• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2271
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorCastañeda Barrera, Maydeyi.-
    dc.date.accessioned2022-06-23T15:35:51Z-
    dc.date.available2017-03-15-
    dc.date.available2022-06-23T15:35:51Z-
    dc.date.issued2017-
    dc.identifier.citationCastañeda Barrera, M. (2016). Obtención y caracterización de Quitosano proveniente de Quitina de cuatro especies de insectos y evaluación preliminar de su uso en remoción de cromo en agua [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2271es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2271-
    dc.descriptionEn este trabajo se obtuvo quitina a partir de 4 insectos pertenecientes a diferentes familias: Formicidae (hormigas), Vespidae (avispas), Apidae (abejas) e Isóptera (termitas). Las quitinas obtenidas, se desacetilaron, convirtiéndolas en quitosano y ambos biopolímeros se analizaron mediante FTIR obteniendo las bandas características de estos en el infrarrojo, lo cual significa que el proceso de extracción y obtención de dichos biopolímeros a partir de las cuatro especies de insectos (Apis Mellifera Africanizada, Polistes erythrocephalus, Atta cephalotes, Nasutiermes sp) fue exitoso. Adicionalmente la quitina y el quitosano mostraron la presencia de dos eventos térmicos y dos pérdidas de masa, debidas a la evaporación del agua y a la degradación de las mismas. Con respecto a las pruebas relacionadas con el uso del quitosano como biosorbente de cromo (VI), los resultados mostraron que todas las muestras de quitosano reducen la cantidad de cromo (VI) en una solución acuosa (~55ppm), siendo el más adecuado el obtenido a partir de hormigas (Atta cephalotes), con un 40,13% que a su vez tiene mayor contenido de quitina (19,1772%) y presenta un menor remoción con un 12,47% el quitosano de termitas.es_CO
    dc.description.abstractIn this work chitin was obtained from 4 insects belonging to different families: Formicidae (ants), Vespidae (wasps), Apidae (bees) and Isoptera (termites). The chitins obtained were deacetylated and converted into chitosan and both biopolymers were analyzed by FTIR obtaining the characteristic bands of these in the infrared, which means that the process of extraction and obtaining of these biopolymers from the four species of insects Mellifera Africanized , Polistes erythrocephalus, Atta cephalotes, Nasutiermes sp) was successful. In addition, chitin and chitosan show the presence of two thermal elements and two mass losses, due to the evaporation of water and the degradation of the same. (VI), the results show that all samples of chitosan reduce the amount of chromium (VI) in an aqueous solution (~ 55ppm), the most suitable being obtained from ants (Atta cephalotes), with a 40,13 % That has its highest content of chitin (19.1772%) and presents a lower removal with 12.47% of termite chitosan.es_CO
    dc.format.extent63es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectLa autora no proporciona la información sobre este ítem.es_CO
    dc.titleObtención y caracterización de Quitosano proveniente de Quitina de cuatro especies de insectos y evaluación preliminar de su uso en remoción de cromo en agua.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2016-12-15-
    dc.relation.referencesResearch, G.V. Chitosan Market Analysis By Application (Water Treatment, Pharmaceutical & Biomedical, Cosmetics, Food & Beverage) And Segment Forecasts To 2022. Available from: http://www.grandviewresearch.com/industry-analysis/global-chitosan-market.es_CO
    dc.relation.referencesResearch, T.M. Global Chitosan Market Propelled by Rapid Increase in Water Treatment Applications, Poised to Reach US$4.20 bn by 2020. Available from: http://www.transparencymarketresearch.com/pressrelease/chitosan-market.htm.es_CO
    dc.relation.referencesPájaro, Y. and F. Diaz, Remoción de cromo hexavalente de aguas contaminadas usando quitosano obtenido de exoesqueleto de camarón. Revista Colombiana de Química, 2012. 41(2): p. 283-298.es_CO
    dc.relation.referencesBarrenechea Martel, A., V. Maldonado Yactayo, and M. Aurazo de Zumaeta, Aspectos fisicoquímicos de la calidad del agua, in Tratamiento de agua para consumo humano. Plantas de filtración rápida. Manual I: teoría. Tomo I. 2004, CEPIS. p. 2-56.es_CO
    dc.relation.referencesKaya, M., et al., First chitin extraction from Plumatella repens (Bryozoa) with comparison to chitins of insect and fungal origin. International Journal of Biological Macromolecules, 2015. 79: p. 126-132.es_CO
    dc.relation.referencesKaya, M., et al., Comparison of bovine serum albumin adsorption capacities of α-chitin isolated from an insect and β-chitin from cuttlebone. Journal of Industrial and Engineering Chemistry, 2016. 38: p. 146-156.es_CO
    dc.relation.referencesKaya, M., I. Sargin, and D. Erdonmez, Microbial biofilm activity and physicochemical characterization of biodegradable and edible cups obtained from abdominal exoskeleton of an insect. Innovative Food Science & Emerging Technologies, 2016. 36: p. 68-74.es_CO
    dc.relation.referencesPanagiotakopulu, E., et al., AMS dating of insect chitin – A discussion of new dates, problems and potential. Quaternary Geochronology, 2015. 27: p. 22-32.es_CO
    dc.relation.referencesNemtsev, S., et al., Bees as Potential Source of Chitosan. 2001.es_CO
    dc.relation.referencesErdogan, S. and M. Kaya, High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper. International Journal of Biological Macromolecules, 2016. 89: p. 118-126.es_CO
    dc.relation.referencesKaya, M., et al., Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydrate Polymers, 2016. 145: p. 64-70.es_CO
    dc.relation.referencesKaya, M., et al., Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydrate Polymers, 2015. 132: p. 9-16.es_CO
    dc.relation.referencesKaya, M., et al., Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora). International Journal of Biological Macromolecules, 2015. 81: p. 443-449.es_CO
    dc.relation.referencesMelo, V. and O. Cuamatzi, Bioquímica de los procesos metabólicos. 2007: Reverte.es_CO
    dc.relation.referencesSagheer, F.A.A., et al., Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 2009. 77(2): p. 410-419.es_CO
    dc.relation.referencesUsman, A., et al., Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 2016. 86: p. 630-645.es_CO
    dc.relation.referencesSeymour, R.B. and C.E. Carraher, Introducción a la química de los polímetros. 1995: Reverté.es_CO
    dc.relation.referencesSánchez, L.M.D., Nuevo método para la obteNcióN de quitiNa. Ciencia y Tecnología, 2007. 25(1-2): p. 35-41.es_CO
    dc.relation.referencesGonil, P. and W. Sajomsang, Applications of magnetic resonance spectroscopy to chitin from insect cuticles. International Journal of Biological Macromolecules, 2012. 51(4): p. 514-522.es_CO
    dc.relation.referencesWan, A.C.A. and B.C.U. Tai, CHITIN — A promising biomaterial for tissue engineering and stem cell technologies. Biotechnology Advances, 2013. 31(8): p. 1776-1785.es_CO
    dc.relation.referencesPacheco, N., Extracción biotecnológica de quitina para la producción de quitosanos: caracterización y aplicación. México DF: Universidad Autonoma Metropolitana. Unidad Iztapalapa, 2010.es_CO
    dc.relation.referencesJayakumar, R., et al., Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 2010. 55(7): p. 675-709.es_CO
    dc.relation.referencesHamed, I., F. Özogul, and J.M. Regenstein, Industrial applications of crustacean byproducts (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 2016. 48: p. 40-50.es_CO
    dc.relation.referencesVelásquez, C.L., Algunas potencialidades de la quitina y el quitosano para usos relacionados con la agricultura en Latinoamérica. Revista UDO Agrícola, 2008. 8(1): p. 1-22.es_CO
    dc.relation.referencesBautista-Baños, S., et al., Quitosano: una alternativa natural para reducir microorganismos postcosecha y mantener la vida de anaquel de productos hortofrutícolas. Revista Iberoamericana de tecnología postcosecha, 2005. 7(1): p. 1-6.es_CO
    dc.relation.referencesChandran, R., et al., SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron, 2016. 82: p. 74-85.es_CO
    dc.relation.referencesBarros, I., L. Guzmán, and A. Tarón, EXTRACCIÓN Y COMPARACIÓN DE LA QUITINA OBTENIDA A PARTIR DEL CAPARAZON DE Callinectes sapidus Y Penaeus vannameis. Revista UDCA Actualidad & Divulgación Científica, 2015. 18(1): p. 227-234.es_CO
    dc.relation.referencesFernando, L.A.T., et al., Chitin Extraction and Synthesis of Chitin-Based Polymer Films from Philippine Blue Swimming Crab (Portunus pelagicus) Shells. Procedia Chemistry, 2016. 19: p. 462-468.es_CO
    dc.relation.referencesMohammed, M.H., P.A. Williams, and O. Tverezovskaya, Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids, 2013. 31(2): p. 166-171.es_CO
    dc.relation.referencesCuong, H.N., et al., Preparation and characterization of high purity β-chitin from squid pens (Loligo chenisis). International Journal of Biological Macromolecules, 2016. 93, Part A: p. 442-447.es_CO
    dc.relation.referencesGreven, H., M. Kaya, and T. Baran, The presence of α-chitin in Tardigrada with comments on chitin in the Ecdysozoa. Zoologischer Anzeiger - A Journal of Comparative Zoology, 2016. 264: p. 11-16.es_CO
    dc.relation.referencesArbia, W., et al., Optimization of medium composition for enhanced chitin extraction from Parapenaeus longirostris by Lactobacillus helveticus using response surface methodology. Food Hydrocolloids, 2013. 31(2): p. 392-403.es_CO
    dc.relation.referencesKumari, S., et al., Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology & Innovation, 2015. 3: p. 77-85.es_CO
    dc.relation.referencesSayari, N., et al., Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities. International Journal of Biological Macromolecules, 2016. 87: p. 163-171.es_CO
    dc.relation.referencesKaya, M., et al., Comparison of chitin structures isolated from seven Orthoptera species. International Journal of Biological Macromolecules, 2015. 72: p. 797-805.es_CO
    dc.relation.referencesKaya, M. and T. Baran, Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). International Journal of Biological Macromolecules, 2015. 75: p. 7-12.es_CO
    dc.relation.referencesSierra, D.M.E., C.P.O. Orozco, and W.A. Ospina, Optimización de un protocolo de extracción de quitina y quitosano desde caparazones de crustáceos. Scientia et Technica, 2013. 18(1): p. 260-266.es_CO
    dc.relation.referencesPeña, L.E., Introducción a los insectos de Chile. 1996: Editorial Universitaria.es_CO
    dc.relation.referencesMuthukrishnan, S., et al., 7 - Chitin Metabolism in Insects A2 - Gilbert, Lawrence I, in Insect Molecular Biology and Biochemistry. 2012, Academic Press: San Diego. p. 193-235.es_CO
    dc.relation.referencesCarbonell, K.J. and J.E. Lattke, El mundo de las hormigas. 2004: Equinoccio.es_CO
    dc.relation.referencessingoli, V., La gran enciclopedia de los animales. Script ed. 2012.es_CO
    dc.relation.referencesMendizabal, F.M., Abejas. 2005: Editorial Albatros.es_CO
    dc.relation.referencesSánchez, O., et al., Aportes para el análisis del sector apicola Colombiano. Journal of Agricultural science and Technology, 2013. 2(4): p. 469-483.es_CO
    dc.relation.referencesMontés, F.J., El universo de los insectos. 2013: Mundi-Prensa Libros.es_CO
    dc.relation.referencesVargas-Niño¹, A.P., et al., Lista de los géneros de Termitidae (Insecta: Isoptera) de Colombia. Biota Colombiana, 2005. 6(2): p. 181-190.es_CO
    dc.relation.referencesLiotta, G., Los insectos y sus daños en la madera: problemas de restauración. Vol. 4. 2000: Editorial Nerea.es_CO
    dc.relation.referencesMéndez, J.P., et al., CONTAMINACIÓN Y FITOTOXICIDAD EN PLANTAS POR METALES PESADOS PROVENIENTES DE SUELOS Y AGUA [PLANT CONTAMINATION AND PHYTOTOXICITY DUE TO HEAVY METALS FROM SOIL AND WATER]. Tropical and Subtropical Agroecosystems, 2009. 10(1): p. 29-44es_CO
    dc.relation.referencesCañizares-Villanueva, R.O., Biosorción de metales pesados mediante el uso de biomasa microbiana. REVISTA LATINOAMERICANA DE MICROBIOLOGIA-MEXICO-, 2000. 42(3): p. 131-143.es_CO
    dc.relation.referencesSkoog, D.A., D.M. West, and F.J. Holler, Fundamentos de química analítica. Vol. 2. 1997: Reverté.es_CO
    dc.relation.referencesSohbatzadeh, H., et al., U(VI) biosorption by bi-functionalized Pseudomonas putida @ chitosan bead: Modeling and optimization using RSM. International Journal of Biological Macromolecules, 2016. 89: p. 647-658.es_CO
    dc.relation.referencesZhou, W., et al., Biosorption of copper(II) and cadmium(II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium. Colloids and Surfaces B: Biointerfaces, 2009. 72(2): p. 295-302.es_CO
    dc.relation.referencesSaravanan, D., T. Gomathi, and P.N. Sudha, Sorption studies on heavy metal removal using chitin/bentonite biocomposite. International Journal of Biological Macromolecules, 2013. 53: p. 67-71.es_CO
    dc.relation.referencesAuthors: Höhne, G., Hemminger, Wolfgang F., Flammersheim, H.-J., Differential Scanning Calorimetry. 2 ed ed. 2003.es_CO
    dc.relation.referencesBrugnerotto, J., et al., An infrared investigation in relation with chitin and chitosan characterization. Polymer, 2001. 42(8): p. 3569-3580.es_CO
    dc.relation.referencesKasaai, M.R., A review of several reported procedures to determine the degree of Nacetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers, 2008. 71(4): p. 497-508.es_CO
    dc.relation.referencesCARDENAS, G. and S.P. MIRANDA, FTIR AND TGA STUDIES OF CHITOSAN COMPOSITE FILMS. Journal of the Chilean Chemical Society, 2004. 49: p. 291-295.es_CO
    dc.relation.referencesPickering, W.F., Química analítica moderna. 1980: Reverté.es_CO
    dc.relation.referencesRuiz, S.G., M.I.S. Alonso, and D.P. Quintanilla, Analisis Instrumental. Vol. 1. 2009: Netbiblo.es_CO
    dc.relation.referencesSkoog, D.A., F.J. Holler, and T.A. Nieman, Principios de análisis instrumental. Ed. McGraw Hill, 5ta Edición, 2001, ISBN, 1998. 217660172.es_CO
    dc.relation.referencesSienko, M.J., Problemas de química. 1996: Revertées_CO
    dc.relation.referencesNavarrete, N.M., Termodinámica y cinética de sistemas : alimento entorno. Vol. Editorial Universitat Politècnica de València. 1998. 372es_CO
    dc.relation.referencesWalton, H.F. and J. Reyes, Análisis químico e instrumental moderno. 1983: Reverté.es_CO
    dc.relation.referencesGoogle Maps. 2016 Available from: https://www.google.es/maps/place/Colombia/@-1.3978682,-73.1805693,5z/data=!4m5!3m4!1s0x8e15a43aae1594a3:0x9a0d9a04eff2a340!8m2!3d4.5 70868!4d-74.297333.es_CO
    dc.relation.referencesBaran, A., et al., Comparative studies on the adsorption of Cr(VI) ions on to various sorbents. Bioresource Technology, 2007. 98(3): p. 661-665.es_CO
    dc.relation.referencesKaya, M., et al., Chitosan nanofiber production from Drosophila by electrospinning. International Journal of Biological Macromolecules, 2016. 92: p. 49-55.es_CO
    dc.relation.referencesPaulino, A.T., et al., Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers, 2006. 64(1): p. 98-103.es_CO
    dc.relation.referencesAbdou, E.S., K.S. Nagy, and M.Z. Elsabee, Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 2008. 99(5): p. 1359-1367.es_CO
    dc.relation.referencesYen, M.-T., J.-H. Yang, and J.-L. Mau, Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 2009. 75(1): p. 15-21.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Castañeda_2016_TG.pdfCastañeda_2016_TG2,66 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.