Please use this identifier to cite or link to this item:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2279
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nariño Aparicio, Nathalia Fernanda. | - |
dc.date.accessioned | 2022-06-23T16:58:31Z | - |
dc.date.available | 2017-03-15 | - |
dc.date.available | 2022-06-23T16:58:31Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Nariño Aparicio, N. F. (2016). Dimensionamiento de un contactor Spouted Bed cónico a escala de laboratorio [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2279 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2279 | - |
dc.description | En estudios previos sobre el diseño de reactores cónicos de lecho fluidizado, se ha determinado la importancia de su uso actualmente en investigación y optimización de procesos industriales como la polimerización catalítica, gasificación de carbón y pirolisis de residuos, los cuales tiene aplicabilidad en el sector energético y ambiental, resaltando su importancia en la generación de nuevas opciones de diseño e implementación para energías alternativas. Surge el propósito desde el punto de vista investigativo y como apoyo a los docentes del programa de ingeniería química de la universidad de pamplona, contar con un prototipo realizado para mostrar el correcto diseño de un dispositivo para el desarrollo del flujo circulante y observar los regímenes presentes en un reactor cónico que pone en contacto una fase gaseosa y una sólida, con ventajas sobre otros sistemas, ya que por su diseño se presenta mayor transferencia de masa y energía. Teniendo en cuenta el régimen hidrodinámico activo del sistema para el cálculo de las dimensiones del equipo, se valida el diseño conceptual mediante la elaboración de un ejemplar en acrílico y se realizó un trabajo experimental para garantizar la influencia de la caída de presión y el caudal de aire como parámetros para describir el comportamiento de las partículas y el fluido en el proceso de fluidización. | es_CO |
dc.description.abstract | In previous studies on the design of conical fluidized bed reactors, the importance of their use in research and optimization of industrial processes such as catalytic polymerization, coal gasification and pyrolysis of waste have been determined, which have application in the energy sector And environmental, highlighting its importance in the generation of new design and implementation options for alternative energies. The purpose arises from the research point of view and as the support to the teachers of the program of chemical engineering of the University of Pamplona, counting on a prototype realized to show the good design of a device for the development of the circulating flow and to observe the regimes In a conical reactor that comes into contact with a gaseous phase and a solid phase, with advantages over other systems, because of its design presents greater transfer of mass and energy. Taking into account the active hydrodynamic regime of the system for the calculation of the dimensions of the equipment, the con ceptual design is validated by the production of an acrylic specimen and an experimental work was carried out to guarantee the influence of the pressure drop and the flow rate of Air as parameters to describe the behavior of the particles and fluid in the fluidization process. | es_CO |
dc.format.extent | 65 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | La autora no proporciona la información sobre este ítem. | es_CO |
dc.title | Dimensionamiento de un contactor Spouted Bed cónico a escala de laboratorio. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2016-12-15 | - |
dc.relation.references | Epstein, N.; Grace, J. R. Spouted and Spout-Fluid Beds: Fundamentals and Applications, Cambridge University, 2011. p.81-104. ISBN 978-0-521-51797-3 | es_CO |
dc.relation.references | Kishan B . Mathur and Norman Epstein. Dynamics Of Spouted Beds. Department of Chemical Engineering, University of British Columbia Vancouver. Canada p. 111-180. | es_CO |
dc.relation.references | Olazar, M.; San José, M. J.; Aguayo, A. T.; Arandes, J. M.; Bilbao, J. Stable Operation Conditions for Gas-Solid Contact Regimes in Conical Spouted Beds. Ind.Eng. Chem. Res., vol. 31, 1992. p.1784-1791 | es_CO |
dc.relation.references | Victor Manuel Barreira; Estudio Hidrodinamico De Un Lecho Fluidizado; Universidad Carlos III D, Madrid, 2007 | es_CO |
dc.relation.references | Epstein N. Liquid-solids fluidization, handbook of fluidization and fluid-particle system, Marcel Dekker, Editor W.C Yang., New York, 2003. p.705-764. ISBN 0-8247-0259-X | es_CO |
dc.relation.references | Davidson J.F, Harrison D., Fluidised Particles, Cambridge University Press.1963. p.248 | es_CO |
dc.relation.references | Mathur, K. B. and Gishler, N., A Technique for Contacting Gases with Coarse Solid Particles, AIChE Journal, Vol. 1, 1955. p.157-164 | es_CO |
dc.relation.references | Lim, C. J. and Mathur, K. B., Modelling of Particle Movement in Spouted Beds, In Fluidization, eds J. F. Davidson and D. L. Keairns, Cambridge University Press, Cambridge, 1978. p.104-109 | es_CO |
dc.relation.references | San José, M. J.; Olazar, M.; Aguayo, A. T.; Arandes, J. M.; Bilbao, J. Expansion of Spouted Beds in Conical Contactors. Chem. Eng. J. 1993, 51, p.45-52. | es_CO |
dc.relation.references | Curti M. Solids and gas hydrodynamic characteristics in square-based spouted beds for thermal applications, Politecnico di Torino; 2015 | es_CO |
dc.relation.references | D. Wilkinson, Determination of Minimum Fluidization Velocity by Pressure Fluctuation Measurement, The Canadian Journal of Chemical Engineering 73.1995, p.562 – 565 | es_CO |
dc.relation.references | Subhadarshinee Sahoo. Fluidized Bed Reactor, Design And Application For Abatement Of Fluoride, National Institute Of Technology, 2012 | es_CO |
dc.relation.references | C. Fryer, O. Potter, Countercurrent Backmixing Model for Fluidized Bed Catalityc Reactors. Applicability of Simplified Solutions, Industrial Engineering Chemistry Fundamentals, 11. 1972, p.338 − 344 | es_CO |
dc.relation.references | Wen-Ching Yang. Handbook of fluidization. 2003 | es_CO |
dc.relation.references | Nemeth, J. and Pallai, I. “Spouted bed technique and its application”. Magy. Kem.Lapja, 25.1970, p.74–82. | es_CO |
dc.relation.references | R.C. Darton, R.D. LaNauze, J.F. Davidson, D. Harrison, Bubble Growth Due to Coalescence in Fluidized Beds, Transactions Institution Chemical Engineers, 55. 1977, p.274 − 280 | es_CO |
dc.relation.references | A. Delebarre, J.M. Morales, L. Ramos, Influence of the Bed Mass on its Fluidization Characteristics, Chemical Engineering Journal, 98. 2004, p.81 – 88 | es_CO |
dc.relation.references | Kursad, D.; Kilkis, B. Numerical Analysis of Spouted-Bed Hydrodynamics. Can. J. Chem. Eng. 1983, 61, p.297-302. | es_CO |
dc.relation.references | Kunii, D., y Levenspiel, O. Fluidization Engineering. Second edition, USA: Butterworth-Heinemann, 1991. p.490. ISBN 0-409-90233-0. | es_CO |
dc.relation.references | .Lim, C. J. and Mathur, K. B., Modelling of Particle Movement in Spouted Beds, In Fluidization, eds J. F. Davidson and D. L. Keairns, Cambridge University Press, Cambridge, 1978. p.104-109 | es_CO |
dc.relation.references | K. Tannous, M. W. Donida, and L. A. Obata, "Entrainment of Heterogeneous Particles from Gas-Fluidized Bed," Particulate Science and Technology, vol. 26, pp. 222-234. | es_CO |
dc.relation.references | T. Baron, C. L. Briens, and M. A. Bergougnou, "Study of the transport disengaging height," The Canadian Journal of Chemical Engineering, vol. 66, pp. 749-760, 1988. | es_CO |
dc.relation.references | K. S. Lim, J. X. Zhu, and J. R. Grace, "Hydrodynamics of gas-solid fluidization," International Journal of Multiphase Flow, vol. 21, Supplement, pp. 141-193, 1995. | es_CO |
dc.relation.references | H. W. Piepers, E. J. E. Cottaar, A. H. M. Verkooijen, and K. Rietema, "Effects of pressure and type of gas on particle-particle interaction and the consequences for gas—solid fluidization behaviour," Powder Technology, vol. 37, pp. 55-70, 1984 | es_CO |
dc.relation.references | M. Horio and A. Nonaka, "A generalized bubble diameter correlation for gas-solid fluidized beds," AIChE Journal, vol. 33, pp. 1865-1872, 1987. | es_CO |
dc.relation.references | M. Y. Large JF, Bergougnou MA., "Interpretative model for entrainment in a large gas fluidized bed," presented at the International Powder Bulk Solids Handling and Processing Conference, Chicago, 1976. | es_CO |
dc.relation.references | A. C. Rowe. BA Partridge, "The mechanisms of solid mixing in fluidized beds," Trans. Inst. Chem. Eng., vol. 9, pp. 271-283, 1965. | es_CO |
dc.relation.references | A. E. Qureshi and D. E. Creasy, "Fluidised bed gas distributors," Powder Technology, vol. 22, pp. 113-119, 1979. | es_CO |
dc.relation.references | San José, M. J.; Olazar, M.; Aguayo, A. T.; Arandes, J. M.; Bilbao, J. Expansion of Spouted Beds in Conical Contactors. Chem. Eng. J. 1993, 51, p.45-52. | es_CO |
dc.relation.references | Zhao, J.; Lim, C. J.; Grace, J. R. Flow Regimes and Combustion Behaviour in Coal-Burning Spouted and Spout-Fluid Beds. Chem. Eng. Sci. 1987, 42, p.2865-2875. | es_CO |
dc.relation.references | Passos, M. L.; Mujumdar, A. S. Spouted and Spout-Fluidized Beds for Grain Drying. Drying Technol. 1989, 7, p.663-697. | es_CO |
dc.relation.references | Volpicelli, G.; Raso, G.; Massimilla, L. Gas and Solid Flow in Bidimensional Spouted Beds. In Proceedings of the International Symposium on Fluidization; Drinkenburg, A. A. H., Ed.; Netherlands University Press: Amsterdam, The Netherlands, 1967. p123-133. | es_CO |
dc.relation.references | Epstein N. Liquid-solids fluidization, handbook of fluidization and fluid-particle system, Marcel Dekker, Editor W.C Yang., New York, 2003. p.705-764. ISBN 0-8247-0259-X | es_CO |
dc.relation.references | Mathur, K.B. and Epstein, N. Spouted Beds. Academic Press, New York, 1974. p.304 | es_CO |
dc.relation.references | Olazar, M.; San José, M. J.; Aguayo, A. T.; Arandes, J. M.; Bilbao, J. Stable Operation Conditions for Gas-Solid Contact Regimes in Conical Spouted Beds. Ind.Eng. Chem. Res., vol. 31, 1992. p.1784-1791 | es_CO |
dc.relation.references | Olazar, M.; San Jose´, M. J.; Izquierdo, M. A.; Alvarez, S.; Bilbao,J. Fountain Geometry in Shallow Spouted Beds. Ind. Eng. Chem. Res. 2004,43, p.1163–1168. | es_CO |
dc.relation.references | Malek, M. A.; Madonna, L. A.; Lu, B. C. Y. Estimation of Spout Diameter in a Spouted Bed. Ind. Eng. Chem. Process Des. Dev. 1963, 2, p.30-34. | es_CO |
dc.relation.references | Olazar, M.; San Jose´, M. J.; Alvarez, S.; Morales, A.; Bilbao, J.Design of Conical Spouted Beds for the Handling of Low-Density Solids. Ind. Eng. Chem. Res. 2004, 43, p.655–661. | es_CO |
dc.relation.references | Epstein, N.; Grace, J. R. Spouted and Spout-Fluid Beds: Fundamentals and Applications, Cambridge University, 2011. p.81-104. ISBN 978-0-521-51797-3 | es_CO |
dc.relation.references | Sutanto, W.; Epstein, N.; Grace, J. R. Hydrodynamics of Spout-Fluid Beds.Powder Technol., vol. 44, 1985. p.205-212 | es_CO |
dc.relation.references | Bi, H. T.; Macchi, A.; Chaouki, J.; Legros, R. Minimum Spouting Velocity of Conical Spouted Beds. Can. J. Chem. Eng., vol. 75, 1997. p.460-465 | es_CO |
dc.relation.references | A. M. Nikolaev and L. G. Golubev. Basic hydrodynamic characteristics of a spouting bed. Izv. Vyssh. Ucheb. Zaved. Khim. Tekhnol., 7;1964, p.855–857. | es_CO |
dc.relation.references | Fluid Bed Design Aspects," in Fluid Bed Technology in Materials Processing, ed: CRC Press, 1998. | es_CO |
dc.relation.references | Litz, "Design of gas distributors," Chemical engineering, vol. November 13, pp. 162-166, 1972. | es_CO |
dc.relation.references | W. C. Yang, "Fluidization, Solids Handling, and Processing - Industrial Applications," ed: William Andrew Publishing/Noyes, 1998. | es_CO |
dc.relation.references | A. Markowski and W. Kaminski. Hydrodynamic characteristics of jet spouted beds. Can. J.Chem. Eng., 61; 1983, p.377–381. | es_CO |
dc.relation.references | M. Choi and A. Meisen. Hydrodynamics of shallow, conical spouted beds. Can. J. Chem.Eng., 70; 1992, p.916–924. | es_CO |
dc.relation.references | Povrenovic, D. S.; Hadzismajlovic, Dz. E.; Grbavcic, Z. B.; Vucovic, D. V.;Littman, H. Minimum Fluid Flowrate, Pressure Drop and Stability of a Conical Spouted Bed. Can. J. Chem. Eng., vol. 70, 1992. p.216-222 | es_CO |
dc.relation.references | Dz. E. Hadzismajlovic, Z. B. Grbavcic, D. V. Vucovic, D. S. Povrenovic, and H. Littman. A model for calculating the minimum fluid flowrate and pressure drop in a conical spouted. In Fluidization V, ed. K. Ostergaard and A. Sorensen (New York: Engineering Foundation), 1986, p. 241–248. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Appears in Collections: | Ingeniería Química |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Nariño_2016_TG.pdf | Nariño_2016_TG | 1,86 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.