• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2279
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorNariño Aparicio, Nathalia Fernanda.-
    dc.date.accessioned2022-06-23T16:58:31Z-
    dc.date.available2017-03-15-
    dc.date.available2022-06-23T16:58:31Z-
    dc.date.issued2017-
    dc.identifier.citationNariño Aparicio, N. F. (2016). Dimensionamiento de un contactor Spouted Bed cónico a escala de laboratorio [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2279es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2279-
    dc.descriptionEn estudios previos sobre el diseño de reactores cónicos de lecho fluidizado, se ha determinado la importancia de su uso actualmente en investigación y optimización de procesos industriales como la polimerización catalítica, gasificación de carbón y pirolisis de residuos, los cuales tiene aplicabilidad en el sector energético y ambiental, resaltando su importancia en la generación de nuevas opciones de diseño e implementación para energías alternativas. Surge el propósito desde el punto de vista investigativo y como apoyo a los docentes del programa de ingeniería química de la universidad de pamplona, contar con un prototipo realizado para mostrar el correcto diseño de un dispositivo para el desarrollo del flujo circulante y observar los regímenes presentes en un reactor cónico que pone en contacto una fase gaseosa y una sólida, con ventajas sobre otros sistemas, ya que por su diseño se presenta mayor transferencia de masa y energía. Teniendo en cuenta el régimen hidrodinámico activo del sistema para el cálculo de las dimensiones del equipo, se valida el diseño conceptual mediante la elaboración de un ejemplar en acrílico y se realizó un trabajo experimental para garantizar la influencia de la caída de presión y el caudal de aire como parámetros para describir el comportamiento de las partículas y el fluido en el proceso de fluidización.es_CO
    dc.description.abstractIn previous studies on the design of conical fluidized bed reactors, the importance of their use in research and optimization of industrial processes such as catalytic polymerization, coal gasification and pyrolysis of waste have been determined, which have application in the energy sector And environmental, highlighting its importance in the generation of new design and implementation options for alternative energies. The purpose arises from the research point of view and as the support to the teachers of the program of chemical engineering of the University of Pamplona, counting on a prototype realized to show the good design of a device for the development of the circulating flow and to observe the regimes In a conical reactor that comes into contact with a gaseous phase and a solid phase, with advantages over other systems, because of its design presents greater transfer of mass and energy. Taking into account the active hydrodynamic regime of the system for the calculation of the dimensions of the equipment, the con ceptual design is validated by the production of an acrylic specimen and an experimental work was carried out to guarantee the influence of the pressure drop and the flow rate of Air as parameters to describe the behavior of the particles and fluid in the fluidization process.es_CO
    dc.format.extent65es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleDimensionamiento de un contactor Spouted Bed cónico a escala de laboratorio.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2016-12-15-
    dc.relation.referencesEpstein, N.; Grace, J. R. Spouted and Spout-Fluid Beds: Fundamentals and Applications, Cambridge University, 2011. p.81-104. ISBN 978-0-521-51797-3es_CO
    dc.relation.referencesKishan B . Mathur and Norman Epstein. Dynamics Of Spouted Beds. Department of Chemical Engineering, University of British Columbia Vancouver. Canada p. 111-180.es_CO
    dc.relation.referencesOlazar, M.; San José, M. J.; Aguayo, A. T.; Arandes, J. M.; Bilbao, J. Stable Operation Conditions for Gas-Solid Contact Regimes in Conical Spouted Beds. Ind.Eng. Chem. Res., vol. 31, 1992. p.1784-1791es_CO
    dc.relation.referencesVictor Manuel Barreira; Estudio Hidrodinamico De Un Lecho Fluidizado; Universidad Carlos III D, Madrid, 2007es_CO
    dc.relation.referencesEpstein N. Liquid-solids fluidization, handbook of fluidization and fluid-particle system, Marcel Dekker, Editor W.C Yang., New York, 2003. p.705-764. ISBN 0-8247-0259-Xes_CO
    dc.relation.referencesDavidson J.F, Harrison D., Fluidised Particles, Cambridge University Press.1963. p.248es_CO
    dc.relation.referencesMathur, K. B. and Gishler, N., A Technique for Contacting Gases with Coarse Solid Particles, AIChE Journal, Vol. 1, 1955. p.157-164es_CO
    dc.relation.referencesLim, C. J. and Mathur, K. B., Modelling of Particle Movement in Spouted Beds, In Fluidization, eds J. F. Davidson and D. L. Keairns, Cambridge University Press, Cambridge, 1978. p.104-109es_CO
    dc.relation.referencesSan José, M. J.; Olazar, M.; Aguayo, A. T.; Arandes, J. M.; Bilbao, J. Expansion of Spouted Beds in Conical Contactors. Chem. Eng. J. 1993, 51, p.45-52.es_CO
    dc.relation.referencesCurti M. Solids and gas hydrodynamic characteristics in square-based spouted beds for thermal applications, Politecnico di Torino; 2015es_CO
    dc.relation.referencesD. Wilkinson, Determination of Minimum Fluidization Velocity by Pressure Fluctuation Measurement, The Canadian Journal of Chemical Engineering 73.1995, p.562 – 565es_CO
    dc.relation.referencesSubhadarshinee Sahoo. Fluidized Bed Reactor, Design And Application For Abatement Of Fluoride, National Institute Of Technology, 2012es_CO
    dc.relation.referencesC. Fryer, O. Potter, Countercurrent Backmixing Model for Fluidized Bed Catalityc Reactors. Applicability of Simplified Solutions, Industrial Engineering Chemistry Fundamentals, 11. 1972, p.338 − 344es_CO
    dc.relation.referencesWen-Ching Yang. Handbook of fluidization. 2003es_CO
    dc.relation.referencesNemeth, J. and Pallai, I. “Spouted bed technique and its application”. Magy. Kem.Lapja, 25.1970, p.74–82.es_CO
    dc.relation.referencesR.C. Darton, R.D. LaNauze, J.F. Davidson, D. Harrison, Bubble Growth Due to Coalescence in Fluidized Beds, Transactions Institution Chemical Engineers, 55. 1977, p.274 − 280es_CO
    dc.relation.referencesA. Delebarre, J.M. Morales, L. Ramos, Influence of the Bed Mass on its Fluidization Characteristics, Chemical Engineering Journal, 98. 2004, p.81 – 88es_CO
    dc.relation.referencesKursad, D.; Kilkis, B. Numerical Analysis of Spouted-Bed Hydrodynamics. Can. J. Chem. Eng. 1983, 61, p.297-302.es_CO
    dc.relation.referencesKunii, D., y Levenspiel, O. Fluidization Engineering. Second edition, USA: Butterworth-Heinemann, 1991. p.490. ISBN 0-409-90233-0.es_CO
    dc.relation.references.Lim, C. J. and Mathur, K. B., Modelling of Particle Movement in Spouted Beds, In Fluidization, eds J. F. Davidson and D. L. Keairns, Cambridge University Press, Cambridge, 1978. p.104-109es_CO
    dc.relation.referencesK. Tannous, M. W. Donida, and L. A. Obata, "Entrainment of Heterogeneous Particles from Gas-Fluidized Bed," Particulate Science and Technology, vol. 26, pp. 222-234.es_CO
    dc.relation.referencesT. Baron, C. L. Briens, and M. A. Bergougnou, "Study of the transport disengaging height," The Canadian Journal of Chemical Engineering, vol. 66, pp. 749-760, 1988.es_CO
    dc.relation.referencesK. S. Lim, J. X. Zhu, and J. R. Grace, "Hydrodynamics of gas-solid fluidization," International Journal of Multiphase Flow, vol. 21, Supplement, pp. 141-193, 1995.es_CO
    dc.relation.referencesH. W. Piepers, E. J. E. Cottaar, A. H. M. Verkooijen, and K. Rietema, "Effects of pressure and type of gas on particle-particle interaction and the consequences for gas—solid fluidization behaviour," Powder Technology, vol. 37, pp. 55-70, 1984es_CO
    dc.relation.referencesM. Horio and A. Nonaka, "A generalized bubble diameter correlation for gas-solid fluidized beds," AIChE Journal, vol. 33, pp. 1865-1872, 1987.es_CO
    dc.relation.referencesM. Y. Large JF, Bergougnou MA., "Interpretative model for entrainment in a large gas fluidized bed," presented at the International Powder Bulk Solids Handling and Processing Conference, Chicago, 1976.es_CO
    dc.relation.referencesA. C. Rowe. BA Partridge, "The mechanisms of solid mixing in fluidized beds," Trans. Inst. Chem. Eng., vol. 9, pp. 271-283, 1965.es_CO
    dc.relation.referencesA. E. Qureshi and D. E. Creasy, "Fluidised bed gas distributors," Powder Technology, vol. 22, pp. 113-119, 1979.es_CO
    dc.relation.referencesSan José, M. J.; Olazar, M.; Aguayo, A. T.; Arandes, J. M.; Bilbao, J. Expansion of Spouted Beds in Conical Contactors. Chem. Eng. J. 1993, 51, p.45-52.es_CO
    dc.relation.referencesZhao, J.; Lim, C. J.; Grace, J. R. Flow Regimes and Combustion Behaviour in Coal-Burning Spouted and Spout-Fluid Beds. Chem. Eng. Sci. 1987, 42, p.2865-2875.es_CO
    dc.relation.referencesPassos, M. L.; Mujumdar, A. S. Spouted and Spout-Fluidized Beds for Grain Drying. Drying Technol. 1989, 7, p.663-697.es_CO
    dc.relation.referencesVolpicelli, G.; Raso, G.; Massimilla, L. Gas and Solid Flow in Bidimensional Spouted Beds. In Proceedings of the International Symposium on Fluidization; Drinkenburg, A. A. H., Ed.; Netherlands University Press: Amsterdam, The Netherlands, 1967. p123-133.es_CO
    dc.relation.referencesEpstein N. Liquid-solids fluidization, handbook of fluidization and fluid-particle system, Marcel Dekker, Editor W.C Yang., New York, 2003. p.705-764. ISBN 0-8247-0259-Xes_CO
    dc.relation.referencesMathur, K.B. and Epstein, N. Spouted Beds. Academic Press, New York, 1974. p.304es_CO
    dc.relation.referencesOlazar, M.; San José, M. J.; Aguayo, A. T.; Arandes, J. M.; Bilbao, J. Stable Operation Conditions for Gas-Solid Contact Regimes in Conical Spouted Beds. Ind.Eng. Chem. Res., vol. 31, 1992. p.1784-1791es_CO
    dc.relation.referencesOlazar, M.; San Jose´, M. J.; Izquierdo, M. A.; Alvarez, S.; Bilbao,J. Fountain Geometry in Shallow Spouted Beds. Ind. Eng. Chem. Res. 2004,43, p.1163–1168.es_CO
    dc.relation.referencesMalek, M. A.; Madonna, L. A.; Lu, B. C. Y. Estimation of Spout Diameter in a Spouted Bed. Ind. Eng. Chem. Process Des. Dev. 1963, 2, p.30-34.es_CO
    dc.relation.referencesOlazar, M.; San Jose´, M. J.; Alvarez, S.; Morales, A.; Bilbao, J.Design of Conical Spouted Beds for the Handling of Low-Density Solids. Ind. Eng. Chem. Res. 2004, 43, p.655–661.es_CO
    dc.relation.referencesEpstein, N.; Grace, J. R. Spouted and Spout-Fluid Beds: Fundamentals and Applications, Cambridge University, 2011. p.81-104. ISBN 978-0-521-51797-3es_CO
    dc.relation.referencesSutanto, W.; Epstein, N.; Grace, J. R. Hydrodynamics of Spout-Fluid Beds.Powder Technol., vol. 44, 1985. p.205-212es_CO
    dc.relation.referencesBi, H. T.; Macchi, A.; Chaouki, J.; Legros, R. Minimum Spouting Velocity of Conical Spouted Beds. Can. J. Chem. Eng., vol. 75, 1997. p.460-465es_CO
    dc.relation.referencesA. M. Nikolaev and L. G. Golubev. Basic hydrodynamic characteristics of a spouting bed. Izv. Vyssh. Ucheb. Zaved. Khim. Tekhnol., 7;1964, p.855–857.es_CO
    dc.relation.referencesFluid Bed Design Aspects," in Fluid Bed Technology in Materials Processing, ed: CRC Press, 1998.es_CO
    dc.relation.referencesLitz, "Design of gas distributors," Chemical engineering, vol. November 13, pp. 162-166, 1972.es_CO
    dc.relation.referencesW. C. Yang, "Fluidization, Solids Handling, and Processing - Industrial Applications," ed: William Andrew Publishing/Noyes, 1998.es_CO
    dc.relation.referencesA. Markowski and W. Kaminski. Hydrodynamic characteristics of jet spouted beds. Can. J.Chem. Eng., 61; 1983, p.377–381.es_CO
    dc.relation.referencesM. Choi and A. Meisen. Hydrodynamics of shallow, conical spouted beds. Can. J. Chem.Eng., 70; 1992, p.916–924.es_CO
    dc.relation.referencesPovrenovic, D. S.; Hadzismajlovic, Dz. E.; Grbavcic, Z. B.; Vucovic, D. V.;Littman, H. Minimum Fluid Flowrate, Pressure Drop and Stability of a Conical Spouted Bed. Can. J. Chem. Eng., vol. 70, 1992. p.216-222es_CO
    dc.relation.referencesDz. E. Hadzismajlovic, Z. B. Grbavcic, D. V. Vucovic, D. S. Povrenovic, and H. Littman. A model for calculating the minimum fluid flowrate and pressure drop in a conical spouted. In Fluidization V, ed. K. Ostergaard and A. Sorensen (New York: Engineering Foundation), 1986, p. 241–248.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Nariño_2016_TG.pdfNariño_2016_TG1,86 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.