Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2271
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Castañeda Barrera, Maydeyi. | - |
dc.date.accessioned | 2022-06-23T15:35:51Z | - |
dc.date.available | 2017-03-15 | - |
dc.date.available | 2022-06-23T15:35:51Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Castañeda Barrera, M. (2016). Obtención y caracterización de Quitosano proveniente de Quitina de cuatro especies de insectos y evaluación preliminar de su uso en remoción de cromo en agua [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2271 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2271 | - |
dc.description | En este trabajo se obtuvo quitina a partir de 4 insectos pertenecientes a diferentes familias: Formicidae (hormigas), Vespidae (avispas), Apidae (abejas) e Isóptera (termitas). Las quitinas obtenidas, se desacetilaron, convirtiéndolas en quitosano y ambos biopolímeros se analizaron mediante FTIR obteniendo las bandas características de estos en el infrarrojo, lo cual significa que el proceso de extracción y obtención de dichos biopolímeros a partir de las cuatro especies de insectos (Apis Mellifera Africanizada, Polistes erythrocephalus, Atta cephalotes, Nasutiermes sp) fue exitoso. Adicionalmente la quitina y el quitosano mostraron la presencia de dos eventos térmicos y dos pérdidas de masa, debidas a la evaporación del agua y a la degradación de las mismas. Con respecto a las pruebas relacionadas con el uso del quitosano como biosorbente de cromo (VI), los resultados mostraron que todas las muestras de quitosano reducen la cantidad de cromo (VI) en una solución acuosa (~55ppm), siendo el más adecuado el obtenido a partir de hormigas (Atta cephalotes), con un 40,13% que a su vez tiene mayor contenido de quitina (19,1772%) y presenta un menor remoción con un 12,47% el quitosano de termitas. | es_CO |
dc.description.abstract | In this work chitin was obtained from 4 insects belonging to different families: Formicidae (ants), Vespidae (wasps), Apidae (bees) and Isoptera (termites). The chitins obtained were deacetylated and converted into chitosan and both biopolymers were analyzed by FTIR obtaining the characteristic bands of these in the infrared, which means that the process of extraction and obtaining of these biopolymers from the four species of insects Mellifera Africanized , Polistes erythrocephalus, Atta cephalotes, Nasutiermes sp) was successful. In addition, chitin and chitosan show the presence of two thermal elements and two mass losses, due to the evaporation of water and the degradation of the same. (VI), the results show that all samples of chitosan reduce the amount of chromium (VI) in an aqueous solution (~ 55ppm), the most suitable being obtained from ants (Atta cephalotes), with a 40,13 % That has its highest content of chitin (19.1772%) and presents a lower removal with 12.47% of termite chitosan. | es_CO |
dc.format.extent | 63 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.publisher | Universidad de Pamplona – Facultad de Ingenierías y Arquitectura. | es_CO |
dc.subject | La autora no proporciona la información sobre este ítem. | es_CO |
dc.title | Obtención y caracterización de Quitosano proveniente de Quitina de cuatro especies de insectos y evaluación preliminar de su uso en remoción de cromo en agua. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2016-12-15 | - |
dc.relation.references | Research, G.V. Chitosan Market Analysis By Application (Water Treatment, Pharmaceutical & Biomedical, Cosmetics, Food & Beverage) And Segment Forecasts To 2022. Available from: http://www.grandviewresearch.com/industry-analysis/global-chitosan-market. | es_CO |
dc.relation.references | Research, T.M. Global Chitosan Market Propelled by Rapid Increase in Water Treatment Applications, Poised to Reach US$4.20 bn by 2020. Available from: http://www.transparencymarketresearch.com/pressrelease/chitosan-market.htm. | es_CO |
dc.relation.references | Pájaro, Y. and F. Diaz, Remoción de cromo hexavalente de aguas contaminadas usando quitosano obtenido de exoesqueleto de camarón. Revista Colombiana de Química, 2012. 41(2): p. 283-298. | es_CO |
dc.relation.references | Barrenechea Martel, A., V. Maldonado Yactayo, and M. Aurazo de Zumaeta, Aspectos fisicoquímicos de la calidad del agua, in Tratamiento de agua para consumo humano. Plantas de filtración rápida. Manual I: teoría. Tomo I. 2004, CEPIS. p. 2-56. | es_CO |
dc.relation.references | Kaya, M., et al., First chitin extraction from Plumatella repens (Bryozoa) with comparison to chitins of insect and fungal origin. International Journal of Biological Macromolecules, 2015. 79: p. 126-132. | es_CO |
dc.relation.references | Kaya, M., et al., Comparison of bovine serum albumin adsorption capacities of α-chitin isolated from an insect and β-chitin from cuttlebone. Journal of Industrial and Engineering Chemistry, 2016. 38: p. 146-156. | es_CO |
dc.relation.references | Kaya, M., I. Sargin, and D. Erdonmez, Microbial biofilm activity and physicochemical characterization of biodegradable and edible cups obtained from abdominal exoskeleton of an insect. Innovative Food Science & Emerging Technologies, 2016. 36: p. 68-74. | es_CO |
dc.relation.references | Panagiotakopulu, E., et al., AMS dating of insect chitin – A discussion of new dates, problems and potential. Quaternary Geochronology, 2015. 27: p. 22-32. | es_CO |
dc.relation.references | Nemtsev, S., et al., Bees as Potential Source of Chitosan. 2001. | es_CO |
dc.relation.references | Erdogan, S. and M. Kaya, High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper. International Journal of Biological Macromolecules, 2016. 89: p. 118-126. | es_CO |
dc.relation.references | Kaya, M., et al., Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydrate Polymers, 2016. 145: p. 64-70. | es_CO |
dc.relation.references | Kaya, M., et al., Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydrate Polymers, 2015. 132: p. 9-16. | es_CO |
dc.relation.references | Kaya, M., et al., Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora). International Journal of Biological Macromolecules, 2015. 81: p. 443-449. | es_CO |
dc.relation.references | Melo, V. and O. Cuamatzi, Bioquímica de los procesos metabólicos. 2007: Reverte. | es_CO |
dc.relation.references | Sagheer, F.A.A., et al., Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers, 2009. 77(2): p. 410-419. | es_CO |
dc.relation.references | Usman, A., et al., Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 2016. 86: p. 630-645. | es_CO |
dc.relation.references | Seymour, R.B. and C.E. Carraher, Introducción a la química de los polímetros. 1995: Reverté. | es_CO |
dc.relation.references | Sánchez, L.M.D., Nuevo método para la obteNcióN de quitiNa. Ciencia y Tecnología, 2007. 25(1-2): p. 35-41. | es_CO |
dc.relation.references | Gonil, P. and W. Sajomsang, Applications of magnetic resonance spectroscopy to chitin from insect cuticles. International Journal of Biological Macromolecules, 2012. 51(4): p. 514-522. | es_CO |
dc.relation.references | Wan, A.C.A. and B.C.U. Tai, CHITIN — A promising biomaterial for tissue engineering and stem cell technologies. Biotechnology Advances, 2013. 31(8): p. 1776-1785. | es_CO |
dc.relation.references | Pacheco, N., Extracción biotecnológica de quitina para la producción de quitosanos: caracterización y aplicación. México DF: Universidad Autonoma Metropolitana. Unidad Iztapalapa, 2010. | es_CO |
dc.relation.references | Jayakumar, R., et al., Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progress in Materials Science, 2010. 55(7): p. 675-709. | es_CO |
dc.relation.references | Hamed, I., F. Özogul, and J.M. Regenstein, Industrial applications of crustacean byproducts (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 2016. 48: p. 40-50. | es_CO |
dc.relation.references | Velásquez, C.L., Algunas potencialidades de la quitina y el quitosano para usos relacionados con la agricultura en Latinoamérica. Revista UDO Agrícola, 2008. 8(1): p. 1-22. | es_CO |
dc.relation.references | Bautista-Baños, S., et al., Quitosano: una alternativa natural para reducir microorganismos postcosecha y mantener la vida de anaquel de productos hortofrutícolas. Revista Iberoamericana de tecnología postcosecha, 2005. 7(1): p. 1-6. | es_CO |
dc.relation.references | Chandran, R., et al., SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron, 2016. 82: p. 74-85. | es_CO |
dc.relation.references | Barros, I., L. Guzmán, and A. Tarón, EXTRACCIÓN Y COMPARACIÓN DE LA QUITINA OBTENIDA A PARTIR DEL CAPARAZON DE Callinectes sapidus Y Penaeus vannameis. Revista UDCA Actualidad & Divulgación Científica, 2015. 18(1): p. 227-234. | es_CO |
dc.relation.references | Fernando, L.A.T., et al., Chitin Extraction and Synthesis of Chitin-Based Polymer Films from Philippine Blue Swimming Crab (Portunus pelagicus) Shells. Procedia Chemistry, 2016. 19: p. 462-468. | es_CO |
dc.relation.references | Mohammed, M.H., P.A. Williams, and O. Tverezovskaya, Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids, 2013. 31(2): p. 166-171. | es_CO |
dc.relation.references | Cuong, H.N., et al., Preparation and characterization of high purity β-chitin from squid pens (Loligo chenisis). International Journal of Biological Macromolecules, 2016. 93, Part A: p. 442-447. | es_CO |
dc.relation.references | Greven, H., M. Kaya, and T. Baran, The presence of α-chitin in Tardigrada with comments on chitin in the Ecdysozoa. Zoologischer Anzeiger - A Journal of Comparative Zoology, 2016. 264: p. 11-16. | es_CO |
dc.relation.references | Arbia, W., et al., Optimization of medium composition for enhanced chitin extraction from Parapenaeus longirostris by Lactobacillus helveticus using response surface methodology. Food Hydrocolloids, 2013. 31(2): p. 392-403. | es_CO |
dc.relation.references | Kumari, S., et al., Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology & Innovation, 2015. 3: p. 77-85. | es_CO |
dc.relation.references | Sayari, N., et al., Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities. International Journal of Biological Macromolecules, 2016. 87: p. 163-171. | es_CO |
dc.relation.references | Kaya, M., et al., Comparison of chitin structures isolated from seven Orthoptera species. International Journal of Biological Macromolecules, 2015. 72: p. 797-805. | es_CO |
dc.relation.references | Kaya, M. and T. Baran, Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). International Journal of Biological Macromolecules, 2015. 75: p. 7-12. | es_CO |
dc.relation.references | Sierra, D.M.E., C.P.O. Orozco, and W.A. Ospina, Optimización de un protocolo de extracción de quitina y quitosano desde caparazones de crustáceos. Scientia et Technica, 2013. 18(1): p. 260-266. | es_CO |
dc.relation.references | Peña, L.E., Introducción a los insectos de Chile. 1996: Editorial Universitaria. | es_CO |
dc.relation.references | Muthukrishnan, S., et al., 7 - Chitin Metabolism in Insects A2 - Gilbert, Lawrence I, in Insect Molecular Biology and Biochemistry. 2012, Academic Press: San Diego. p. 193-235. | es_CO |
dc.relation.references | Carbonell, K.J. and J.E. Lattke, El mundo de las hormigas. 2004: Equinoccio. | es_CO |
dc.relation.references | singoli, V., La gran enciclopedia de los animales. Script ed. 2012. | es_CO |
dc.relation.references | Mendizabal, F.M., Abejas. 2005: Editorial Albatros. | es_CO |
dc.relation.references | Sánchez, O., et al., Aportes para el análisis del sector apicola Colombiano. Journal of Agricultural science and Technology, 2013. 2(4): p. 469-483. | es_CO |
dc.relation.references | Montés, F.J., El universo de los insectos. 2013: Mundi-Prensa Libros. | es_CO |
dc.relation.references | Vargas-Niño¹, A.P., et al., Lista de los géneros de Termitidae (Insecta: Isoptera) de Colombia. Biota Colombiana, 2005. 6(2): p. 181-190. | es_CO |
dc.relation.references | Liotta, G., Los insectos y sus daños en la madera: problemas de restauración. Vol. 4. 2000: Editorial Nerea. | es_CO |
dc.relation.references | Méndez, J.P., et al., CONTAMINACIÓN Y FITOTOXICIDAD EN PLANTAS POR METALES PESADOS PROVENIENTES DE SUELOS Y AGUA [PLANT CONTAMINATION AND PHYTOTOXICITY DUE TO HEAVY METALS FROM SOIL AND WATER]. Tropical and Subtropical Agroecosystems, 2009. 10(1): p. 29-44 | es_CO |
dc.relation.references | Cañizares-Villanueva, R.O., Biosorción de metales pesados mediante el uso de biomasa microbiana. REVISTA LATINOAMERICANA DE MICROBIOLOGIA-MEXICO-, 2000. 42(3): p. 131-143. | es_CO |
dc.relation.references | Skoog, D.A., D.M. West, and F.J. Holler, Fundamentos de química analítica. Vol. 2. 1997: Reverté. | es_CO |
dc.relation.references | Sohbatzadeh, H., et al., U(VI) biosorption by bi-functionalized Pseudomonas putida @ chitosan bead: Modeling and optimization using RSM. International Journal of Biological Macromolecules, 2016. 89: p. 647-658. | es_CO |
dc.relation.references | Zhou, W., et al., Biosorption of copper(II) and cadmium(II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium. Colloids and Surfaces B: Biointerfaces, 2009. 72(2): p. 295-302. | es_CO |
dc.relation.references | Saravanan, D., T. Gomathi, and P.N. Sudha, Sorption studies on heavy metal removal using chitin/bentonite biocomposite. International Journal of Biological Macromolecules, 2013. 53: p. 67-71. | es_CO |
dc.relation.references | Authors: Höhne, G., Hemminger, Wolfgang F., Flammersheim, H.-J., Differential Scanning Calorimetry. 2 ed ed. 2003. | es_CO |
dc.relation.references | Brugnerotto, J., et al., An infrared investigation in relation with chitin and chitosan characterization. Polymer, 2001. 42(8): p. 3569-3580. | es_CO |
dc.relation.references | Kasaai, M.R., A review of several reported procedures to determine the degree of Nacetylation for chitin and chitosan using infrared spectroscopy. Carbohydrate Polymers, 2008. 71(4): p. 497-508. | es_CO |
dc.relation.references | CARDENAS, G. and S.P. MIRANDA, FTIR AND TGA STUDIES OF CHITOSAN COMPOSITE FILMS. Journal of the Chilean Chemical Society, 2004. 49: p. 291-295. | es_CO |
dc.relation.references | Pickering, W.F., Química analítica moderna. 1980: Reverté. | es_CO |
dc.relation.references | Ruiz, S.G., M.I.S. Alonso, and D.P. Quintanilla, Analisis Instrumental. Vol. 1. 2009: Netbiblo. | es_CO |
dc.relation.references | Skoog, D.A., F.J. Holler, and T.A. Nieman, Principios de análisis instrumental. Ed. McGraw Hill, 5ta Edición, 2001, ISBN, 1998. 217660172. | es_CO |
dc.relation.references | Sienko, M.J., Problemas de química. 1996: Reverté | es_CO |
dc.relation.references | Navarrete, N.M., Termodinámica y cinética de sistemas : alimento entorno. Vol. Editorial Universitat Politècnica de València. 1998. 372 | es_CO |
dc.relation.references | Walton, H.F. and J. Reyes, Análisis químico e instrumental moderno. 1983: Reverté. | es_CO |
dc.relation.references | Google Maps. 2016 Available from: https://www.google.es/maps/place/Colombia/@-1.3978682,-73.1805693,5z/data=!4m5!3m4!1s0x8e15a43aae1594a3:0x9a0d9a04eff2a340!8m2!3d4.5 70868!4d-74.297333. | es_CO |
dc.relation.references | Baran, A., et al., Comparative studies on the adsorption of Cr(VI) ions on to various sorbents. Bioresource Technology, 2007. 98(3): p. 661-665. | es_CO |
dc.relation.references | Kaya, M., et al., Chitosan nanofiber production from Drosophila by electrospinning. International Journal of Biological Macromolecules, 2016. 92: p. 49-55. | es_CO |
dc.relation.references | Paulino, A.T., et al., Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydrate Polymers, 2006. 64(1): p. 98-103. | es_CO |
dc.relation.references | Abdou, E.S., K.S. Nagy, and M.Z. Elsabee, Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 2008. 99(5): p. 1359-1367. | es_CO |
dc.relation.references | Yen, M.-T., J.-H. Yang, and J.-L. Mau, Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 2009. 75(1): p. 15-21. | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Ingeniería Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Castañeda_2016_TG.pdf | Castañeda_2016_TG | 2,66 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.