Please use this identifier to cite or link to this item:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2310
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gomez Jaramillo, Wilfred Andres. | - |
dc.date.accessioned | 2022-06-23T23:51:33Z | - |
dc.date.available | 2017-03-13 | - |
dc.date.available | 2022-06-23T23:51:33Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Gomez Jaramillo, W. A. (2016). Equilibrio de fases en mezclas asimétricas de interés para la industria de Petróleo a partir de ecuaciones de estado incluyendo efectos asociativos [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2310 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2310 | - |
dc.description | La Ingeniería del Equilibrio de Fases comprende la utilización del conocimiento termodinámico del comportamiento de fases en distintos tipos de mezclas, y su cuantificación por medio de modelos matemáticos, para contribuir al desarrollo de procesos, ya sean estos químicos (con reacción), de separación, extracción, etc. En especial, la aplicación de la termodinámica asume un rol fundamental en el desarrollo de procesos donde están presentes los fluidos supercríticos debido a los múltiples y grado de complejidad de los tipos de comportamiento de fases que se observan en las mezclas con fluidos supercríticos a altas presiones, los que según el caso pueden resultar provechosos o limitantes para un problema tecnológico dado. En este contexto resulta fundamental para la explotación de hidrocarburos contar con herramientas de cálculo que permitan distinguir en las regiones en una fase en función de presión y temperatura, de inmiscibilidad y de miscibilidad de acuerdo a una ecuación de estado (EoS) para obtener una descripción cuantitativa de las composiciones de las fases en equilibrio en amplios rangos de condiciones. Por lo tanto, en el presente trabajo se desarrolló un algoritmo capaz de predecir el equilibrio de fases en mezclas asimétricas de interés para la industria del petróleo a partir de ecuaciones de estado incluyendo efectos asociativos, donde se emplearon las ecuaciones de estado Pen-Robinson y RKPR para las mezclas asimétricas de CO2 + ( fenantreno, antraceno, pireno, criseno, trifenileno , n-tetracosano, noctacosano, n-dotricontano) y analizó la importancia que de un tercer parámetro en la estructura de una ecuación de estado, como también la necesidad de implementar parámetros de interacción binaria. Se obtuvieron desviaciones en fracción molar de precipitación de los sólidos diferentes a CO2, para la serie CO2 + fenantreno, antraceno, pireno entre el 5% y 19% y para CO2 + criseno, trifenileno entre el 2% y 9%. La serie de CO2 + ntetracosano, n-octacosano, n-dotricontano arrojo desviaciones entre el 5% y 7 % en fracción molar del precipitado, en general para los dos modelos de ecuaciones de estados implementados en este trabajo. | es_CO |
dc.description.abstract | Phase Equilibrium Engineering involves the use of thermodynamic knowledge of phase behavior in different types of mixtures, and its quantification through mathematical models, to contribute to the development of processes, whether these chemical (with reaction), separation, Extraction, etc. In particular, the application of thermodynamics assumes a fundamental role in the development of processes where the supercritical fluids are present due to the multiple and the degree of complexity of the types of phase behavior that are observed in the mixtures with supercritical fluids at high pressures, Which depending on the case may prove beneficial or limiting for a given technological problem. In this context, it is essential for the hydrocarbon exploitation to have calculation tools that allow to distinguish in the regions in a phase as a function of pressure and temperature, immiscibility and miscibility according to a state equation (EoS) to obtain the description Quantitative composition of equilibrium phases over wide ranges of conditions. Therefore, an algorithm capable of predicting phase equilibria in asymmetric mixtures of interest to the petroleum industry was developed from state equations including associative effects, where the Pen-Robinson equations of state were used. RKPR for asymmetric CO2 + mixtures (phenanthrene, anthracene, pyrene, chrysene, triphenylene, n-tetracosan, n-octacosane, n-dotricontane) and analyzed the importance of a third parameter in the structure of an state of equation as well as the need To implement binary interaction parameters. Deviations were obtained in the molar fraction of precipitation of the solids other than CO2, for the CO 2 + phenanthrene, anthracene, pyrene series between 5% and 19% and for CO2 + chrysene, triphenylene between 2% and 9%. The series of CO 2 + ntetracosan, n-octacosane, n-dotricontane yielded deviations between 5% and 7% in molar fraction of the precipitate, in general for the two models of state equations implemented in this work. | es_CO |
dc.format.extent | 62 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Equilibrio de fases en mezclas asimétricas de interés para la industria de Petróleo a partir de ecuaciones de estado incluyendo efectos asociativos. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2016-12-13 | - |
dc.relation.references | Hunt B., Muir D., Sommer M.;The Potential Macroeconomic Impact of the Unconventional Oil and Gas Boom in the United States;” Working Paper 15/92, International Monetary Fund, Washington, DC. 2015. | es_CO |
dc.relation.references | Barclays; Oil Rally in Perspective; Asset Allocation Research; 2015. | es_CO |
dc.relation.references | Zirrahi M., Hassanzadeh H., Abedi J., Moshfeghian M.; Prediction of Solubility of CH4, C2H6, CO2, N2 And CO in Bitumen; J. Chem. Eng. vol 92, 563−57, 2014 | es_CO |
dc.relation.references | Li X., Yang D., Fan Z.; Phase behavior and viscosity reduction of CO2 -heavy oil at high pressure and elevated temperatures, SPE-170057-MS, in: SPE Heavy Oil Conference; Calgary, AB, 10–12 June, 2014. | es_CO |
dc.relation.references | Freitag N. P., Kristoff B.J.; Comparison of carbon dioxide and methane as additives at steamflood conditions; SPE J. 14–18. 1998. | es_CO |
dc.relation.references | Kokal S. L., Sayegh S G.; Phase behavior and physical properties of CO2 – saturated heavy oil and its constitutive fractions: experimental data and correlations; J. Petroleum Science and Engineering, vol. 9 289–302, 1993. | es_CO |
dc.relation.references | Mullins O. C., Sheu E. Y., Hammami A., Marshall A. G.; Asphaltenes, Heavy Oils and Petroleomics; Springer, 2007. | es_CO |
dc.relation.references | Cismondi M. , Mollerup J., Brignole E. A., Zabaloy M. S.; Modeling the highpressure phase equilibria of carbon dioxide-triglyceride systems: A parameterization strategy; Fluid Phase Equilibria, vol. 281, 1,. 40–48, Jul. 2009. | es_CO |
dc.relation.references | Hegel P. E., Mabe G. D. B., Pereda S., Zabaloy M. S, Brignole E. A.; Phase equilibrium engineering of the extraction of oils from seeds using carbon dioxide + propane solvents mixtures; J. of Supercritical Fluids, vol. 37, 3,. 316–322, May 2006. | es_CO |
dc.relation.references | Cismondi M., Rodriguez-Reartes S. B., Milanesio J. M., Zabaloy M. S.; Phase Equilibria of CO2 + n-Alkane Binary Systems in Wide Ranges of Conditions: Development of Predictive Correlations Based on Cubic Mixing Rules; Ind. Eng. Chem. Res., vol. 51, 6232−6250, 2012. | es_CO |
dc.relation.references | Jindrova T., Mikyska J., Firoozabadi A.; Phase Behavior Modeling of Bitumen and Light Normal Alkanes and CO2 by PR-EoS and CPA-EoS; Energy Fuels, vol.30, 1, 515–525, 2016. | es_CO |
dc.relation.references | Arya A.,Liang, N. S., Georgios M. K.; Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State; Energy & Fuels, vol. 30, 8, 6835-6852, 2016. | es_CO |
dc.relation.references | Cismondi M., Mollerup J.; Development and application of a threeparameterRK–PR equation of state; Fluid Phase Equilibria, vol. 232, 1–2, 74–89, May 2005. | es_CO |
dc.relation.references | Cismondi M., Galdo M. V., Gomez M. J., Tassin N. G., Yanes M.; High pressure phase behavior modeling of asymmetric alkane + alkane binary systems with the RKPR EoS; Fluid Phase Equilibria, vol. 362, 125– 135, 2014 | es_CO |
dc.relation.references | Cismondi D. M., Cruz D. J., Gomez M., Montoya G.;.Modelling the phase behavior of alkane mixtures in wide ranges of conditions: New parameterization and predictive correlations of binary interactions for the RKPR EoS. Fluid Phase Equilib., vol 403, 49-59. 2015. | es_CO |
dc.relation.references | Pedersen K. S.; Christensen P. L; Shaikh. J. A.; Phase Behavior of Petroleum Reservoir Fluids; CRC Press, Nov 1, 2006. | es_CO |
dc.relation.references | Valderrama J. O; Zavaleta Jack; Thermodynamic consistency test for high pressure gas–solid solubility data of binary mixtures using genetic algorithms; J. of Supercritical Fluids, vol. 39, 20–29, 2006. | es_CO |
dc.relation.references | Valderrama J. O.; Gonzalez N. A.; Alvarez V. H.; Gas-Solid Equilibrium in Mixtures Containing Supercritical CO2 Using a Modified Regular Solution Model; Ind. Eng. Chem. Res., Vol. 42, 3857-3864, 2003. | es_CO |
dc.relation.references | Nasri L.; Bensaad S.; Bensetiti. Z..; Correlation and Prediction of the Solubility of Solid Solutes in Chemically Diverse Supercritical Fluids Based on the Expanded Liquid Theory; Advances in Chemical Engineering and Science, vol. 3, 255-273, 2013. | es_CO |
dc.relation.references | Škerget M, Novak-Pintariç Z., Knez Z., Kravanja Z.; Estimation of solid solubilities in supercritical carbon dioxide: Peng–Robinson adjustable binary parameters in the near critical region; Fluid Phase Equilibria, vol. 203, 111–132, 2002. | es_CO |
dc.relation.references | Rodriguez-Reartes S. B.; Cismondi M., Zabaloy M. S.; Modeling Approach for the High Pressure Solid-Fluid Equilibrium of Asymmetric Systems; Ind. Eng. Chem. Res., Vol. 50, 3049–3059, 2011. | es_CO |
dc.relation.references | Kontogeorgis G. M., Folas G. K.; Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories; Wiley, 2010. | es_CO |
dc.relation.references | Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G; Molecular Thermodynamics of Fluid-Phase Equilibria; Prentice-Hall, 1999. | es_CO |
dc.relation.references | Cismondi M; Ingeniería del equilibrio entre fases: Diagramas globales y modelado de mezclas asimétricas con CO2; Tesis Doctoral, Universidad del Sur, 2005. | es_CO |
dc.relation.references | Duque V., Fadrique J.; Van der Waals más que una ecuación cubica de estado; Educ Quim.; vol 26(3):187-194, 2015. | es_CO |
dc.relation.references | Waals van der; De continuiteit van den gasen Vloeistoftoestand; 1873. | es_CO |
dc.relation.references | Michelsen M.L., Mollerup J.; Thermodynamic Models: Fundamentals & Computational Aspects; Tie-Line Publications, Second edition 2007. | es_CO |
dc.relation.references | Peng D. Y., Robinson D. B.; A new two-constant equation of state; Ind. Eng. Chem. Fundamentals, vol. 15, 59. 1976. | es_CO |
dc.relation.references | Zabaloy M. S.; Cubic Mixing Rules; Ind. Eng. Chem. Res., Vol. 47, 5063–5079. 2016. | es_CO |
dc.relation.references | Strausz O. P., Mojelsky T. W., Lown E. M.; The molecular structure of asphalthene: an unfolding story; FUEL, Vol 71, 1355. 1992. | es_CO |
dc.relation.references | Ashtari M, Carbognani Ortega L, Lopez-Linares F, Eldood A, Pereira-Almao P.; New Pathways for Asphaltenes Upgrading Using the Oxy-Cracking Process.; Energy and Fuels., vol. 30(6):4596-4608.2016. | es_CO |
dc.relation.references | Zendehboudi S, Shafiei A, Bahadori A, James L. A., Elkamel A, Lohi A.; Asphaltene precipitation and deposition in oil reservoirs - Technical aspects, experimental and hybrid neural network predictive tools; Chem Eng Res Des.,vol 92(5):857-875. 2014. | es_CO |
dc.relation.references | Rowley R.L., Wilding W.V., Oscarson J.L., Yang Y., Zundel N.A., Daubert T.E., Danner R.P.; DIPPR Data Compilation of Pure Compound Properties; Design Institutefor Physical Properties, AIChE, New York, 2003. | es_CO |
dc.relation.references | Nikolaidis IK, Boulougouris GC, Peristeras LD, Economou IG.; Equation-ofState Modeling of Solid-Liquid-Gas Equilibrium of CO2 Binary Mixtures; Ind Eng Chem Res.,vol 55 , 6213-6226, 2016. | es_CO |
dc.relation.references | Huang C-C, Tang M, Wei-Han T, Chen Y-P.; Calculation of the solid solubilities in supercritical carbon dioxid e using a modified mixing model; Fluid Phase Equil.; Vol 179(1-2): 67-84, 2001. | es_CO |
dc.relation.references | Coutsikos P, Magoulas K, Kontogeorgis GM.; Prediction of solid-gas equilibria with the Peng-Robinson equation of state; J Supercrit Fluids, vol. 25(3):197-212. . 2003. | es_CO |
dc.relation.references | Barna L, Blanchard J-M, Rauzy E, Berro C.; Solubility of Flouranthene, Chrysene, and Triphenylene in Supercritical Carbon Dioxide; J Chem Eng Data., vol. 41(6):1466-1469, 1996. | es_CO |
dc.relation.references | Lide D.R.; CRC Handbook of chemistry and physics; CRC PRESS, edition 84, 2003-2004. | es_CO |
dc.relation.references | Oja V, Suuberg EM.; Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives; J. Chem. Eng. Data, vol. (97):486-492. 1998. | es_CO |
dc.relation.references | Pouillot FLL, Chandler K, Eckert CA.; Sublimation Pressures of n -Alkanes from C 20 H 42 to C 35 H 72 in the Temperature Range 308-348 K; Ind. Eng. Chem. Res., vol (95):2408-2413.1996. | es_CO |
dc.relation.references | Bartle KD, Clifford AA, Jafar SA.; Measurement of solubility in supercritical fluids using chromatographic retention: the solubility of fluorene, phenanthrene , and pyrene in carbon dioxide; J Chem Eng Data., vol. 35(3):355-360. 1990. | es_CO |
dc.relation.references | Johnston KP, Zlger DH, Eckert’ CA.; Solubilities of Hydrocarbon Solids in Supercritical Fluids. The Augmented van der Waals Treatment Introduction Heavy nonvolatile organic solids dissolve in supercritical; Ind Eng Chem Fundam., vol. 21:191-197. 1982. | es_CO |
dc.relation.references | Anitescu G, Tavlarides LL.;Solubilities of solids in supercritical fluids-I. New quasistatic experimental method for polycyclic aromatic hydrocarbons (PAHs) + pure fluids.; J Supercrit Fluids, vol. 10:175-189, 1997. | es_CO |
dc.relation.references | Kosal E, Holder GD.; Solubility of anthracene and phenanthrene mixtures in supercritical carbon dioxide. J Chem Eng Data., vol. 32:148-150. 1987. | es_CO |
dc.relation.references | Yau JS, Tsai FN.; Solubilities of heavy n-paraffins in subcritical and supercritical carbon dioxide; J Chem Eng Data, vol. 38(2):171-174. 1993. | es_CO |
dc.relation.references | Miller DJ, Hawthorne SB, Clifford AA, Zhu S.; Solubility of Polycyclic Aromatic Hydrocarbons in Supercritical Carbon Dioxide from 313 K to 523 K and Pressures from 100 bar to 450 bar; J Chem Eng Data., vol.41(4):779-786. 1996. | es_CO |
dc.relation.references | Tsai F, Yau J.; Solubility of carbon dioxide in n-tetracosane and in ndotriacontane; J. Chem. Eng. Data, vol. 43-45. 1990. | es_CO |
dc.relation.references | Chandler K, Pouillot FLL, Eckert CA.; Phase Equilibria of Alkanes in Natural Gas Systems. 3. Alkanes in Carbon Dioxide; J. Chem. Eng. Data, vol;(2):6-10. 1996. | es_CO |
dc.relation.references | Furuya T, Teja AS.; The solubility of high molecular weight n -alkanes in supercritical carbon dioxide at pressures up to 50 MPa.; J. of Supercritical Fluids, vol. 29:231-236. 2004. | es_CO |
dc.relation.references | Simon D.; Evolutionary Optimization Algorithms; Wiley 2013, | es_CO |
dc.relation.references | Škerget M, Novak-Pintarič Z, Knez Ž, Kravanja Z.; Estimation of solid solubilities in supercritical carbon dioxide: Peng-Robinson adjustable binary parameters in the near critical region; Fluid Phase Equilib., vol. 203(1-2):111-132. 2002. | es_CO |
dc.relation.references | Spiliotis N.,Magoulas K., Tassios D.; Prediction of the solubility of aromatic hydrocarbons in supercritical CO2 with EoS/G E models; Fluid Phase Equilibria, vol. 102 , 121 – 141, 1994. | es_CO |
dc.relation.references | Nasri L, Bensetiti Z, Bensaad S.; Correlation of the solubility of some organic aromatic pollutants in supercritical carbon dioxide based on the UNIQUAC equation; Energy Procedia., vol. 18:1261-1270. 2012. | es_CO |
dc.relation.references | Li H, Li S, Shen B.; Correlation and prediction of the solubilities of solid nalkanes in supercritical carbon dioxide using the Carnahan–Starling–van der Waals model with a density-dependent parameter; Fluid Phase Equilib.,vol 325:28-34. 2012. | es_CO |
dc.relation.references | Jha SK, Madras G. ; Modeling the solubilities of high molecular weight nalkanes in supercritical carbon dioxide; Fluid Phase Equilibria, vol. 22, 59–62, 2004. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Appears in Collections: | Ingeniería Química |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gomez_2016_TG.pdf | Gomez_2016_TG | 1,55 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.