• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ingenierías y Arquitectura
  • Ingeniería Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2261
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorRivera Guerrero, Manuel Andres.-
    dc.date.accessioned2022-06-23T03:05:07Z-
    dc.date.available2017-03-15-
    dc.date.available2022-06-23T03:05:07Z-
    dc.date.issued2017-
    dc.identifier.citationRivera Guerrero, M. A. (2016). Caracterización de la materia de construcción (Batumen), de los nidos de cuatro especies de abejas sin aguijón presentes en Norte de Santander (Colombia) [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2261es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2261-
    dc.descriptionEn el presente trabajo se realizó la caracterización del batumen (material de construcción) proveniente de nidos de cuatro especies de abejas sin aguijón: Melipona favosa favosa, Melipona compressipes, Melipona fuscipes y Partamona sp., ubicados en los municipios de los Patios y Pamplonita del departamento Norte de Santander, utilizando diversas técnicas analíticas como: espectrometría infrarroja (FTIR-ATR), análisis termogravimétrico (TGA) simultáneo con calorimetría diferencial de barrido (DSC), Difracción de rayos X (DRX) y Fluorescencia de rayos X (FRX). El análisis termogravimétrico (TGA) permitió determinar que la pérdida de peso para todas la muestras debido a la humedad fue de 2-4%, y la pérdida de peso no asociada a la humedad varió de 1,30% a 10,95%. Con la calorimetría diferencial de barrido (DSC) se encontró en todas la muestras la presencia de dos picos, el primero se encontró en un rango de temperatura de 39,41 o C a 196,54 o C con una variación de entalpía de 220,13 (J/g) a 396,6 (J/g). El segundo se encontró en un rango de temperatura de 195,78 o C a 804,22 o C con una variación de entalpía de 13272 (J/g) a 24613,66 (J/g). La técnica de difracción de rayos X (FRX) permitió determinar la composición elemental de las muestras que mayoritariamente contienen SiO2 (60,94% -66,83%), Al2O3 (15,85% - 21,25%) y Fe2O3 (7,16% - 8,90%). Los resultados de la espectroscopía infrarroja (FTIR-ATR) confirmaron la presencia de compuestos inorgánicos como SiO2, Fe2O3, entre otros, y de compuestos orgánicos como alcanos, alquenos, alcoholes, esteres, halogenuros ácidos, amidas secundarias y compuestos halogenados. La cristalinidad de las muestras, se determinó mediante difracción de rayos X (DRX), observando mediante esta técnica que los minerales cuarzo y moscovita están presentes en el batumen de las diferentes especies.es_CO
    dc.description.abstractThis work shows a characterization of the batumen (building material used by bees) from nests of four species of stingless bees: Melipona favosa favosa, Melipona compressipes, Melipona fuscipes and Partamona sp., located in the municipalities of Los Patios and Pamplonita (Norte de Santander), using analytical techniques such as: infrared spectroscopy (FTIR-ATR), simultaneous thermogravimetric analysis (TGA) / differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray fluorescence (FRX). Thermogravimetric analysis (TGA) allowed determining weight loss on samples. The percentage of moisture in all samples was ranging between 2 to 4%, and weight loss not associated with moisture ranged from 1.30% to 10.95%. With the technique differential scanning calorimetry (DSC) the presence of two peaks was found in all samples, the first one was found in a temperature range of 39.41 o C to 196.54 o C with an enthalpy variation of 220.13 ( J / g) at 396.6 (J / g). The second one was found in a temperature range of 195.78 o C to 804.22 o C with a change in enthalpy of 13272 (J / g) to 24613.66 (J / g). The X-ray diffraction (FRX) permitted the determination of the elemental composition. All samples have SiO2 (60.94% - 66.83%), Al2O3 (15.85% - 21.25%) and Fe2O3, 16% - 8.90%). The results of infrared spectroscopy (FTIR-ATR) confirmed the presence of inorganic compounds such as SiO2, Fe2O3, among others, and organic compounds such as alkanes, alkenes, alcohols, esters, acid halides, secondary amides and halogen compounds. The crystallinity was determined by X-ray diffraction (XRD). This technique showed that Quartz and muscovite were found in the batumen samples.es_CO
    dc.format.extent61es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ingenierías y Arquitectura.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleCaracterización de la materia de construcción (Batumen), de los nidos de cuatro especies de abejas sin aguijón presentes en Norte de Santander, (Colombia).es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2016-12-15-
    dc.relation.referencesHeravi, G., T. Nafisi, and R. Mousavi, Evaluation of energy consumption during production and construction of concrete and steel frames of residential buildings. Energy and Buildings, 2016. 130: p. 244-252.es_CO
    dc.relation.referencesHuang, J. and K.R. Gurney, The variation of climate change impact on building energy consumption to building type and spatiotemporal scale. Energy, 2016. 111: p. 137-153.es_CO
    dc.relation.referencesSantamouris, M., Cooling the buildings – past, present and future. Energy and Buildings, 2016. 128: p. 617-638.es_CO
    dc.relation.referencesSierra-Pérez, J., et al., Introducing eco-ideation and creativity techniques to increase and diversify the applications of eco-materials: The case of cork in the building sector. Journal of Cleaner Production, 2016. 137: p. 606-616.es_CO
    dc.relation.referencesShukla, A., G.N. Tiwari, and M.S. Sodha, Embodied energy analysis of adobe house. Renewable Energy, 2009. 34(3): p. 755-761.es_CO
    dc.relation.referencesÖzçınar, Z., et al., 2nd Cyprus International Conference on Educational Research (CY-ICER 2013)Various Types of Earth Buildings. Procedia - Social and Behavioral Sciences, 2013. 89: p. 226-230.es_CO
    dc.relation.referencesMillogo, Y., M. Hajjaji, and R. Ouedraogo, Microstructure and physical properties of lime-clayey adobe bricks. Construction and Building Materials, 2008. 22(12): p. 2386-2392.es_CO
    dc.relation.referencesSerrano, S., C. Barreneche, and L.F. Cabeza, Use of by-products as additives in adobe bricks: Mechanical properties characterisation. Construction and Building Materials, 2016. 108: p. 105-111.es_CO
    dc.relation.referencesParra-Saldivar, M.L. and W. Batty, Thermal behaviour of adobe constructions. Building and Environment, 2006. 41(12): p. 1892-1904.es_CO
    dc.relation.referencesQuagliarini, E., M. D'Orazio, and S. Lenci, 16 - The properties and durability of adobe earth-based masonry blocks, in Eco-Efficient Masonry Bricks and Blocks. 2015, Woodhead Publishing: Oxford. p. 361-378.es_CO
    dc.relation.referencesCarmona, A., Manual para productores sobre el manejo de las abejas sin aguijón. Veracruz, in Facultad de Medicina Veterinaria y ootecnia. 2010, Universidad Veracruzana. p. 80.es_CO
    dc.relation.referencesYang, T., X. Yao, and Z. Zhang, Quantification of chloride diffusion in fly ash–slagbased geopolymers by X-ray fluorescence (XRF). Construction and Building Materials, 2014. 69: p. 109-115.es_CO
    dc.relation.referencesYtreberg, E., et al., XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats. Environmental Pollution, 2016. 213: p. 594-599.es_CO
    dc.relation.referencesTowett, E.K., K.D. Shepherd, and G. Cadisch, Quantification of total element concentrations in soils using total X-ray fluorescence spectroscopy (TXRF). Science of The Total Environment, 2013. 463–464: p. 374-388.es_CO
    dc.relation.referencesTowett, E.K., et al., Total elemental composition of soils in Sub-Saharan Africa and relationship with soil forming factors. Geoderma Regional, 2015. 5: p. 157-168.es_CO
    dc.relation.referencesChen, M., J. Lin, and S. Wu, Potential of recycled fine aggregates powder as filler in asphalt mixture. Construction and Building Materials, 2011. 25(10): p. 3909-3914.es_CO
    dc.relation.referencessIvošević, T., I. Orlić, and I.B. Radović, Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015. 363: p. 119-123.es_CO
    dc.relation.referencesSomerset, V.S., et al., The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites. Talanta, 2004. 64(1): p. 109-114.es_CO
    dc.relation.referencesHuang, T.C., 6.1 - XRF: X-Ray Fluorescence, in Encyclopedia of Materials Characterization. 1992, Butterworth-Heinemann: Boston. p. 338-348.es_CO
    dc.relation.referencesBusca, G. and G. Ramis, FT-IR study of the surface properties of K2O-TiO2. Applied Surface Science, 1986. 27(1): p. 114-126.es_CO
    dc.relation.referencesYanagisawa, Y. and S.-i. Kashima, Interaction of CO with CaO surfaces: A TPD and FTIR study. Surface Science, 2000. 454–456: p. 379-383.es_CO
    dc.relation.referencesBlitzer, E.J., et al., Pollination services for apple are dependent on diverse wild bee communities. Agriculture, Ecosystems & Environment, 2016. 221: p. 1-7.es_CO
    dc.relation.referencesCatteaux, R., et al., Synthesis, characterization and bioactivity of bioglasses in the Na2O–CaO–P2O5–SiO2 system prepared via sol gel processing. Chemical Engineering Research and Design, 2013. 91(12): p. 2420-2426.es_CO
    dc.relation.referencesSelvamani, T., et al., Rectangular MgO microsheets with strong catalytic activity. Materials Chemistry and Physics, 2011. 129(3): p. 853-861.es_CO
    dc.relation.referencesWacławska, I., M. Szumera, and J. Sułowska, Structural characterization of zincmodified glasses from the SiO2-P2O5-K2O-CaO-MgO system. Journal of Alloys and Compounds, 2016. 666: p. 352-358.es_CO
    dc.relation.referencesGivan, A., et al., FTIR and computational studies of pure and water containing SO3 species in solid argon matrices. Journal of Molecular Structure, 2007. 830(1– 3): p. 21-34.es_CO
    dc.relation.referencesHarizanov, O., T. Ivanova, and A. Harizanova, Study of sol–gel TiO2 and TiO2– MnO obtained from a peptized solution. Materials Letters, 2001. 49(3–4): p. 165-171.es_CO
    dc.relation.referencesPuthai, W., et al., Effect of firing temperature on the water permeability of SiO2– ZrO2 membranes for nanofiltration. Journal of Membrane Science, 2016. 497: p. 348-356.es_CO
    dc.relation.referencesJanssen, H., J. Carmeliet, and H. Hens, The influence of soil moisture transfer on building heat loss via the ground. Building and Environment, 2004. 39(7): p. 825-836.es_CO
    dc.relation.referencesRees, S.W., Z. Zhou, and H.R. Thomas, The influence of soil moisture content variations on heat losses from earth-contact structures: an initial assessment. Building and Environment, 2001. 36(2): p. 157-165.es_CO
    dc.relation.referencesPtáček, P., et al., Investigation of Subterranean Termites Nest Material Composition, Structure and Properties. . InTech, 2013: p. 519-549.es_CO
    dc.relation.referencesKarathanasis, A.D. and B.F. Hajek, Revised Methods for Rapid Quantitative Determination of Minerals in Soil Clays1. Soil Science Society of America Journal, 1982. 46(2): p. 419-425.es_CO
    dc.relation.referencesNantes, G., Abejas silvestres y polinización. Manejo Integrado de Plagas y Agroecología (Costa Rica), 2005. 75: p. 7-20.es_CO
    dc.relation.referencesBartenfelder, D.C. and A.D. Karathanasis, A Differential Scanning Calorimetry Evaluation of Quartz Status in Geogenic and Pedogenic Environments. Soil Science Society of America Journal, 1989. 53(3): p. 961-967.es_CO
    dc.relation.referencesInstruments, T. Equipo SDT-Q600 de TA Instruments. 2016 [cited 2016; Available from: http://www.tainstruments.com/q600/?lang=es.es_CO
    dc.relation.referencesPalacios, E., Estructura de la comunidad de abejas sin aguijón en tres unidades de paisaje del piedemonte llanero Colombiano (META, COLOMBIA), in Biologia. 2004, Pontificia Universidad Javeriana. p. 87.es_CO
    dc.relation.referencesMichener, C.D., The Bees of the world. Second ed. ed. 2007.es_CO
    dc.relation.referencesRodríguez, Y.C., Contribución al conocimiento de las características fisicoquímicas y térmicas de mieles de siete especies de abejas sin aguijón presentes en Norte de Santander, Colombia, aplicando análisis multivariado, in Facultad de Ciencias Básicas, Departamento de Química, Maestría en Química. . 2015, Universidad de Pamplona. p. 93.es_CO
    dc.relation.referencesNantes, G., Abejas corbiculadas de Colombia Hymenoptera: Apidae. Universidad Nacional de Colombia, 2005: p. 156.es_CO
    dc.relation.referencesAlmeida-Muradian, L., K. Martin Stramm, and L. Estevinho, Efficiency of the FTIR ATR spectrometry for the prediction of the physicochemical characteristics oMelipona subnitida honey and study of the temperature's effect on those properties Food Science & Technology, 2014. 49: p. 188–195.fes_CO
    dc.relation.referencesRamón-Sierra, J.M., J.C. Ruiz-Ruiz, and E. de la Luz Ortiz-Vázquez, Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys. Food Chemistry, 2015. 183: p. 43-48.es_CO
    dc.relation.referencesBiluca, F.C., et al., Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis, 2016. 50: p. 61-69.es_CO
    dc.relation.referencesPinzon, F., et al., Thermoanalytical and infrared spectroscopic investigations on wax samples of native Colombian bees living in different altitudes. Engineering in life sciences, 2013. 13: p. 520-527.es_CO
    dc.relation.referencesTorres, A., W. Hoffmann, and I. Lamprecht, Thermal investigations of a nest of the stingless bee Tetragonisca angustula Illiger in Colombia. Thermochimica Acta, 2007. 458(1–2): p. 118-123.es_CO
    dc.relation.referencesSalazar, M.d.l.A.A., Estructuración genética de Partamona bilineata (Hymenoptera: Apoidea) en el Corredor del Bosque Nuboso de Baja Verapaz, Guatemala. , in Facultad De Ciencias Químicas Y Farmacia. 2015, Universidad De San Carlos De Guatemala. p. 80.es_CO
    dc.relation.referencesJames Gould, C.G., Animal Architects: Building and the Evolution of Intelligence. 2007: Basic Books.es_CO
    dc.relation.referencesJames L. Gould, C.G.G., The Animal Mind. 1999: Scientific American Library.es_CO
    dc.relation.referencesKo, F.K., Engineering Properties of Spider Silk Fibers, in Natural Fibers, Plastics and Composites, F.T. Wallenberger and N.E. Weston, Editors. 2004, Springer US: Boston, MA. p. 27-49.es_CO
    dc.relation.referencesMustapa, M.S., et al., Thermal comfort and occupant adaptive behaviour in Japanese university buildings with free running and cooling mode offices during summer. Building and Environment, 2016. 105: p. 332-342.es_CO
    dc.relation.referencesLin, B., et al., Evaluation and comparison of thermal comfort of convective and radiant heating terminals in office buildings. Building and Environment, 2016. 106: p. 91-102.es_CO
    dc.relation.referencesAlmeida, R.M.S.F., N.M.M. Ramos, and V.P. de Freitas, Thermal comfort models and pupils’ perception in free-running school buildings of a mild climate country. Energy and Buildings, 2016. 111: p. 64-75.es_CO
    dc.relation.referencesNishimura, K., H. Hondo, and Y. Uchiyama, Derivation of energy-embodiment functions to estimate the embodied energy from the material content. Energy, 1996. 21(12): p. 1247-1256.es_CO
    dc.relation.referencesTaylor, P., R.J. Fuller, and M.B. Luther, Energy use and thermal comfort in a rammed earth office building. Energy and Buildings, 2008. 40(5): p. 793-800.es_CO
    dc.relation.referencesOlukoya Obafemi, A.P. and S. Kurt, Environmental impacts of adobe as a building material: The north cyprus traditional building case. Case Studies in Construction Materials, 2016. 4: p. 32-41.es_CO
    dc.relation.referencesTorres, J.C.R., El adobe y otros materiales de sistemas constructivos en tierra cruda: caracterización con fines estructurales. Apuntes, 2012. 25(2): p. 164-181.es_CO
    dc.relation.referencesRivero Bolaños, S., El uso masivo de la tierra como material de construcción en Colombia Revista de Estudios sobre Patrimonio Cultura, 2007. 20(2): p. 354 - 363.es_CO
    dc.relation.referencesEstadística, D.A.N.d. Estadísticas de Cemento Gris - ECG. 2016; Available from: http://www.dane.gov.co/index.php/estadisticas-portema/construccion/estadisticas-de-cemento-gris.es_CO
    dc.relation.referencesBravo, M., et al., Durability performance of concrete with recycled aggregates from construction and demolition waste plants. Construction and Building Materials, 2015. 77: p. 357-369.es_CO
    dc.relation.referencesSilva, R.V., J. de Brito, and R.K. Dhir, Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 2014. 65: p. 201-217.es_CO
    dc.relation.referencesDilbas, H., M. Şimşek, and Ö. Çakır, An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume. Construction and Building Materials, 2014. 61: p. 50-59.es_CO
    dc.relation.referencesOssa, A., J.L. García, and E. Botero, Use of recycled construction and demolition waste (CDW) aggregates: A sustainable alternative for the pavement construction industry. Journal of Cleaner Production, 2016. 135: p. 379-386.es_CO
    dc.relation.referencesDomínguez, A., et al., Recycling of construction and demolition waste generated by building infrastructure for the production of glassy materials. Ceramics International, 2016. 42(14): p. 15217-15223.es_CO
    dc.relation.referencesHemminger, W. and H. Flammersheim, Differential Scaning Calorimetry. 2 ed. 2003: Alemania Springer. 298.es_CO
    dc.relation.referencesSkoog, D., F. Holler, and T. Nieman, Principios de análisis instrumental. 5 ed. 2001. 1024.es_CO
    dc.relation.referencesSandler, S.R., et al., Experiment 15 - Thermogravimetric analysis, in Polymer Synthesis and Characterization. 1998, Academic Press: San Diego. p. 108-119.es_CO
    dc.relation.referencesKrahnstöver, T., J. Plattner, and T. Wintgens, Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA). Water Research, 2016. 101: p. 510-518.es_CO
    dc.relation.referencesXing, S., et al., Characterization of the decomposition behaviors of catalytic pyrolysis of wood using copper and potassium over thermogravimetric and PyGC/MS analysis. Energy, 2016. 114: p. 634-646.es_CO
    dc.relation.referencesGheno, G., et al., Determination of degradation kinetics of two polyester thermosetting powder coatings using TGA and colorimetric analysis. Progress in Organic Coatings, 2015. 78: p. 239-243.es_CO
    dc.relation.referencesArenales Rivera, J., et al., Thermal degradation of paper industry wastes from a recovered paper mill using TGA. Characterization and gasification test. Waste Management, 2016. 47, Part B: p. 225-235.es_CO
    dc.relation.referencesEssabir, H., et al., Mechanical and thermal properties of hybrid composites: Oilpalm fiber/clay reinforced high density polyethylene. Mechanics of Materials, 2016. 98: p. 36-43.es_CO
    dc.relation.referencesFlores Ledesma, A., et al., Análisis químico elemental y de fases por medio de PIXE, DSC, TGA y DRX en MTA Angelus® y un cemento Portland blanco. Revista Odontológica Mexicana, 2016. 20(3): p. 187-192.es_CO
    dc.relation.referencesGómez-Siurana, A., et al., TGA/FTIR study of tobacco and glycerol–tobacco mixtures. Thermochimica Acta, 2013. 573: p. 146-157.es_CO
    dc.relation.referencesGunasee, S.D., et al., Pyrolysis and combustion of municipal solid wastes: Evaluation of synergistic effects using TGA-MS. Journal of Analytical and Applied Pyrolysis, 2016. 121: p. 50-61.es_CO
    dc.relation.referencesQuan, C., N. Gao, and Q. Song, Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. Journal of Analytical and Applied Pyrolysis, 2016. 121: p. 84-92.es_CO
    dc.relation.referencesLin, Y., et al., Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energy Conversion and Management, 2016. 118: p. 345-352.es_CO
    dc.relation.referencesMiyazawa, M., et al., Gravimetric determination of soil organic matter. Brazilian Archives of Biology and Technology, 2000. 43: p. 475-478.es_CO
    dc.relation.referencesEscudey, M., et al., Differential thermogravimetric analysis of oxalate in hydrogen peroxide- treated allophanic soils. Communications in Soil Science and Plant Analysis, 1999. 30(7-8): p. 937-946.es_CO
    dc.relation.referencesCavallaro, G., et al., Thermal and dynamic mechanical properties of beeswaxhalloysite nanocomposites for consolidating waterlogged archaeological woods. Polymer Degradation and Stability, 2015. 120: p. 220-225.es_CO
    dc.relation.referencesFavvas, E.P., et al., Characterization of natural resin materials using water adsorption and various advanced techniques. Applied Physics A, 2015. 119(2): p. 735-743.es_CO
    dc.relation.referencesTsanaktsidis, C.G., et al., Natural resins and their application in antifouling fuel technology: Part I: Improving the physicochemical properties of diesel fuel using natural resin polymer as a removable additive. Fuel Processing Technology, 2013. 114: p. 135-143.es_CO
    dc.relation.referencesFortunato, A., 5 - DSC: history, instruments and devices A2 - Pignatello, Rosario, in Drug–Biomembrane Interaction Studies. 2013, Woodhead Publishing. p. 169-212.es_CO
    dc.relation.referencesLi, L., et al., Thermal analysis of melting and freezing processes of phase change materials (PCMs) based on dynamic DSC test. Energy and Buildings, 2016. 130: p. 388-396.es_CO
    dc.relation.referencesMajewsky, M., et al., Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Science of The Total Environment, 2016. 568: p. 507-511.es_CO
    dc.relation.referencesYéo, D.P., et al., DSC investigation of phase equilibria in the Bi-Pb-Sb system. The Journal of Chemical Thermodynamics, 2016. 101: p. 316-322.es_CO
    dc.relation.referencesPu, W., S. Pang, and H. Jia, Using DSC/TG/DTA techniques to re-evaluate the effect of clays on crude oil oxidation kinetics. Journal of Petroleum Science and Engineering, 2015. 134: p. 123-130.es_CO
    dc.relation.referencesShamim, N., et al., The glass transition of trinitrotoluene (TNT) by flash DSC. Thermochimica Acta, 2015. 620: p. 36-39.es_CO
    dc.relation.referencesTomaszewska-Gras, J., Rapid quantitative determination of butter adulteration with palm oil using the DSC technique. Food Control, 2016. 60: p. 629-635.es_CO
    dc.relation.referencesPlante, A.F., J.M. Fernández, and J. Leifeld, Application of thermal analysis techniques in soil science. Geoderma, 2009. 153(1–2): p. 1-10.es_CO
    dc.relation.referencesLopez-Capel, E., et al., Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Science Society of America Journal, 2005. 69(1): p. 136-140.es_CO
    dc.relation.referencesRosa, A.H., et al., Influence of alkaline extraction on the characteristics of humic substances in Brazilian soils. Thermochimica Acta, 2005. 433(1–2): p. 77-82.es_CO
    dc.relation.referencesSchnitzer, M. and I. Hoffman, A Thermogravimetric Approach to the Classification of Organic Soils1. Soil Science Society of America Journal, 1966. 30(1): p. 63-66.es_CO
    dc.relation.referencesRuguo Zhang, H.Z., Zheng Zhang, Hua Zheng, Ying Feng, Wenwen Zhang., Characterization of Five Natural Resins and Waxes. Advanced Materials Research, 2012. 418-420: p. 643-650.es_CO
    dc.relation.referencesSandler, S.R., et al., Experiment 14 - Infrared spectroscopy, in Polymer Synthesis and Characterization. 1998, Academic Press: San Diego. p. 98-107.es_CO
    dc.relation.referencesRubinson, K. and J. Rubinson, Analisis Instrumental. 2001. 872.es_CO
    dc.relation.referencesÖzgenç, Ö., et al., Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017. 171: p. 395-400.es_CO
    dc.relation.referencesStoch, P., et al., Structure of phosphate and iron-phosphate glasses by DFT calculations and FTIR/Raman spectroscopy. Journal of Non-Crystalline Solids, 2016. 450: p. 48-60.es_CO
    dc.relation.referencesJiang, X., et al., Determination of the acid values of edible oils via FTIR spectroscopy based on the OH stretching band. Food Chemistry, 2016. 212: p. 585-589.es_CO
    dc.relation.referencesBaysal, M., et al., Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. International Journal of Coal Geology, 2016. 163: p. 166-176.es_CO
    dc.relation.referencesGonzález-Muñoz, A., et al., Rapid prediction of moisture content of quinoa (Chenopodium quinoa Willd.) flour by Fourier transform infrared (FTIR) spectroscopy. Journal of Cereal Science, 2016. 71: p. 246-249.es_CO
    dc.relation.referencesFreitas, R.P., et al., Analysis of clay smoking pipes from archeological sites in the region of the Guanabara Bay (Rio de Janeiro, Brazil) by FT-IR. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016. 163: p. 140-144.es_CO
    dc.relation.referencesMargenot, A.J., et al., Soil Analysis and Applications of IR Spectroscopy, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 2016, Elsevier.es_CO
    dc.relation.referencesViscarra Rossel, R.A., et al., Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 2006. 131(1–2): p. 59-75.es_CO
    dc.relation.referencesPrati, S., et al., Application of ATR-far-infrared spectroscopy to the analysis of natural resins. Analytical and Bioanalytical Chemistry, 2011. 399(9): p. 3081-3091.es_CO
    dc.relation.referencesChen, J.-b., Q. Zhou, and S.-q. Sun, Direct chemical characterization of natural wood resins by temperature-resolved and space-resolved Fourier transform infrared spectroscopy. Journal of Molecular Structure, 2016. 1115: p. 55-62.es_CO
    dc.relation.referencesEpp, J., 4 - X-ray diffraction (XRD) techniques for materials characterization, in Materials Characterization Using Nondestructive Evaluation (NDE) Methods. 2016, Woodhead Publishing. p. 81-124.es_CO
    dc.relation.referencesBhagath Singh, G.V.P. and K.V.L. Subramaniam, Quantitative XRD study of amorphous phase in alkali activated low calcium siliceous fly ash. Construction and Building Materials, 2016. 124: p. 139-147.es_CO
    dc.relation.referencesElwej, R. and F. Hlel, Hydrothermal synthesis, characterization by single crystal XRD, structural discussion and electric, dielectrical properties of (C6H9N2)2(Hg0.12Zn0.88)Cl4 hybrid compound. Physica E: Low-dimensional Systems and Nanostructures, 2016. 84: p. 498-504.es_CO
    dc.relation.referencesSenthil Kumar, R. and P. Rajkumar, Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Physics & Technology, 2014. 67: p. 30-41.es_CO
    dc.relation.referencesSilva, A.d.S., et al., Structural and morphological characterization of Poly(oethoxyaniline) Emeraldine-salt form using FTIR, XRD, LeBail Method and SEM. Journal of Molecular Structure, 2014. 1071: p. 1-5.es_CO
    dc.relation.referencesSanches, E.A., et al., Structural characterization of Chloride Salt of conducting polyaniline obtained by XRD, SAXD, SAXS and SEM. Journal of Molecular Structure, 2013. 1036: p. 121-126.es_CO
    dc.relation.referencesTam, P.L., Y. Cao, and L. Nyborg, XRD and XPS characterisation of transition metal silicide thin films. Surface Science, 2012. 606(3–4): p. 329-336.es_CO
    dc.relation.referencesFedi, B., et al., Structure determination of electrodeposited zinc-nickel alloys: thermal stability and quantification using XRD and potentiodynamic dissolution. Electrochimica Acta, 2016. 215: p. 652-666.es_CO
    dc.relation.referencesZhao, X., et al., Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids and Surfaces B: Biointerfaces, 2013. 104: p. 207-212.es_CO
    dc.relation.referencesScrivener, K.L., et al., Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cement and Concrete Research, 2004. 34(9): p. 1541-1547.es_CO
    dc.relation.referencesMitchell, L.D., J.C. Margeson, and P.S. Whitfield, e. Powder Diffraction, 2006. 21(2): p. 111-113.es_CO
    dc.relation.referencesSingh, V. and H.M. Agrawal, Qualitative soil mineral analysis by EDXRF, XRD and AAS probes. Radiation Physics and Chemistry, 2012. 81(12): p. 1796-1803.es_CO
    dc.relation.referencesKahle, M., M. Kleber, and R. Jahn, Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma, 2002. 109(3–4): p. 191-205.es_CO
    dc.relation.referencesEnsikat, H.J., et al., Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. Chemistry and Physics of Lipids, 2006. 144(1): p. 45-59.es_CO
    dc.relation.referencesMartínez, D.B.N., O. D. G.; González, A. J. B, ESPECTROMETRIA DE FLUORESCENCIA DE RAYOS X. REVISTA COLOMBIANA DE FÍSICA, 2006. 38(2): p. 790–793.es_CO
    dc.relation.referencesChamorro, H.M., Manual de Radioscopía. 2008, Universitario, E. C., Ed.; (San Vicente) Alicante.es_CO
    dc.relation.referencesGinés, M.G., Utilización De Un Equipo Portátil De Fluorescencia De Rayos X Para El Estudio De Metales Pesados En Suelos: Puesta A Punto Y Aplicación A Vertederos. 2010, Universidad de Alcalá.es_CO
    dc.relation.referencesBado, S., et al., The application of XRF and PIXE in the analysis of rice shoot and compositional screening of genotypes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016. 371: p. 407-412.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Ingeniería Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Rivera_2016_TG.pdfRivera_2016_TG1,94 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.