (2015). http://www.semana.com/opinion/articulo/miguel-duran-ordonez-el-tlc-con-corea/414893-3.es_CO
    dc.relation.referencesC.D. Michener, A generic review of Dufoureinae of the Western Hemisphere(Hymenoptera:Halictidae), Entomol. Soc. Am. 58 (1965) 321–326. doi:https://doi.org/10.1093/aesa/58.3.321.es_CO
    dc.relation.referencesC.D. MICHENER, L. GREENBERG, Ctenoplectridae and the origin of long-tongued bees*, Zool. J. Linn. Soc. 69 (1980) 183–203. doi:10.1111/j.1096-3642.1980.tb01122.x.es_CO
    dc.relation.referencesM.L. Winston, Ecology and Natural History of Tropical Bees. David W. Roubik. Cambridge University Press, New York, 1989. x, 514 pp., illus. $69.50. Cambridge Tropical Biology Series., Science. 248 (1990) 1026–1027. doi:10.1126/science.248.4958.1026.es_CO
    dc.relation.referencesF. Koch, Hanson, P. E. & Gauld, I. D. (1995): The Hymenoptera of Costa Rica. - Oxford University Press. 893 pages. Price: UM 380.-. ISBN 0-19-854905-9, Dtsch. Entomol. Zeitschrift. 44 (2008) 136–136. doi:10.1002/mmnd.19970440203.es_CO
    dc.relation.referencesG. Nates-Parra, Abejas corbiculadas de Colombia. Hymenoptera: Apidae, Bogotá, 2007.es_CO
    dc.relation.referencesH. Hepburn R., R. Bernard T.F., B. Davidson C., W. Muller J., P. Lloyd, S. Kurstjens P., S. Vincent L., Synthesis and secretion of beeswax in honeybees, Apidologie. 22 (1991) 21–36. http://dx.doi.org/10.1051/apido:19910104.es_CO
    dc.relation.referencesD.W. Roubik, Stingless bee nesting biology, Apidologie. 37 (2006) 124–143. doi:10.1051/apido.es_CO
    dc.relation.referencesJ. javier G., Q. Éuan, Biología y uso de las abejas sin aguijón de la península de Yucatán, México (Hymenoptera: Meliponini), 2005.es_CO
    dc.relation.referencesB. Fröhlich, J. Tautz, M. Riederer, Chemometric Classification of Comb and Cuticular Waxes of the Honeybee Apis Mellifera Carnica, J. Chem. Ecol. 26 (2000) 123–137. doi:10.1023/A:1005493512305.es_CO
    dc.relation.referencesM. Maia, F.M. Nunes, Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis, Food Chem. 136 (2013) 961–968. doi:http://dx.doi.org/10.1016/j.foodchem.2012.09.003.es_CO
    dc.relation.referencesA. Brockmann, C. Groh, B. Fröhlich, Wax perception in honeybees: contact is not necessary, Naturwissenschaften. 90 (2003) 424–427. doi:10.1007/s00114-003-0442-3.es_CO
    dc.relation.referencesA. Asperger, W. Engewald, G. Fabian, Analytical characterization of natural 123 waxes employing pyrolysis–gas chromatography–mass spectrometry, J. Anal. Appl. Pyrolysis. 50 (1999) 103–115. doi:http://dx.doi.org/10.1016/S0165-2370(99)00031-5.es_CO
    dc.relation.referencesU. Knuutinen, A. Norrman, Wax Analysis in conservation objects by solubility studies, FTIR and DSC, (n.d.). http://www.ndt.net/article/wcndt00/papers/idn555/idn555.htm.es_CO
    dc.relation.referencesR. Buchwald, M.D. Breed, A.R. Greenberg, G. Otis, Interspecific variation in beeswax as a biological construction material, (2006) 3984–3989. doi:10.1242/jeb.02472.es_CO
    dc.relation.referencesA. Asperger, W. Engewald, G. Fabian, Thermally assisted hydrolysis and methylation – a simple and rapid online derivatization method for the gas chromatographic analysis of natural waxes, J. Anal. Appl. Pyrolysis. 61 (2001) 91–109. doi:10.1016/S0165-2370(01)00116-4.es_CO
    dc.relation.referencesA.M. Stearman, E. Stierlin, M.E. Sigman, D.W. Roubik, D. Dorrien, Stradivarius in the Jungle: Traditional Knowledge and the Use of ``Black Beeswax’’ Among the Yuqu{í} of the Bolivian Amazon, Hum. Ecol. 36 (2008) 149–159. doi:10.1007/s10745-007-9153-2.es_CO
    dc.relation.referencesM. Akaike, Data Recording Materials Made from Insect Wax: CERA RICA NODA, JAPAN CLOSE-UP. (2002). http://www.japanfs.org/en/takumi/takumi_id034096.html.es_CO
    dc.relation.referencesH. Soloway, Melting point tables of organic compounds, 2nd revised and supplemented edition, Microchem. J. 8 (1964) 210–211. doi:10.1016/0026-265X(64)90056-6.es_CO
    dc.relation.referencesA.P. Tulloch, The composition of beeswax and other waxes secreted by insects, Lipids. 5 (1969) 247–258. doi:10.1007/BF02532476.es_CO
    dc.relation.referencesG.E. Timbers, G.D. Robertson, T.A. Gochnauer, Thermal Properties of Beeswax and Beeswax-Paraffin Mixtures, J. Apic. Res. 16 (1977) 49–55. doi:10.1080/00218839.1977.11099860.es_CO
    dc.relation.referencesE.E. Southwick, Thermal conductivity of wax comb and its effect on heat balance in colonial honey bees (Apis mellifera L.), Experientia. 41 (1985) 1486–1487. doi:10.1007/BF01950051.es_CO
    dc.relation.referencesA.P. Tulloch, Beeswax: Structure of the esters and their component hydroxy acids and diols, Chem. Phys. Lipids. 6 (1971) 235–265. doi:10.1016/0009-3084(71)90063-6.es_CO
    dc.relation.referencesR. Aichholz, E. Lorbeer, Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography–chemical ionization mass spectrometry: I. High-temperature gas chromatography, J. Chromatogr. A. 855 (1999) 601–615. doi:10.1016/S0021-9673(99)00725-6.es_CO
    dc.relation.referencesR. Aichholz, E. Lorbeer, Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography-chemical ionization mass spectrometry, II: High-temperature gas chromatography-chemical ionization mass., J. Chromatogr. A. 883 (2000) 75–88. doi:10.1016/S0021-9673(00)00386-1.es_CO
    dc.relation.referencesS.P. Kurstjens, E. McClain, H.R. Hepburn, The proteins of beeswax, Naturwissenschaften. 77 (n.d.) 34–35. doi:10.1007/BF01131795.es_CO
    dc.relation.referencesJ. Morgan, S. Townley, G. Kemble, R. Smith, Measurement of physical and 124 mechanical properties of beeswax, Mater. Sci. Technol. 18 (2002) 463–467. doi:10.1179/026708302225001714.es_CO
    dc.relation.referencesG.J. Blomquist, D.W. Roubik, S.L. Buchmann, Wax chemistry of two stingless bees of the Trigonisca group (Apididae: Meliponinae), Comp. Biochem. Physiol. Part B Comp. Biochem. 82 (1985) 137–142. doi:http://dx.doi.org/10.1016/0305-0491(85)90142-7.es_CO
    dc.relation.referencesB. V Milborrow, J.M. Kennedy, A. Dollin, Composition of Wax Made by the Australian Stingless Bee Trigona australis, Aust. J. Biol. Sci. 40 (1987) 15–26. http://www.publish.csiro.au/paper/BI9870015.es_CO
    dc.relation.referencesD. Koedam, H. Jungnickel, J. Tentschert, G.R. Jones, E.D. Morgan, Production of wax by virgin queens of the stingless bee Melipona bicolor (Apidae, Meliponinae), Insectes Soc. 49 (2002) 229–233. doi:10.1007/s00040-002-8306-y.es_CO
    dc.relation.referencesY. Gaillard, A. Mija, A. Burr, E. Darque-Ceretti, E. Felder, N. Sbirrazzuoli, Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin, Thermochim. Acta. 521 (2011) 90–97. doi:http://dx.doi.org/10.1016/j.tca.2011.04.010.es_CO
    dc.relation.referencesE.Y.T. Mattos, Determinación de calores de combustión de seis especies de abejas nativas de Colombia, Universidad de pamplona, 2010.es_CO
    dc.relation.referencesF. Pinzón, A. Torres, W. Hoffmann, I. Lamprecht, Thermoanalytical and infrared spectroscopic investigations on wax samples of native Colombian bees living in different altitudes, Eng. Life Sci. 13 (2013) 520–527. doi:10.1002/elsc.201200103.es_CO
    dc.relation.referencesA. SKOOG Douglas, H. James, T.A. NIEMAN, Cromatografía de gases, in: McGraw-Hill (Ed.), Principios Análisis Instrum., 5th ed., Madrid España, 2001: pp. 779–784.es_CO
    dc.relation.referencesA. SKOOG Douglas, H. James, T.A. NIEMAN, Espectrometría de masas molecular, in: McGraw-Hill (Ed.), Principios Análisis Instrum., 5th ed., Madrid España, 2001: pp. 537–575.es_CO
    dc.relation.referencesF.G. Kitson, B.S. Larsen, C.N. McEwen, What Is GC/MS?, in: Gas Chromatogr. Mass Spectrom., Elsevier, 1996: pp. 3–23. doi:10.1016/B978-012483385-2/50002-6.es_CO
    dc.relation.referencesM. Moeder, Gas Chromatography-Mass Spectrometry, in: K. Dettmer-Wilde, W. Engewald (Eds.), Pract. Gas Chromatogr. A Compr. Ref., Springer Berlin Heidelberg, Berlin, Heidelberg, 2014: pp. 303–350. doi:10.1007/978-3-642-54640-2_9.es_CO
    dc.relation.referencesJ. a Whitecavage, J.R. Stuff, Multidimensional GC Analysis of Complex Samples, (2005). http://www.gerstel.com/pdf/p-gc-an-2005-02.pdf.es_CO
    dc.relation.referencesA. SKOOG Douglas, H. James, T.A. NIEMAN, Espectrometría atómica de rayos X, in: McGraw-Hill (Ed.), Principios Análisis Instrum., 5th ed., Madrid España, 2001: pp. 291–318.es_CO
    dc.relation.referencesY. Waseda, E. Matsubara, K. Shinoda, Diffraction from Polycrystalline Samples and Determination of Crystal Structure, in: X-Ray Diffr. Crystallogr. Introd. Examples Solved Probl., Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 107–167. doi:10.1007/978-3-642-16635-8_4.es_CO
    dc.relation.referencesY. Waseda, E. Matsubara, K. Shinoda, Diffraction from Polycrystalline Samples and Determination of Crystal Structure, in: X-Ray Diffr. Crystallogr. Introd. Examples Solved Probl., Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 107–167. doi:10.1007/978-3-642-16635-8_4.es_CO
    dc.relation.referencesP. Starzewski, W. Zielenkiewicz, DSC-TG studies of coal structure modification by the inert gas helium, Thermochim. Acta. 160 (1990) 215–222. doi:10.1016/0040-6031(90)80261-V.es_CO
    dc.relation.referencesR. Buchwald, M.D. Breed, A.R. Greenberg, The thermal properties of beeswaxes: unexpected findings, J. Exp. Biol. 211 (2007) 121–127. http://jeb.biologists.org/content/211/1/121.abstract.es_CO
    dc.relation.referencesP. Larkin, P. Larkin, Chapter 1 – Introduction: Infrared and Raman Spectroscopy, in: Infrared Raman Spectrosc., 2011: pp. 1–5. doi:10.1016/B978-0-12-386984-5.10001-1.es_CO
    dc.relation.referencesX. Huang, J.-P. Cao, X.-Y. Zhao, J.-X. Wang, X. Fan, Y.-P. Zhao, X.-Y. Wei, Pyrolysis kinetics of soybean straw using thermogravimetric analysis, Fuel. 169 (2016) 93–98. doi:http://dx.doi.org/10.1016/j.fuel.2015.12.011.es_CO
    dc.relation.referencesM. Van de Velden, J. Baeyens, A. Brems, B. Janssens, R. Dewil, Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction, Renew. Energy. 35 (2010) 232–242. doi:http://dx.doi.org/10.1016/j.renene.2009.04.019.es_CO
    dc.relation.referencesS. Mallakpour, M. Taghavi, Molten tetrabutylammonium bromide as eco-friendly media for the synthesis of optically active and thermal stable polyamides under microwave irradiation, Polym. J. 40 (2008) 1049–1059. doi:10.1295/polymj.PJ2008056.es_CO
    dc.relation.referencesF. Haloua, B. Hay, E. Foulon, Uncertainty analysis of theoretical methods for adiabatic temperature rise determination in calorimetry, J. Therm. Anal. Calorim. 111 (2013) 985–994. doi:10.1007/s10973-012-2342-2.es_CO
    dc.relation.referencesD.R. Lide, CRC Handbook of Chemistry and Physics, 90th Edition, Taylor & Francis, 2009. https://books.google.com.co/books?id=OmkbNgAACAAJ.es_CO
    dc.relation.referencesJ.R. Loften, J.G. Linn, J.K. Drackley, T.C. Jenkins, C.G. Soderholm, A.F. Kertz, Invited review: Palmitic and stearic acid metabolism in lactating dairy cows, J. Dairy Sci. 97 (2014) 4661–4674. doi:https://doi.org/10.3168/jds.2014-7919.es_CO
    dc.relation.referencesJ.R. Loften, J.G. Linn, J.K. Drackley, T.C. Jenkins, C.G. Soderholm, A.F. Kertz, Invited review: Palmitic and stearic acid metabolism in lactating dairy cows, J. Dairy Sci. 97 (2014) 4661–4674. doi:https://doi.org/10.3168/jds.2014-7919.es_CO
    dc.relation.referencesI. Bonaduce, M.P. Colombini, Characterisation of beeswax in works of art by gas chromatography–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry procedures, J. Chromatogr. A. 1028 (2004) 297–306. doi:http://dx.doi.org/10.1016/j.chroma.2003.11.086.es_CO
    dc.relation.referencesA.A. Righi, G. Negri, A. Salatino, Comparative chemistry of propolis from eight brazilian localities, Evidence-Based Complement. Altern. Med. 2013 (2013). doi:10.1155/2013/267878.es_CO
    dc.relation.referencesK.-J.J. Kim, T.-J.J. Eom, Chemical characteristics of degraded beeswax in the waxed volume of the annals of King Sejong in the Joseon Dynasty, J. Cult. Herit. 16 (2015) 919–922. doi:10.1016/j.culher.2015.03.012.es_CO
    dc.relation.referencesC.-C. Lin, K.A. Prokop-Prigge, G. Preti, C.J. Potter, Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions., Elife. 4 (2015). doi:10.7554/eLife.08688.es_CO
    dc.relation.referencesJ. Serra Bonvehi, F.J. Orantes Bermejo, Detection of adulterated commercial Spanish beeswax, Food Chem. 132 (2012) 642–648. 126 doi:10.1016/j.foodchem.2011.10.104.es_CO
    dc.relation.referencesM. Regert, S. Colinart, L. Degrand, O. Decavallas, Chemical Alteration and Use of Beeswax Through Time: Accelerated Ageing Tests and Analysis of Archaeological Samples from Various Environmental Contexts, Archaeometry. 43 (2001) 549–569. doi:10.1111/1475-4754.00036.es_CO
    dc.relation.referencesJ.J. Jiménez, J.L. Bernal, S. Aumente, M.J. Del Nozal, M.T. Martín, J. Bernal, Quality assurance of commercial beeswax: Part I. Gas chromatography- electron impact ionization mass spectrometry of hydrocarbons and monoesters, J. Chromatogr. A. 1024 (2004) 147–154. doi:10.1016/j.chroma.2003.10.063.es_CO
    dc.relation.referencesJ.J. Jiménez, J.L. Bernal, S. Aumente, L. Toribio, J. Bernal, Quality assurance of commercial beeswax: II. Gas chromatography-electron impact ionization mass spectrometry of alcohols and acids, J. Chromatogr. A. 1007 (2003) 101–116. doi:10.1016/S0021-9673(03)00962-2.es_CO
    dc.relation.referencesN. Abdel-Raouf, N.M. Al-Enazi, A.A. Al-Homaidan, I.B.M. Ibraheem, M.R. Al-Othman, A.A. Hatamleh, Antibacterial β-amyrin isolated from Laurencia microcladia, Arab. J. Chem. 8 (2015) 32–37. doi:10.1016/j.arabjc.2013.09.033.es_CO
    dc.relation.referencesB. V Milborrow, J.M. Kennedy, A. Dollin, Composition of Wax Made by the Australian Stingless Bee Trigona australis, Aust. J. Biol. Sci. 40 (1987) 15–26. doi:https://doi.org/10.1071/BI9870015.es_CO
    dc.relation.referencesA. Talevi, M.S. Cravero, E.A. Castro, L.E. Bruno-Blanch, Discovery of anticonvulsant activity of abietic acid through application of linear discriminant analysis, Bioorg. Med. Chem. Lett. 17 (2007) 1684–1690. doi:https://doi.org/10.1016/j.bmcl.2006.12.098.es_CO
    dc.relation.referencesM.A. González, D. Pérez-Guaita, J. Correa-Royero, B. Zapata, L. Agudelo, A. Mesa-Arango, L. Betancur-Galvis, Synthesis and biological evaluation of dehydroabietic acid derivatives, Eur. J. Med. Chem. 45 (2010) 811–816. doi:https://doi.org/10.1016/j.ejmech.2009.10.010.es_CO
    dc.relation.referencesJ. Kim, Y.-G. Kang, J. Lee, D. Choi, Y. Cho, J.-M. Shin, J.S. Park, J.H. Lee, W.G. Kim, D.B. Seo, T.R. Lee, Y. Miyamoto, K.T. No, The natural phytochemical dehydroabietic acid is an anti-aging reagent that mediates the direct activation of SIRT1, Mol. Cell. Endocrinol. 412 (2015) 216–225. doi:https://doi.org/10.1016/j.mce.2015.05.006.es_CO
    dc.relation.referencesJ.L. Ríos, M.C. Recio, S. Maáñez, R.M. Giner, Natural Triterpenoids as Anti-Inflammatory Agents, in: Stud. Nat. Prod. Chem., 2000: pp. 93–143. doi:10.1016/S1572-5995(00)80024-1.es_CO
    dc.relation.referencesD. López, L. Cherigo, C. Spadafora, M.A. Loza-Mejía, S. Martínez-Luis, Phytochemical composition, antiparasitic and $α$--glucosidase inhibition activities from Pelliciera rhizophorae, Chem. Cent. J. 9 (2015) 53. doi:10.1186/s13065-015-0130-3.es_CO
    dc.relation.referencesN. Bailón-Moscoso, J.C. Romero-Benavides, M. Sordo, J. Villacís, R. Silva, L. Celi, M. Martínez-Vázquez, P. Ostrosky-Wegman, Phytochemical study and evaluation of cytotoxic and genotoxic properties of extracts from Clusia latipes leaves, Rev. Bras. Farmacogn. 26 (2016) 44–49. doi:https://doi.org/10.1016/j.bjp.2015.08.014.es_CO
    dc.relation.referencesL. WU, Z.-L. CHEN, Y. SU, Q.-H. WANG, H.-X. KUANG, Cycloartenol triterpenoid saponins from Cimicifuga simplex (Ranunculaceae) and their 127 biological effects, Chin. J. Nat. Med. 13 (2015) 81–89. doi:https://doi.org/10.1016/S1875-5364(15)60011-5.es_CO
    dc.relation.referencesA. Peramo, S. Mura, S.O. Yesylevskyy, B. Cardey, D. Sobot, S. Denis, C. Ramseyer, D. Desmaële, P. Couvreur, Squalene versus cholesterol: Which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine?, Comptes Rendus Chim. (2018). doi:https://doi.org/10.1016/j.crci.2018.02.008.es_CO
    dc.relation.referencesS. Ishiai, H. Kondo, T. Hattori, M. Mikami, Y. Aoki, S. Enoki, S. Suzuki, Hordenine is responsible for plant defense response through jasmonate-dependent defense pathway, Physiol. Mol. Plant Pathol. 96 (2016) 94–100. doi:https://doi.org/10.1016/j.pmpp.2016.10.003.es_CO
    dc.relation.referencesC.L. Cantrell, S.G. Franzblau, N.H. Fischer, Antimycobacterial plant terpenoids., Planta Med. 67 (2001) 685–694. doi:10.1055/s-2001-18365.es_CO
    dc.relation.referencesD.L. Lucetti, E.C.P. Lucetti, M.A.M. Bandeira, H.N.H. Veras, A.H. Silva, L.K.A.M. Leal, A.A. Lopes, V.C.C. Alves, G.S. Silva, G.A. Brito, G.B. Viana, Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel, J. Inflamm. (Lond). 7 (2010) 60. doi:10.1186/1476-9255-7-60.es_CO
    dc.relation.referencesP.K. Chaturvedi, K. Bhui, Y. Shukla, Lupeol: Connotations for chemoprevention, Cancer Lett. 263 (2008) 1–13. doi:https://doi.org/10.1016/j.canlet.2008.01.047.es_CO
    dc.relation.referencesW. Kaialy, U. Khan, S. Mawlud, Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol, Int. J. Pharm. 510 (2016) 73–85. doi:10.1016/j.ijpharm.2016.05.052.es_CO
    dc.relation.referencesY. Sun, D. Zhou, F. Shahidi, Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters, Food Chem. 245 (2018) 1262–1268. doi:https://doi.org/10.1016/j.foodchem.2017.11.051.es_CO
    dc.relation.referencesD.-Y. Zhou, Y.-X. Sun, F. Shahidi, Preparation and antioxidant activity of tyrosol and hydroxytyrosol esters, J. Funct. Foods. 37 (2017) 66–73. doi:https://doi.org/10.1016/j.jff.2017.06.042.es_CO
    dc.relation.referencesJ. Cremer, V. Vatou, I. Braveny, 2,4-(hydroxyphenyl)-ethanol, an antioxidative agent produced by Candida spp., impairs neutrophilic yeast killing in vitro., FEMS Microbiol. Lett. 170 (1999) 319–325.es_CO
    dc.relation.referencesP. Dewapriya, S.W.A. Himaya, Y.-X. Li, S.-K. Kim, Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson’s disease, Food Chem. 141 (2013) 1147–1157. doi:https://doi.org/10.1016/j.foodchem.2013.04.004.es_CO
    dc.relation.referencesL. Svečnjak, G. Baranović, M. Vinceković, S. Prđun, D. Bubalo, I.T. Gajger, N approach for routine analytical detection of beeswax adulteration using ftir-atr spectroscopy, J. Apic. Sci. 59 (2015) 37–49. doi:10.1515/JAS-2015-0018.es_CO
    dc.relation.referencesA.P. Tulloch, Beeswax—Composition and Analysis, Bee World. 61 (1980) 47–62. doi:10.1080/0005772X.1980.11097776.es_CO
    dc.relation.referencesY. Gaillard, M. Girard, G. Monge, A. Burr, E.D. Ceretti, E. Felder, Superplastic behavior of rosin/beeswax blends at room temperature, J. Appl. Polym. Sci. 128 (2013) 2713–2719. doi:10.1002/app.38333.es_CO
    dc.relation.referencesY.-F. Huang, P.-T. Chiueh, W.-H. Kuan, S.-L. Lo, Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics, Energy. 128 100 (2016) 137–144. doi:http://dx.doi.org/10.1016/j.energy.2016.01.088.es_CO
    dc.relation.referencesK.H. Lee, S.C. Oh, Kinetics of the thermal degradation of wax materials obtained from pyrolysis of mixed waste plastics, Korean J. Chem. Eng. 27 (2010) 139–143. doi:10.1007/s11814-009-0305-5.es_CO
    dc.relation.referencesA.A. Attama, C.C. M??ller-Goymann, Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity, Colloids Surfaces A Physicochem. Eng. Asp. 315 (2008) 189–195. doi:10.1016/j.colsurfa.2007.07.035.es_CO
    dc.relation.referencesS. Martini, C.Y. Tan, S. Jana, Physical Characterization of Wax/Oil Crystalline Networks, J. Food Sci. 80 (2015) C989–C997. doi:10.1111/1750-3841.12853.es_CO
    dc.relation.referencesM. Mellema, Co-crystals of Beeswax and Various Vegetable Waxes with Sterols Studied by X-ray Diffraction and Differential Scanning Calorimetry, J. Am. Oil Chem. Soc. 86 (2009) 499–505. doi:10.1007/s11746-009-1385-4.es_CO
    dc.relation.referencesB. Flaherty, Characterisation of waxes by differential scanning calorimetry, J. Appl. Chem. Biotechnol. 21 (1971) 144–148. doi:10.1002/jctb.5020210507.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Maestría en Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Pinzon_2018_TG.pdfPinzon_2018_TG5,18 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.