Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2703
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Pinzón Parada, Fernando. | - |
dc.date.accessioned | 2022-09-19T21:17:40Z | - |
dc.date.available | 2018-12-20 | - |
dc.date.available | 2022-09-19T21:17:40Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Pinzón Parada, F. (2018). Caracterización de ceras de siete especies de Abejas nativas de Colombia, por aplicación de análisis multivariado al comportamiento térmico, cristalinidad y composición química [Trabajo de Grado Maestría, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2703 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2703 | - |
dc.description | Se realizó la caracterización de ceras pertenecientes a siete especies de abejas nativas de Colombia, que permitió mediante análisis termogravimétrico (TGA) simultáneo con calorimetría diferencial de barrido (DSC), calorimetría de combustión, espectroscopía infrarroja con transformada de Fourier (FT-IR), cromatografía de gases acoplado a espectrometría de masas (GC-MS) y difracción de rayos X (XRD); hallar las temperaturas de fusión y calores de fusión en un proceso cíclico de calentamiento, enfriamiento y recalentamiento; determinar la variación de masa en función de la temperatura, establecer la cinética y determinar los parámetros cinéticos de la degradación térmica, calcular el calor de combustión, obtener espectros infrarrojo de referencia, determinar los principales componentes y la fracción de estos, obtener el porcentaje de cristalinidad de muestras de cera de potes de alimento, celdas de cría e involucro para las especies: Melipona favosa favosa, Melipona fuscipes, Melipona compressipes, Trigona (Frieseomelitta) nigra paupera, Trigona (Tetragosnisca) angustula, Bombus (Fervidobombus) atratus y Nanotrigona sp., también, se analizó la cera de Apis mellifera (africanizada) y se tomó como muestra de referencia, ya que, de esta se encuentra información en la literatura. Las diferencias significativas en cada análisis se determinaron por aplicación de análisis de varianza ANOVA a un nivel de significancia de 0,05 y las similitudes se corroboraron con Análisis de Componentes Principales y Análisis Clúster. Se encontraron diferencias significativas en todos los análisis entre las muestras que pertenecen a diferentes tribus, aunque las más notorias entre las muestras de Bombus atratus con la de Apis mellifera (africanizada) y entre estas con las muestras pertenecientes a la tribu Meliponini. Con los análisis no se establece un patrón ordenado en las muestras que pertenecen a una misma especie o género si no que, estas se alternan en diferente orden dependiendo del análisis realizado. Los valores de temperatura de fusión, calor de fusión, calor de combustión y parámetros de Arrhenius son mayores en la muestra de Apis mellifera (africanizada) y menor en las muestras de Bombus atratus y las demás muestras tienen valores intermedios entre estas dos especies sin presentar diferencias marcadas entre ellas. La cinética del proceso de pirólisis es de primer orden y se rige por la ecuación de Arrhenius presentando un incremento en la energía de activación de 38,38 kJ/mol desde la cera de Bombus atratus hasta la de Apis mellifera (africanizada). | es_CO |
dc.description.abstract | The characterization of waxes belonging to seven native species of Colombian bees was determined, using thermogravimetric analysis (TGA) simultaneous with differential scanning calorimetry (DSC), combustion calorimetry, infrared spectroscopy with Fourier transform (FT-IR), gas chromatography coupled to mass spectrometry (GC-MS) and X-ray diffraction (XRD) to find melting temperatures and fusion heats in a cyclic heating process, cooling and overheating; to determine the variation of mass according to the temperature, to establish the kinetics and to determine the kinetic parameters of the thermal degradation, to calculate the combustion heat, to obtain reference infrared spectra, to determine the main components and their fraction, to obtain the percentage of crystallinity of waxes used by bees to build food storage pots, brood cells and the involucrum. The wax was collected from the species: Melipona favosa favosa, Melipona fuscipes, Melipona compressipes, Trigona (Frieseomelitta) nigra paupera, Trigona (Tetragosnisca) angustula, Bombus (Fervidobombus) atratus and Nanotrigona sp. In addition the wax of Apis mellifera (Africanized) was analyzed and it was taken as a reference sample, since more information is found in the literature. The significant differences in each analysis were determined by application of ANOVA variance analysis at a significance level of 0.05 and similarities were corroborated using major component analysis and cluster analysis. Significant differences were found in all analyses between the samples belonging to different tribes, highlighting the differences between the samples of Bombus atratus and that of Apis Africanized, the analyses do not establish an ordered pattern in the samples belonging to the same species or genus but these alternate in different order depending on the analysis performed. The values of melting temperature, melting heat, combustion heat and Arrhenius parameters are higher in the sample of Apis Africanized and lower in the samples of Bombus atratus and the other samples tend to have intermediate values between these two species without presenting remarkable differences among them. The kinetic of the pyrolysis process is of first order and is governed by the equation of Arrhenius presenting an increase in the activation energy of 38.38 kJ/mol from the wax of Bombus atratus to the one of Apis mellifera (Africanized). | es_CO |
dc.format.extent | 148 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ciencias Básicas. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Caracterización de ceras de siete especies de Abejas nativas de Colombia, por aplicación de análisis multivariado al comportamiento térmico, cristalinidad y composición química. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_bdcc | es_CO |
dc.date.accepted | 2018-09-20 | - |
dc.relation.references | M. nacional de medio Ambiente, Mecanismos de Información de Páramos, 2013. http://www.paramo.org/files/recursos/politicabiodiversidad.pdf. | es_CO |
dc.relation.references | C. de noticias ONU, Ban aboga por un crecimiento más verde e inclusivo, (2015). http://www.un.org/spanish/News/story.asp?NewsID=31483#.WQfxrYWcHSF. | es_CO |
dc.relation.references | G. Nates-Parra, V.H. Gonzalez, Las Abejas Silvestres De Colombia: Por Qué Y Cómo Conservarlas, Acta Biológica Colomb. 5 (2000) 33. http://www.revistas.unal.edu.co/index.php/actabiol/article/view/26678. | es_CO |
dc.relation.references | M.D. Ordóñez, El TLC con Corea, (2015). http://www.semana.com/opinion/articulo/miguel-duran-ordonez-el-tlc-con-corea/414893-3. | es_CO |
dc.relation.references | C.D. Michener, A generic review of Dufoureinae of the Western Hemisphere(Hymenoptera:Halictidae), Entomol. Soc. Am. 58 (1965) 321–326. doi:https://doi.org/10.1093/aesa/58.3.321. | es_CO |
dc.relation.references | C.D. MICHENER, L. GREENBERG, Ctenoplectridae and the origin of long-tongued bees*, Zool. J. Linn. Soc. 69 (1980) 183–203. doi:10.1111/j.1096-3642.1980.tb01122.x. | es_CO |
dc.relation.references | M.L. Winston, Ecology and Natural History of Tropical Bees. David W. Roubik. Cambridge University Press, New York, 1989. x, 514 pp., illus. $69.50. Cambridge Tropical Biology Series., Science. 248 (1990) 1026–1027. doi:10.1126/science.248.4958.1026. | es_CO |
dc.relation.references | F. Koch, Hanson, P. E. & Gauld, I. D. (1995): The Hymenoptera of Costa Rica. - Oxford University Press. 893 pages. Price: UM 380.-. ISBN 0-19-854905-9, Dtsch. Entomol. Zeitschrift. 44 (2008) 136–136. doi:10.1002/mmnd.19970440203. | es_CO |
dc.relation.references | G. Nates-Parra, Abejas corbiculadas de Colombia. Hymenoptera: Apidae, Bogotá, 2007. | es_CO |
dc.relation.references | H. Hepburn R., R. Bernard T.F., B. Davidson C., W. Muller J., P. Lloyd, S. Kurstjens P., S. Vincent L., Synthesis and secretion of beeswax in honeybees, Apidologie. 22 (1991) 21–36. http://dx.doi.org/10.1051/apido:19910104. | es_CO |
dc.relation.references | D.W. Roubik, Stingless bee nesting biology, Apidologie. 37 (2006) 124–143. doi:10.1051/apido. | es_CO |
dc.relation.references | J. javier G., Q. Éuan, Biología y uso de las abejas sin aguijón de la península de Yucatán, México (Hymenoptera: Meliponini), 2005. | es_CO |
dc.relation.references | B. Fröhlich, J. Tautz, M. Riederer, Chemometric Classification of Comb and Cuticular Waxes of the Honeybee Apis Mellifera Carnica, J. Chem. Ecol. 26 (2000) 123–137. doi:10.1023/A:1005493512305. | es_CO |
dc.relation.references | M. Maia, F.M. Nunes, Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis, Food Chem. 136 (2013) 961–968. doi:http://dx.doi.org/10.1016/j.foodchem.2012.09.003. | es_CO |
dc.relation.references | A. Brockmann, C. Groh, B. Fröhlich, Wax perception in honeybees: contact is not necessary, Naturwissenschaften. 90 (2003) 424–427. doi:10.1007/s00114-003-0442-3. | es_CO |
dc.relation.references | A. Asperger, W. Engewald, G. Fabian, Analytical characterization of natural 123 waxes employing pyrolysis–gas chromatography–mass spectrometry, J. Anal. Appl. Pyrolysis. 50 (1999) 103–115. doi:http://dx.doi.org/10.1016/S0165-2370(99)00031-5. | es_CO |
dc.relation.references | U. Knuutinen, A. Norrman, Wax Analysis in conservation objects by solubility studies, FTIR and DSC, (n.d.). http://www.ndt.net/article/wcndt00/papers/idn555/idn555.htm. | es_CO |
dc.relation.references | R. Buchwald, M.D. Breed, A.R. Greenberg, G. Otis, Interspecific variation in beeswax as a biological construction material, (2006) 3984–3989. doi:10.1242/jeb.02472. | es_CO |
dc.relation.references | A. Asperger, W. Engewald, G. Fabian, Thermally assisted hydrolysis and methylation – a simple and rapid online derivatization method for the gas chromatographic analysis of natural waxes, J. Anal. Appl. Pyrolysis. 61 (2001) 91–109. doi:10.1016/S0165-2370(01)00116-4. | es_CO |
dc.relation.references | A.M. Stearman, E. Stierlin, M.E. Sigman, D.W. Roubik, D. Dorrien, Stradivarius in the Jungle: Traditional Knowledge and the Use of ``Black Beeswax’’ Among the Yuqu{í} of the Bolivian Amazon, Hum. Ecol. 36 (2008) 149–159. doi:10.1007/s10745-007-9153-2. | es_CO |
dc.relation.references | M. Akaike, Data Recording Materials Made from Insect Wax: CERA RICA NODA, JAPAN CLOSE-UP. (2002). http://www.japanfs.org/en/takumi/takumi_id034096.html. | es_CO |
dc.relation.references | H. Soloway, Melting point tables of organic compounds, 2nd revised and supplemented edition, Microchem. J. 8 (1964) 210–211. doi:10.1016/0026-265X(64)90056-6. | es_CO |
dc.relation.references | A.P. Tulloch, The composition of beeswax and other waxes secreted by insects, Lipids. 5 (1969) 247–258. doi:10.1007/BF02532476. | es_CO |
dc.relation.references | G.E. Timbers, G.D. Robertson, T.A. Gochnauer, Thermal Properties of Beeswax and Beeswax-Paraffin Mixtures, J. Apic. Res. 16 (1977) 49–55. doi:10.1080/00218839.1977.11099860. | es_CO |
dc.relation.references | E.E. Southwick, Thermal conductivity of wax comb and its effect on heat balance in colonial honey bees (Apis mellifera L.), Experientia. 41 (1985) 1486–1487. doi:10.1007/BF01950051. | es_CO |
dc.relation.references | A.P. Tulloch, Beeswax: Structure of the esters and their component hydroxy acids and diols, Chem. Phys. Lipids. 6 (1971) 235–265. doi:10.1016/0009-3084(71)90063-6. | es_CO |
dc.relation.references | R. Aichholz, E. Lorbeer, Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography–chemical ionization mass spectrometry: I. High-temperature gas chromatography, J. Chromatogr. A. 855 (1999) 601–615. doi:10.1016/S0021-9673(99)00725-6. | es_CO |
dc.relation.references | R. Aichholz, E. Lorbeer, Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography-chemical ionization mass spectrometry, II: High-temperature gas chromatography-chemical ionization mass., J. Chromatogr. A. 883 (2000) 75–88. doi:10.1016/S0021-9673(00)00386-1. | es_CO |
dc.relation.references | S.P. Kurstjens, E. McClain, H.R. Hepburn, The proteins of beeswax, Naturwissenschaften. 77 (n.d.) 34–35. doi:10.1007/BF01131795. | es_CO |
dc.relation.references | J. Morgan, S. Townley, G. Kemble, R. Smith, Measurement of physical and 124 mechanical properties of beeswax, Mater. Sci. Technol. 18 (2002) 463–467. doi:10.1179/026708302225001714. | es_CO |
dc.relation.references | G.J. Blomquist, D.W. Roubik, S.L. Buchmann, Wax chemistry of two stingless bees of the Trigonisca group (Apididae: Meliponinae), Comp. Biochem. Physiol. Part B Comp. Biochem. 82 (1985) 137–142. doi:http://dx.doi.org/10.1016/0305-0491(85)90142-7. | es_CO |
dc.relation.references | B. V Milborrow, J.M. Kennedy, A. Dollin, Composition of Wax Made by the Australian Stingless Bee Trigona australis, Aust. J. Biol. Sci. 40 (1987) 15–26. http://www.publish.csiro.au/paper/BI9870015. | es_CO |
dc.relation.references | D. Koedam, H. Jungnickel, J. Tentschert, G.R. Jones, E.D. Morgan, Production of wax by virgin queens of the stingless bee Melipona bicolor (Apidae, Meliponinae), Insectes Soc. 49 (2002) 229–233. doi:10.1007/s00040-002-8306-y. | es_CO |
dc.relation.references | Y. Gaillard, A. Mija, A. Burr, E. Darque-Ceretti, E. Felder, N. Sbirrazzuoli, Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin, Thermochim. Acta. 521 (2011) 90–97. doi:http://dx.doi.org/10.1016/j.tca.2011.04.010. | es_CO |
dc.relation.references | E.Y.T. Mattos, Determinación de calores de combustión de seis especies de abejas nativas de Colombia, Universidad de pamplona, 2010. | es_CO |
dc.relation.references | F. Pinzón, A. Torres, W. Hoffmann, I. Lamprecht, Thermoanalytical and infrared spectroscopic investigations on wax samples of native Colombian bees living in different altitudes, Eng. Life Sci. 13 (2013) 520–527. doi:10.1002/elsc.201200103. | es_CO |
dc.relation.references | A. SKOOG Douglas, H. James, T.A. NIEMAN, Cromatografía de gases, in: McGraw-Hill (Ed.), Principios Análisis Instrum., 5th ed., Madrid España, 2001: pp. 779–784. | es_CO |
dc.relation.references | A. SKOOG Douglas, H. James, T.A. NIEMAN, Espectrometría de masas molecular, in: McGraw-Hill (Ed.), Principios Análisis Instrum., 5th ed., Madrid España, 2001: pp. 537–575. | es_CO |
dc.relation.references | F.G. Kitson, B.S. Larsen, C.N. McEwen, What Is GC/MS?, in: Gas Chromatogr. Mass Spectrom., Elsevier, 1996: pp. 3–23. doi:10.1016/B978-012483385-2/50002-6. | es_CO |
dc.relation.references | M. Moeder, Gas Chromatography-Mass Spectrometry, in: K. Dettmer-Wilde, W. Engewald (Eds.), Pract. Gas Chromatogr. A Compr. Ref., Springer Berlin Heidelberg, Berlin, Heidelberg, 2014: pp. 303–350. doi:10.1007/978-3-642-54640-2_9. | es_CO |
dc.relation.references | J. a Whitecavage, J.R. Stuff, Multidimensional GC Analysis of Complex Samples, (2005). http://www.gerstel.com/pdf/p-gc-an-2005-02.pdf. | es_CO |
dc.relation.references | A. SKOOG Douglas, H. James, T.A. NIEMAN, Espectrometría atómica de rayos X, in: McGraw-Hill (Ed.), Principios Análisis Instrum., 5th ed., Madrid España, 2001: pp. 291–318. | es_CO |
dc.relation.references | Y. Waseda, E. Matsubara, K. Shinoda, Diffraction from Polycrystalline Samples and Determination of Crystal Structure, in: X-Ray Diffr. Crystallogr. Introd. Examples Solved Probl., Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 107–167. doi:10.1007/978-3-642-16635-8_4. | es_CO |
dc.relation.references | Y. Waseda, E. Matsubara, K. Shinoda, Diffraction from Polycrystalline Samples and Determination of Crystal Structure, in: X-Ray Diffr. Crystallogr. Introd. Examples Solved Probl., Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 107–167. doi:10.1007/978-3-642-16635-8_4. | es_CO |
dc.relation.references | P. Starzewski, W. Zielenkiewicz, DSC-TG studies of coal structure modification by the inert gas helium, Thermochim. Acta. 160 (1990) 215–222. doi:10.1016/0040-6031(90)80261-V. | es_CO |
dc.relation.references | R. Buchwald, M.D. Breed, A.R. Greenberg, The thermal properties of beeswaxes: unexpected findings, J. Exp. Biol. 211 (2007) 121–127. http://jeb.biologists.org/content/211/1/121.abstract. | es_CO |
dc.relation.references | P. Larkin, P. Larkin, Chapter 1 – Introduction: Infrared and Raman Spectroscopy, in: Infrared Raman Spectrosc., 2011: pp. 1–5. doi:10.1016/B978-0-12-386984-5.10001-1. | es_CO |
dc.relation.references | X. Huang, J.-P. Cao, X.-Y. Zhao, J.-X. Wang, X. Fan, Y.-P. Zhao, X.-Y. Wei, Pyrolysis kinetics of soybean straw using thermogravimetric analysis, Fuel. 169 (2016) 93–98. doi:http://dx.doi.org/10.1016/j.fuel.2015.12.011. | es_CO |
dc.relation.references | M. Van de Velden, J. Baeyens, A. Brems, B. Janssens, R. Dewil, Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction, Renew. Energy. 35 (2010) 232–242. doi:http://dx.doi.org/10.1016/j.renene.2009.04.019. | es_CO |
dc.relation.references | S. Mallakpour, M. Taghavi, Molten tetrabutylammonium bromide as eco-friendly media for the synthesis of optically active and thermal stable polyamides under microwave irradiation, Polym. J. 40 (2008) 1049–1059. doi:10.1295/polymj.PJ2008056. | es_CO |
dc.relation.references | F. Haloua, B. Hay, E. Foulon, Uncertainty analysis of theoretical methods for adiabatic temperature rise determination in calorimetry, J. Therm. Anal. Calorim. 111 (2013) 985–994. doi:10.1007/s10973-012-2342-2. | es_CO |
dc.relation.references | D.R. Lide, CRC Handbook of Chemistry and Physics, 90th Edition, Taylor & Francis, 2009. https://books.google.com.co/books?id=OmkbNgAACAAJ. | es_CO |
dc.relation.references | J.R. Loften, J.G. Linn, J.K. Drackley, T.C. Jenkins, C.G. Soderholm, A.F. Kertz, Invited review: Palmitic and stearic acid metabolism in lactating dairy cows, J. Dairy Sci. 97 (2014) 4661–4674. doi:https://doi.org/10.3168/jds.2014-7919. | es_CO |
dc.relation.references | J.R. Loften, J.G. Linn, J.K. Drackley, T.C. Jenkins, C.G. Soderholm, A.F. Kertz, Invited review: Palmitic and stearic acid metabolism in lactating dairy cows, J. Dairy Sci. 97 (2014) 4661–4674. doi:https://doi.org/10.3168/jds.2014-7919. | es_CO |
dc.relation.references | I. Bonaduce, M.P. Colombini, Characterisation of beeswax in works of art by gas chromatography–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry procedures, J. Chromatogr. A. 1028 (2004) 297–306. doi:http://dx.doi.org/10.1016/j.chroma.2003.11.086. | es_CO |
dc.relation.references | A.A. Righi, G. Negri, A. Salatino, Comparative chemistry of propolis from eight brazilian localities, Evidence-Based Complement. Altern. Med. 2013 (2013). doi:10.1155/2013/267878. | es_CO |
dc.relation.references | K.-J.J. Kim, T.-J.J. Eom, Chemical characteristics of degraded beeswax in the waxed volume of the annals of King Sejong in the Joseon Dynasty, J. Cult. Herit. 16 (2015) 919–922. doi:10.1016/j.culher.2015.03.012. | es_CO |
dc.relation.references | C.-C. Lin, K.A. Prokop-Prigge, G. Preti, C.J. Potter, Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions., Elife. 4 (2015). doi:10.7554/eLife.08688. | es_CO |
dc.relation.references | J. Serra Bonvehi, F.J. Orantes Bermejo, Detection of adulterated commercial Spanish beeswax, Food Chem. 132 (2012) 642–648. 126 doi:10.1016/j.foodchem.2011.10.104. | es_CO |
dc.relation.references | M. Regert, S. Colinart, L. Degrand, O. Decavallas, Chemical Alteration and Use of Beeswax Through Time: Accelerated Ageing Tests and Analysis of Archaeological Samples from Various Environmental Contexts, Archaeometry. 43 (2001) 549–569. doi:10.1111/1475-4754.00036. | es_CO |
dc.relation.references | J.J. Jiménez, J.L. Bernal, S. Aumente, M.J. Del Nozal, M.T. Martín, J. Bernal, Quality assurance of commercial beeswax: Part I. Gas chromatography- electron impact ionization mass spectrometry of hydrocarbons and monoesters, J. Chromatogr. A. 1024 (2004) 147–154. doi:10.1016/j.chroma.2003.10.063. | es_CO |
dc.relation.references | J.J. Jiménez, J.L. Bernal, S. Aumente, L. Toribio, J. Bernal, Quality assurance of commercial beeswax: II. Gas chromatography-electron impact ionization mass spectrometry of alcohols and acids, J. Chromatogr. A. 1007 (2003) 101–116. doi:10.1016/S0021-9673(03)00962-2. | es_CO |
dc.relation.references | N. Abdel-Raouf, N.M. Al-Enazi, A.A. Al-Homaidan, I.B.M. Ibraheem, M.R. Al-Othman, A.A. Hatamleh, Antibacterial β-amyrin isolated from Laurencia microcladia, Arab. J. Chem. 8 (2015) 32–37. doi:10.1016/j.arabjc.2013.09.033. | es_CO |
dc.relation.references | B. V Milborrow, J.M. Kennedy, A. Dollin, Composition of Wax Made by the Australian Stingless Bee Trigona australis, Aust. J. Biol. Sci. 40 (1987) 15–26. doi:https://doi.org/10.1071/BI9870015. | es_CO |
dc.relation.references | A. Talevi, M.S. Cravero, E.A. Castro, L.E. Bruno-Blanch, Discovery of anticonvulsant activity of abietic acid through application of linear discriminant analysis, Bioorg. Med. Chem. Lett. 17 (2007) 1684–1690. doi:https://doi.org/10.1016/j.bmcl.2006.12.098. | es_CO |
dc.relation.references | M.A. González, D. Pérez-Guaita, J. Correa-Royero, B. Zapata, L. Agudelo, A. Mesa-Arango, L. Betancur-Galvis, Synthesis and biological evaluation of dehydroabietic acid derivatives, Eur. J. Med. Chem. 45 (2010) 811–816. doi:https://doi.org/10.1016/j.ejmech.2009.10.010. | es_CO |
dc.relation.references | J. Kim, Y.-G. Kang, J. Lee, D. Choi, Y. Cho, J.-M. Shin, J.S. Park, J.H. Lee, W.G. Kim, D.B. Seo, T.R. Lee, Y. Miyamoto, K.T. No, The natural phytochemical dehydroabietic acid is an anti-aging reagent that mediates the direct activation of SIRT1, Mol. Cell. Endocrinol. 412 (2015) 216–225. doi:https://doi.org/10.1016/j.mce.2015.05.006. | es_CO |
dc.relation.references | J.L. Ríos, M.C. Recio, S. Maáñez, R.M. Giner, Natural Triterpenoids as Anti-Inflammatory Agents, in: Stud. Nat. Prod. Chem., 2000: pp. 93–143. doi:10.1016/S1572-5995(00)80024-1. | es_CO |
dc.relation.references | D. López, L. Cherigo, C. Spadafora, M.A. Loza-Mejía, S. Martínez-Luis, Phytochemical composition, antiparasitic and $α$--glucosidase inhibition activities from Pelliciera rhizophorae, Chem. Cent. J. 9 (2015) 53. doi:10.1186/s13065-015-0130-3. | es_CO |
dc.relation.references | N. Bailón-Moscoso, J.C. Romero-Benavides, M. Sordo, J. Villacís, R. Silva, L. Celi, M. Martínez-Vázquez, P. Ostrosky-Wegman, Phytochemical study and evaluation of cytotoxic and genotoxic properties of extracts from Clusia latipes leaves, Rev. Bras. Farmacogn. 26 (2016) 44–49. doi:https://doi.org/10.1016/j.bjp.2015.08.014. | es_CO |
dc.relation.references | L. WU, Z.-L. CHEN, Y. SU, Q.-H. WANG, H.-X. KUANG, Cycloartenol triterpenoid saponins from Cimicifuga simplex (Ranunculaceae) and their 127 biological effects, Chin. J. Nat. Med. 13 (2015) 81–89. doi:https://doi.org/10.1016/S1875-5364(15)60011-5. | es_CO |
dc.relation.references | A. Peramo, S. Mura, S.O. Yesylevskyy, B. Cardey, D. Sobot, S. Denis, C. Ramseyer, D. Desmaële, P. Couvreur, Squalene versus cholesterol: Which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine?, Comptes Rendus Chim. (2018). doi:https://doi.org/10.1016/j.crci.2018.02.008. | es_CO |
dc.relation.references | S. Ishiai, H. Kondo, T. Hattori, M. Mikami, Y. Aoki, S. Enoki, S. Suzuki, Hordenine is responsible for plant defense response through jasmonate-dependent defense pathway, Physiol. Mol. Plant Pathol. 96 (2016) 94–100. doi:https://doi.org/10.1016/j.pmpp.2016.10.003. | es_CO |
dc.relation.references | C.L. Cantrell, S.G. Franzblau, N.H. Fischer, Antimycobacterial plant terpenoids., Planta Med. 67 (2001) 685–694. doi:10.1055/s-2001-18365. | es_CO |
dc.relation.references | D.L. Lucetti, E.C.P. Lucetti, M.A.M. Bandeira, H.N.H. Veras, A.H. Silva, L.K.A.M. Leal, A.A. Lopes, V.C.C. Alves, G.S. Silva, G.A. Brito, G.B. Viana, Anti-inflammatory effects and possible mechanism of action of lupeol acetate isolated from Himatanthus drasticus (Mart.) Plumel, J. Inflamm. (Lond). 7 (2010) 60. doi:10.1186/1476-9255-7-60. | es_CO |
dc.relation.references | P.K. Chaturvedi, K. Bhui, Y. Shukla, Lupeol: Connotations for chemoprevention, Cancer Lett. 263 (2008) 1–13. doi:https://doi.org/10.1016/j.canlet.2008.01.047. | es_CO |
dc.relation.references | W. Kaialy, U. Khan, S. Mawlud, Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol, Int. J. Pharm. 510 (2016) 73–85. doi:10.1016/j.ijpharm.2016.05.052. | es_CO |
dc.relation.references | Y. Sun, D. Zhou, F. Shahidi, Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters, Food Chem. 245 (2018) 1262–1268. doi:https://doi.org/10.1016/j.foodchem.2017.11.051. | es_CO |
dc.relation.references | D.-Y. Zhou, Y.-X. Sun, F. Shahidi, Preparation and antioxidant activity of tyrosol and hydroxytyrosol esters, J. Funct. Foods. 37 (2017) 66–73. doi:https://doi.org/10.1016/j.jff.2017.06.042. | es_CO |
dc.relation.references | J. Cremer, V. Vatou, I. Braveny, 2,4-(hydroxyphenyl)-ethanol, an antioxidative agent produced by Candida spp., impairs neutrophilic yeast killing in vitro., FEMS Microbiol. Lett. 170 (1999) 319–325. | es_CO |
dc.relation.references | P. Dewapriya, S.W.A. Himaya, Y.-X. Li, S.-K. Kim, Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson’s disease, Food Chem. 141 (2013) 1147–1157. doi:https://doi.org/10.1016/j.foodchem.2013.04.004. | es_CO |
dc.relation.references | L. Svečnjak, G. Baranović, M. Vinceković, S. Prđun, D. Bubalo, I.T. Gajger, N approach for routine analytical detection of beeswax adulteration using ftir-atr spectroscopy, J. Apic. Sci. 59 (2015) 37–49. doi:10.1515/JAS-2015-0018. | es_CO |
dc.relation.references | A.P. Tulloch, Beeswax—Composition and Analysis, Bee World. 61 (1980) 47–62. doi:10.1080/0005772X.1980.11097776. | es_CO |
dc.relation.references | Y. Gaillard, M. Girard, G. Monge, A. Burr, E.D. Ceretti, E. Felder, Superplastic behavior of rosin/beeswax blends at room temperature, J. Appl. Polym. Sci. 128 (2013) 2713–2719. doi:10.1002/app.38333. | es_CO |
dc.relation.references | Y.-F. Huang, P.-T. Chiueh, W.-H. Kuan, S.-L. Lo, Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics, Energy. 128 100 (2016) 137–144. doi:http://dx.doi.org/10.1016/j.energy.2016.01.088. | es_CO |
dc.relation.references | K.H. Lee, S.C. Oh, Kinetics of the thermal degradation of wax materials obtained from pyrolysis of mixed waste plastics, Korean J. Chem. Eng. 27 (2010) 139–143. doi:10.1007/s11814-009-0305-5. | es_CO |
dc.relation.references | A.A. Attama, C.C. M??ller-Goymann, Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity, Colloids Surfaces A Physicochem. Eng. Asp. 315 (2008) 189–195. doi:10.1016/j.colsurfa.2007.07.035. | es_CO |
dc.relation.references | S. Martini, C.Y. Tan, S. Jana, Physical Characterization of Wax/Oil Crystalline Networks, J. Food Sci. 80 (2015) C989–C997. doi:10.1111/1750-3841.12853. | es_CO |
dc.relation.references | M. Mellema, Co-crystals of Beeswax and Various Vegetable Waxes with Sterols Studied by X-ray Diffraction and Differential Scanning Calorimetry, J. Am. Oil Chem. Soc. 86 (2009) 499–505. doi:10.1007/s11746-009-1385-4. | es_CO |
dc.relation.references | B. Flaherty, Characterisation of waxes by differential scanning calorimetry, J. Appl. Chem. Biotechnol. 21 (1971) 144–148. doi:10.1002/jctb.5020210507. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Maestría en Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Pinzon_2018_TG.pdf | Pinzon_2018_TG | 5,18 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.