• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2310
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGomez Jaramillo, Wilfred Andres.-
    dc.date.accessioned2022-06-23T23:51:33Z-
    dc.date.available2017-03-13-
    dc.date.available2022-06-23T23:51:33Z-
    dc.date.issued2017-
    dc.identifier.citationGomez Jaramillo, W. A. (2016). Equilibrio de fases en mezclas asimétricas de interés para la industria de Petróleo a partir de ecuaciones de estado incluyendo efectos asociativos [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2310es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2310-
    dc.descriptionLa Ingeniería del Equilibrio de Fases comprende la utilización del conocimiento termodinámico del comportamiento de fases en distintos tipos de mezclas, y su cuantificación por medio de modelos matemáticos, para contribuir al desarrollo de procesos, ya sean estos químicos (con reacción), de separación, extracción, etc. En especial, la aplicación de la termodinámica asume un rol fundamental en el desarrollo de procesos donde están presentes los fluidos supercríticos debido a los múltiples y grado de complejidad de los tipos de comportamiento de fases que se observan en las mezclas con fluidos supercríticos a altas presiones, los que según el caso pueden resultar provechosos o limitantes para un problema tecnológico dado. En este contexto resulta fundamental para la explotación de hidrocarburos contar con herramientas de cálculo que permitan distinguir en las regiones en una fase en función de presión y temperatura, de inmiscibilidad y de miscibilidad de acuerdo a una ecuación de estado (EoS) para obtener una descripción cuantitativa de las composiciones de las fases en equilibrio en amplios rangos de condiciones. Por lo tanto, en el presente trabajo se desarrolló un algoritmo capaz de predecir el equilibrio de fases en mezclas asimétricas de interés para la industria del petróleo a partir de ecuaciones de estado incluyendo efectos asociativos, donde se emplearon las ecuaciones de estado Pen-Robinson y RKPR para las mezclas asimétricas de CO2 + ( fenantreno, antraceno, pireno, criseno, trifenileno , n-tetracosano, noctacosano, n-dotricontano) y analizó la importancia que de un tercer parámetro en la estructura de una ecuación de estado, como también la necesidad de implementar parámetros de interacción binaria. Se obtuvieron desviaciones en fracción molar de precipitación de los sólidos diferentes a CO2, para la serie CO2 + fenantreno, antraceno, pireno entre el 5% y 19% y para CO2 + criseno, trifenileno entre el 2% y 9%. La serie de CO2 + ntetracosano, n-octacosano, n-dotricontano arrojo desviaciones entre el 5% y 7 % en fracción molar del precipitado, en general para los dos modelos de ecuaciones de estados implementados en este trabajo.es_CO
    dc.description.abstractPhase Equilibrium Engineering involves the use of thermodynamic knowledge of phase behavior in different types of mixtures, and its quantification through mathematical models, to contribute to the development of processes, whether these chemical (with reaction), separation, Extraction, etc. In particular, the application of thermodynamics assumes a fundamental role in the development of processes where the supercritical fluids are present due to the multiple and the degree of complexity of the types of phase behavior that are observed in the mixtures with supercritical fluids at high pressures, Which depending on the case may prove beneficial or limiting for a given technological problem. In this context, it is essential for the hydrocarbon exploitation to have calculation tools that allow to distinguish in the regions in a phase as a function of pressure and temperature, immiscibility and miscibility according to a state equation (EoS) to obtain the description Quantitative composition of equilibrium phases over wide ranges of conditions. Therefore, an algorithm capable of predicting phase equilibria in asymmetric mixtures of interest to the petroleum industry was developed from state equations including associative effects, where the Pen-Robinson equations of state were used. RKPR for asymmetric CO2 + mixtures (phenanthrene, anthracene, pyrene, chrysene, triphenylene, n-tetracosan, n-octacosane, n-dotricontane) and analyzed the importance of a third parameter in the structure of an state of equation as well as the need To implement binary interaction parameters. Deviations were obtained in the molar fraction of precipitation of the solids other than CO2, for the CO 2 + phenanthrene, anthracene, pyrene series between 5% and 19% and for CO2 + chrysene, triphenylene between 2% and 9%. The series of CO 2 + ntetracosan, n-octacosane, n-dotricontane yielded deviations between 5% and 7% in molar fraction of the precipitate, in general for the two models of state equations implemented in this work.es_CO
    dc.format.extent62es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleEquilibrio de fases en mezclas asimétricas de interés para la industria de Petróleo a partir de ecuaciones de estado incluyendo efectos asociativos.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2016-12-13-
    dc.relation.referencesHunt B., Muir D., Sommer M.;The Potential Macroeconomic Impact of the Unconventional Oil and Gas Boom in the United States;” Working Paper 15/92, International Monetary Fund, Washington, DC. 2015.es_CO
    dc.relation.referencesBarclays; Oil Rally in Perspective; Asset Allocation Research; 2015.es_CO
    dc.relation.referencesZirrahi M., Hassanzadeh H., Abedi J., Moshfeghian M.; Prediction of Solubility of CH4, C2H6, CO2, N2 And CO in Bitumen; J. Chem. Eng. vol 92, 563−57, 2014es_CO
    dc.relation.referencesLi X., Yang D., Fan Z.; Phase behavior and viscosity reduction of CO2 -heavy oil at high pressure and elevated temperatures, SPE-170057-MS, in: SPE Heavy Oil Conference; Calgary, AB, 10–12 June, 2014.es_CO
    dc.relation.referencesFreitag N. P., Kristoff B.J.; Comparison of carbon dioxide and methane as additives at steamflood conditions; SPE J. 14–18. 1998.es_CO
    dc.relation.referencesKokal S. L., Sayegh S G.; Phase behavior and physical properties of CO2 – saturated heavy oil and its constitutive fractions: experimental data and correlations; J. Petroleum Science and Engineering, vol. 9 289–302, 1993.es_CO
    dc.relation.referencesMullins O. C., Sheu E. Y., Hammami A., Marshall A. G.; Asphaltenes, Heavy Oils and Petroleomics; Springer, 2007.es_CO
    dc.relation.referencesCismondi M. , Mollerup J., Brignole E. A., Zabaloy M. S.; Modeling the highpressure phase equilibria of carbon dioxide-triglyceride systems: A parameterization strategy; Fluid Phase Equilibria, vol. 281, 1,. 40–48, Jul. 2009.es_CO
    dc.relation.referencesHegel P. E., Mabe G. D. B., Pereda S., Zabaloy M. S, Brignole E. A.; Phase equilibrium engineering of the extraction of oils from seeds using carbon dioxide + propane solvents mixtures; J. of Supercritical Fluids, vol. 37, 3,. 316–322, May 2006.es_CO
    dc.relation.referencesCismondi M., Rodriguez-Reartes S. B., Milanesio J. M., Zabaloy M. S.; Phase Equilibria of CO2 + n-Alkane Binary Systems in Wide Ranges of Conditions: Development of Predictive Correlations Based on Cubic Mixing Rules; Ind. Eng. Chem. Res., vol. 51, 6232−6250, 2012.es_CO
    dc.relation.referencesJindrova T., Mikyska J., Firoozabadi A.; Phase Behavior Modeling of Bitumen and Light Normal Alkanes and CO2 by PR-EoS and CPA-EoS; Energy Fuels, vol.30, 1, 515–525, 2016.es_CO
    dc.relation.referencesArya A.,Liang, N. S., Georgios M. K.; Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State; Energy & Fuels, vol. 30, 8, 6835-6852, 2016.es_CO
    dc.relation.referencesCismondi M., Mollerup J.; Development and application of a threeparameterRK–PR equation of state; Fluid Phase Equilibria, vol. 232, 1–2, 74–89, May 2005.es_CO
    dc.relation.referencesCismondi M., Galdo M. V., Gomez M. J., Tassin N. G., Yanes M.; High pressure phase behavior modeling of asymmetric alkane + alkane binary systems with the RKPR EoS; Fluid Phase Equilibria, vol. 362, 125– 135, 2014es_CO
    dc.relation.referencesCismondi D. M., Cruz D. J., Gomez M., Montoya G.;.Modelling the phase behavior of alkane mixtures in wide ranges of conditions: New parameterization and predictive correlations of binary interactions for the RKPR EoS. Fluid Phase Equilib., vol 403, 49-59. 2015.es_CO
    dc.relation.referencesPedersen K. S.; Christensen P. L; Shaikh. J. A.; Phase Behavior of Petroleum Reservoir Fluids; CRC Press, Nov 1, 2006.es_CO
    dc.relation.referencesValderrama J. O; Zavaleta Jack; Thermodynamic consistency test for high pressure gas–solid solubility data of binary mixtures using genetic algorithms; J. of Supercritical Fluids, vol. 39, 20–29, 2006.es_CO
    dc.relation.referencesValderrama J. O.; Gonzalez N. A.; Alvarez V. H.; Gas-Solid Equilibrium in Mixtures Containing Supercritical CO2 Using a Modified Regular Solution Model; Ind. Eng. Chem. Res., Vol. 42, 3857-3864, 2003.es_CO
    dc.relation.referencesNasri L.; Bensaad S.; Bensetiti. Z..; Correlation and Prediction of the Solubility of Solid Solutes in Chemically Diverse Supercritical Fluids Based on the Expanded Liquid Theory; Advances in Chemical Engineering and Science, vol. 3, 255-273, 2013.es_CO
    dc.relation.referencesŠkerget M, Novak-Pintariç Z., Knez Z., Kravanja Z.; Estimation of solid solubilities in supercritical carbon dioxide: Peng–Robinson adjustable binary parameters in the near critical region; Fluid Phase Equilibria, vol. 203, 111–132, 2002.es_CO
    dc.relation.referencesRodriguez-Reartes S. B.; Cismondi M., Zabaloy M. S.; Modeling Approach for the High Pressure Solid-Fluid Equilibrium of Asymmetric Systems; Ind. Eng. Chem. Res., Vol. 50, 3049–3059, 2011.es_CO
    dc.relation.referencesKontogeorgis G. M., Folas G. K.; Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories; Wiley, 2010.es_CO
    dc.relation.referencesPrausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G; Molecular Thermodynamics of Fluid-Phase Equilibria; Prentice-Hall, 1999.es_CO
    dc.relation.referencesCismondi M; Ingeniería del equilibrio entre fases: Diagramas globales y modelado de mezclas asimétricas con CO2; Tesis Doctoral, Universidad del Sur, 2005.es_CO
    dc.relation.referencesDuque V., Fadrique J.; Van der Waals más que una ecuación cubica de estado; Educ Quim.; vol 26(3):187-194, 2015.es_CO
    dc.relation.referencesWaals van der; De continuiteit van den gasen Vloeistoftoestand; 1873.es_CO
    dc.relation.referencesMichelsen M.L., Mollerup J.; Thermodynamic Models: Fundamentals & Computational Aspects; Tie-Line Publications, Second edition 2007.es_CO
    dc.relation.referencesPeng D. Y., Robinson D. B.; A new two-constant equation of state; Ind. Eng. Chem. Fundamentals, vol. 15, 59. 1976.es_CO
    dc.relation.referencesZabaloy M. S.; Cubic Mixing Rules; Ind. Eng. Chem. Res., Vol. 47, 5063–5079. 2016.es_CO
    dc.relation.referencesStrausz O. P., Mojelsky T. W., Lown E. M.; The molecular structure of asphalthene: an unfolding story; FUEL, Vol 71, 1355. 1992.es_CO
    dc.relation.referencesAshtari M, Carbognani Ortega L, Lopez-Linares F, Eldood A, Pereira-Almao P.; New Pathways for Asphaltenes Upgrading Using the Oxy-Cracking Process.; Energy and Fuels., vol. 30(6):4596-4608.2016.es_CO
    dc.relation.referencesZendehboudi S, Shafiei A, Bahadori A, James L. A., Elkamel A, Lohi A.; Asphaltene precipitation and deposition in oil reservoirs - Technical aspects, experimental and hybrid neural network predictive tools; Chem Eng Res Des.,vol 92(5):857-875. 2014.es_CO
    dc.relation.referencesRowley R.L., Wilding W.V., Oscarson J.L., Yang Y., Zundel N.A., Daubert T.E., Danner R.P.; DIPPR Data Compilation of Pure Compound Properties; Design Institutefor Physical Properties, AIChE, New York, 2003.es_CO
    dc.relation.referencesNikolaidis IK, Boulougouris GC, Peristeras LD, Economou IG.; Equation-ofState Modeling of Solid-Liquid-Gas Equilibrium of CO2 Binary Mixtures; Ind Eng Chem Res.,vol 55 , 6213-6226, 2016.es_CO
    dc.relation.referencesHuang C-C, Tang M, Wei-Han T, Chen Y-P.; Calculation of the solid solubilities in supercritical carbon dioxid e using a modified mixing model; Fluid Phase Equil.; Vol 179(1-2): 67-84, 2001.es_CO
    dc.relation.referencesCoutsikos P, Magoulas K, Kontogeorgis GM.; Prediction of solid-gas equilibria with the Peng-Robinson equation of state; J Supercrit Fluids, vol. 25(3):197-212. . 2003.es_CO
    dc.relation.referencesBarna L, Blanchard J-M, Rauzy E, Berro C.; Solubility of Flouranthene, Chrysene, and Triphenylene in Supercritical Carbon Dioxide; J Chem Eng Data., vol. 41(6):1466-1469, 1996.es_CO
    dc.relation.referencesLide D.R.; CRC Handbook of chemistry and physics; CRC PRESS, edition 84, 2003-2004.es_CO
    dc.relation.referencesOja V, Suuberg EM.; Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives; J. Chem. Eng. Data, vol. (97):486-492. 1998.es_CO
    dc.relation.referencesPouillot FLL, Chandler K, Eckert CA.; Sublimation Pressures of n -Alkanes from C 20 H 42 to C 35 H 72 in the Temperature Range 308-348 K; Ind. Eng. Chem. Res., vol (95):2408-2413.1996.es_CO
    dc.relation.referencesBartle KD, Clifford AA, Jafar SA.; Measurement of solubility in supercritical fluids using chromatographic retention: the solubility of fluorene, phenanthrene , and pyrene in carbon dioxide; J Chem Eng Data., vol. 35(3):355-360. 1990.es_CO
    dc.relation.referencesJohnston KP, Zlger DH, Eckert’ CA.; Solubilities of Hydrocarbon Solids in Supercritical Fluids. The Augmented van der Waals Treatment Introduction Heavy nonvolatile organic solids dissolve in supercritical; Ind Eng Chem Fundam., vol. 21:191-197. 1982.es_CO
    dc.relation.referencesAnitescu G, Tavlarides LL.;Solubilities of solids in supercritical fluids-I. New quasistatic experimental method for polycyclic aromatic hydrocarbons (PAHs) + pure fluids.; J Supercrit Fluids, vol. 10:175-189, 1997.es_CO
    dc.relation.referencesKosal E, Holder GD.; Solubility of anthracene and phenanthrene mixtures in supercritical carbon dioxide. J Chem Eng Data., vol. 32:148-150. 1987.es_CO
    dc.relation.referencesYau JS, Tsai FN.; Solubilities of heavy n-paraffins in subcritical and supercritical carbon dioxide; J Chem Eng Data, vol. 38(2):171-174. 1993.es_CO
    dc.relation.referencesMiller DJ, Hawthorne SB, Clifford AA, Zhu S.; Solubility of Polycyclic Aromatic Hydrocarbons in Supercritical Carbon Dioxide from 313 K to 523 K and Pressures from 100 bar to 450 bar; J Chem Eng Data., vol.41(4):779-786. 1996.es_CO
    dc.relation.referencesTsai F, Yau J.; Solubility of carbon dioxide in n-tetracosane and in ndotriacontane; J. Chem. Eng. Data, vol. 43-45. 1990.es_CO
    dc.relation.referencesChandler K, Pouillot FLL, Eckert CA.; Phase Equilibria of Alkanes in Natural Gas Systems. 3. Alkanes in Carbon Dioxide; J. Chem. Eng. Data, vol;(2):6-10. 1996.es_CO
    dc.relation.referencesFuruya T, Teja AS.; The solubility of high molecular weight n -alkanes in supercritical carbon dioxide at pressures up to 50 MPa.; J. of Supercritical Fluids, vol. 29:231-236. 2004.es_CO
    dc.relation.referencesSimon D.; Evolutionary Optimization Algorithms; Wiley 2013,es_CO
    dc.relation.referencesŠkerget M, Novak-Pintarič Z, Knez Ž, Kravanja Z.; Estimation of solid solubilities in supercritical carbon dioxide: Peng-Robinson adjustable binary parameters in the near critical region; Fluid Phase Equilib., vol. 203(1-2):111-132. 2002.es_CO
    dc.relation.referencesSpiliotis N.,Magoulas K., Tassios D.; Prediction of the solubility of aromatic hydrocarbons in supercritical CO2 with EoS/G E models; Fluid Phase Equilibria, vol. 102 , 121 – 141, 1994.es_CO
    dc.relation.referencesNasri L, Bensetiti Z, Bensaad S.; Correlation of the solubility of some organic aromatic pollutants in supercritical carbon dioxide based on the UNIQUAC equation; Energy Procedia., vol. 18:1261-1270. 2012.es_CO
    dc.relation.referencesLi H, Li S, Shen B.; Correlation and prediction of the solubilities of solid nalkanes in supercritical carbon dioxide using the Carnahan–Starling–van der Waals model with a density-dependent parameter; Fluid Phase Equilib.,vol 325:28-34. 2012.es_CO
    dc.relation.referencesJha SK, Madras G. ; Modeling the solubilities of high molecular weight nalkanes in supercritical carbon dioxide; Fluid Phase Equilibria, vol. 22, 59–62, 2004.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Gomez_2016_TG.pdfGomez_2016_TG1,55 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.