• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2207
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorGonzales Guitiérrez, Irina Lupita.-
    dc.date.accessioned2022-06-22T16:42:25Z-
    dc.date.available2018-01-02-
    dc.date.available2022-06-22T16:42:25Z-
    dc.date.issued2018-
    dc.identifier.citationGonzales Gutiérrez, I. L. (2017). Determinación experimental de los coeficientes de actividad del cloruro de sodio en la mezcla 2-hidroxi-etilamino butirato + h20 a 298,15 k mediante método electroquímico [Trabajo de Grado Pregrado, Universidad de Pamplona] Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2207es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/2207-
    dc.descriptionLos coeficientes de actividad iónica media para el NaCl en (2-HEAB + H2O) como mezcla solvente fueron determinados mediante la medición de potencial de celda: Na-(ISE)|NaCl (m), 2-HEAB (w), H2O (1-w)|Cl-(ISE) a diferentes molalidades (0.10 a 3.20) mol· kg−1 a 298.15 K. Se usaron diferentes fracciones de peso (w) del 2- HEAB con w = 0.01, 0.05, 0.1, 0.2, 0.3 y 0.4. A concentraciones más altas de w = 0.40, el NaCl se encontraba precipitado por el 2-HEAB en agua. Los parámetros de interacción de Pitzer 0, 1 y Cfueron usados para encontrar los valores de Coeficientes de Actividad, Coeficientes Osmóticos, Actividad del solvente y la Energía Libre de Gibss en Exceso del sistema de mezcla de electrolitos. Los resultados pueden ser interpretados por la formación de clatratos de 2-HEAB + agua.es_CO
    dc.description.abstractThe main objective is to continue with a series of electrochemistry work of mixtures of Ionic liquids and water as a solvent1 with to provide accurate data for future particular applications. The mean activity coefficients for NaCl in (2-HEAB + H2O) as a solvent mixture were determined by cell potential measurements: Na−ion selective electrode (ISE)|NaCl (m), 2-HEAB (w), H2O (1-w)|Cl−ion selective electrode (ISE) at molality from (0.10 to 3.20) mol·kg−1 at 298.15 K. Different weight fractions (w) of 2-HEAB with w = (0.01, 0.05, 0.1, 0.2, 0.3 and 0.4) were used. At higher concentration of w= 0.40, NaCl is salting out by 2-HEAB in water. The Pitzer ion interaction parameters 0, 1 and Cwere used to find the values of osmotic coefficients, solvent activity and the excess Gibbs free energy for the mixed electrolyte system. The results may be interpreted by the formation of 2- HEAB + water clathrate-like.A qualitative description of the relation between water and the 2-HEAB was done using the general AMBER force field (GAFF). Key words Ionic Liquid, 2-hidroxy-ethylammonium butyrate, mean activity coefficients, electromotive force, Nernst/Nikoskyn equation, Pitzer model.es_CO
    dc.format.extent72es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona – Facultad de Ciencias Básicas.es_CO
    dc.subjectLíquido Iónico, 2-hidroxi-etilamino butirato, Coeficientes de actividad media, fuerza electromotriz, Ecuación de Nernst/Nikoskyn, Modelo de Pitzer.es_CO
    dc.titleDeterminación experimental de los coeficientes de actividad del cloruro de sodio en la mezcla 2-hidroxi-etilamino butirato + h20 a 298,15 k mediante método electroquímico.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2017-10-02-
    dc.relation.referencesAbraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25.es_CO
    dc.relation.referencesAlvarez, V.H.; Dosil N.; González-Cabaleiro R.; Mattedi S.; Martin-Pastor M.; Iglesias M.; Navaza J.M. Brønsted ionic liquids for sustainable process: synthesis and physical properties. J. Chem. Eng. Data., 2010, 55, 625–632.es_CO
    dc.relation.referencesAmado, E.; Blanco, L.H. Conductance of asymmetric iodides of butyl-triethylammonium in toluene-acetonitrile mixtures at 25ºC. Physics and Chemistry of Liquids, 1995, 30 (9), 213-266.es_CO
    dc.relation.referencesAmado, E.; Blanco, L.H Partial molal volumes of asymmetric iodides of butyltriethyl- ammonium in a aqueous solutions at 298.15 K. Physics and Chemistry of Liquids, 2000, 38 (8), 451-458.es_CO
    dc.relation.referencesAmado, E.; Blanco, L.H. Osmotic and activity coefficients of aqueous solutions of KCl at temperatures of 283.15, 293.15 and 298.15 K. A new isopiestic apparatus. Fluid Phase Equilibra, 2004, 226 (2), 261-265.es_CO
    dc.relation.referencesAmado, E.; Blanco, L.H. Isopiestic determination of the osmotic and activity coefficients of dilute aqueous solutions of symmetrical and unsymmetrical quaternary ammonium bromides with a new isopiestic cell at 298,15 K. Fluid Phase Equilibria, 2005, 233 (2), pp. 230-233.es_CO
    dc.relation.referencesArcherd, D. thermodynamic properties of the NaCl + H2O System ll. Thermodynamic properties of NaCl (aq), NaCl.2 H2O(cr) and Phase equilibria. J. Phys. Chem. Eng. Ref. Data. 1992, 21, 793–829.es_CO
    dc.relation.referencesAvellaneda, J.A.: Estudio de los coeficientes osmóticos y de actividad de las sales asimétricas de amonio cuaternario en solución acuosa. Influencia de la variación de una de las cadenas hidrocarburo del catión. Tesis de Grado. Universidad Nacional de Colombia. Bogotá. 1984.es_CO
    dc.relation.referencesBinnemans, K. Ionic Liquid Crystals. Chemical Reviews, 2005, 105 (11), 4148- 4204.es_CO
    dc.relation.referencesBussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126 ,14101.es_CO
    dc.relation.referencesCalvo, J.C.: Estudio del coeficiente de actividad por el método isotónico de algunas sales de amonio cuaternario en solución acuosa. Tesis de grado. Universidad Nacional de Colombia. Bogotá. 1982es_CO
    dc.relation.referencesChirico, R.D.; Frenkel, M.; Magee, J.W.; Diky, V.; Muzny, C.D.; Kazakov, A.F.; Kroenlein, K. ; Abdulagatov, I.; Hardin,G.R. ; Acree Jr. W.E.;Brenneke, J.F.;Brown, P.L.; Cummings, P.T.; de Loos, T.W.; Friend, D.G.; Goodwin, A.R.H.;Hansen, L.D.; Haynes, W.M.; Koga, N.; Mandelis, A.; Marsh, K.N.; Mathias, P.M.; McCabe,C.; O'Connell, J.P.; Padua, A.; Rives, V. ; Schick, C.; Martin Trusler, J.P.; Vyazovkin,S.; Weir, R.D. ; Wu, J. Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support. J. Chem. Eng. Data, 2013, 58, 2699–2716.es_CO
    dc.relation.referencesChum, H.L.; Koch, V.R.; Miller, L.L.; Osteryoung, R.A. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. Journal of the American Chemical Society, 1975, 97 (11), 3264-3265.es_CO
    dc.relation.referencesChun, S.; Dzyuba, S.V.; Bartsch, R.A. Influence of Structural Variation in Room- Temperature Ionic Liquids on the Selectivity and Efficiency of Competitive Alkali Metal Salt Extraction by a Crown Ether. Analitical Chemistry, 2001, 73 (15), 3737- 3741.es_CO
    dc.relation.referencesCole, D.J. Homogeneous catalysis – new approaches to catalyst separation, recovery, and recycling. Science, 2003, 299 (5613), 1702-1706.es_CO
    dc.relation.referencesCrosthwaite, J.M.; Muldoon, M.J.; Dixon, J.K.; Anderson, J.L.; Brennecke, J.F. Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. The Journal of Chemical Thermodynamics, 2005, 37 (6), 559-568.es_CO
    dc.relation.referencesD.A. Case D.A, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, T.J. Giese, H. Gohlke, A.W. Goetz, D. Greene, N. Homeyer, S. Izadi, A. Kovalenko, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D. Mermelstein, K.M.es_CO
    dc.relation.referencesMerz, G. Monard, H., D. M. Y. and P. A. K. AMBER 2016. University of California, San Francisco, 2016.es_CO
    dc.relation.referencesDent, A.J.; Seddon, K.R.; Welton, T. The structure of halogenometallate complexes dissolved in both basic and acidic room-temperature halogenoaluminate (III) ionic liquids, determined by EXAFS. Journal of the Chemical Society, Chemical Communications, 1990, 4, 315-316.es_CO
    dc.relation.referencesDíaz, J.; Martínez, R.; Barrero, R. Ionic liquids: physicochemical properties and potential application in upgrading of heavy crude oils. Revista Ion, 2012, 25 (1), 61- 87.es_CO
    dc.relation.referencesDopico, D.; Hernández, Y.; León, V.; Bordallo, E. Líquidos iónicos para la transformación de biomasa lignocelulósica. Revista ICIDCA, 2013, 47 (1), 26-37.es_CO
    dc.relation.referencesDupont, J.; De Souza, R. F.; Suárez P. A. Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 2002, 102 (10), 3667-3691.es_CO
    dc.relation.referencesDzyuba, R.A.; Bartsch, R.A. New room-temperature ionic liquids with C2- symmetric imidazolium cations. Chemical Communications, 2001, 16, 1466-1467.es_CO
    dc.relation.referencesEbert, L.; Lange, J., 1928: citado en: Lindembaum, L.; Boyd, G.E. Osmotic and Activty Coefficients for the Symmetrical Tetraalkyl Ammonium Halides in Aqueous Solution at 25º. The Journal of Physical Chemistry A, 1964, 68 (4), 911-917.es_CO
    dc.relation.referencesEssmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method.J. Chem. Phys., 1995, 103, 8577.es_CO
    dc.relation.referencesGhalami-Choobar, B.Thermodynamic study of the ternary mixed electrolyte (NaCl + NiCl2 + H2O) system: Application of Pitzer model with higher-order electrostatic effects. J. Chem. Thermodynamics, 2011, 43, 901–907.es_CO
    dc.relation.referencesHarned, H.S.; Owen, B.B. The physical chemistry of electrolytic solutions; Reinhold: New York, 1958, 230-232.es_CO
    dc.relation.referencesHead-Gordon, T. Is water structure around hydrophobic groups clathratelike?. ProcNatlAcadSci U S A.1995, 92, 8308–8312.es_CO
    dc.relation.referencesHeintz, A.; Kulikov, D.V.; Verevkin, S.P. Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients at infinite dilution of polar solutes in 4- methyl-n-butyl-pyridinium tetrafluoroborate using gas-liquid chromatography. The Journal of Chemical Thermodynamics, 2002, 34 (8), 1341-1347.es_CO
    dc.relation.referencesHernández-Luis, F.; Amado-González, E.; Esteso, M. Activity coefficients of NaCl in trehalose-water and maltose-wáter mixtures at 298.15 K. Carbohydrate Research, 2003, 338, 1415–1424.es_CO
    dc.relation.referencesHernandez F. Determinación experimental de coeficientes de actividad de NaCl en mezclas de H2O-Metanol-Etanol por medición de la FEM. Tesis de Maestría. Universidad Autónoma de Tlaxcala, Tlaxcala-México. 2005es_CO
    dc.relation.referencesHess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem.1997, 18, 1463– 1472.es_CO
    dc.relation.referencesHolbrey, J.D.; Seddon, K.R. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. Journal of the Chemical Society, Dalton Transactions, 1999, 13, 2133-2140.es_CO
    dc.relation.referencesHuddleston, J.G.; Visser, A.E.; Reichert, W.R.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 2001, 3 (4), 156-164.es_CO
    dc.relation.referencesHurley, F.H.; Wier, T.P. The electrodeposition of aluminum from nonaqueous solutions at room temperature. Journal of The Electrochemical Society, 1951, 98 (5), 207-212.es_CO
    dc.relation.referencesKato, R.; Gmehling, J. Systems with ionic liquids: Measurement of VLE and γ∞ data and of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(Ol). The Journal of Chemical Thermodynamics, 2005, 37 (6), 603-619.es_CO
    dc.relation.referencesKeskin, S.; Kayrak-Talay, D.; Akman, U.; Hortacsu, O. A review of ionic liquids towards supercritical fluid applications. The Journal of Supercritical Fluids, 2007, 43 (1), 150–180.es_CO
    dc.relation.referencesKralisch, D.; Stark, A.; Körsten, S.; Kreisel, G.; Ondruschka, B. Energetic, environmental and economic balances: Spice up your ionic liquid research efficiency. Green Chemistry, 2005, 7 (5), 301-309.es_CO
    dc.relation.referencesLetcher, T.M.; Marciniak, A.; Marciniak, M.; Domanska, U.; Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid 1-hexyl-3- methyl-imidazolium bis (trifluoromethylsulfonyl)-imide using g.l.c. at T = (298.15, 313.15, and 333.15) K. The Journal of Chemical Thermodynamics, 2005, 37 (12), 1327-1331.es_CO
    dc.relation.referencesLindembaum, L.; Boyd, G.E. Osmotic and Activty Coefficients for the Symmetrical Tetraalkyl Ammonium Halides in Aqueous Solution at 25º. The Journal of Physical Chemistry A, 1964, 68 (4), 911-917.es_CO
    dc.relation.referencesLindembaum, S.; Leifer, L.; Boyd, G.E.; Chase J.W. Variation of osmotic coefficients of aqueous solutions of tetraalkylammonium halides with temperature.Thermal and solute effects on solvent hydrogen bonding. The Journal of Physical Chemistry, 1970, 74 (4), 761-764.es_CO
    dc.relation.referencesMarsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures. Fluid Phase Equilibria, 2004, 219 (1), 93-98.es_CO
    dc.relation.referencesMobley, D. L.; Chodera, J. D.; Dill, K. A. On the Use of Orientational Restraints and Symmetry Corrections in Alchemical Free Energy Calculations. J. Chem. Phys. 2006, 125, 84902.es_CO
    dc.relation.referencesMontón R. Hacia el desarrollo sostenible: Líquidos Iónicos como catalizadores para la transposición de Beckmann y reacciones de formación de enlaces C-C, Tesis doctoral. Universidad Politécnica de Valencia, Valencia-España. 2011.es_CO
    dc.relation.referencesMutelet, F.; Jaubert, J. Measurement of activity coefficients at infinite dilution in 1- hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Chemistry Thermodynamics, 2007, 39 (8), 1144-1150.es_CO
    dc.relation.referencesNgo, H.L.; LeCompte, K.; Hargens, L.; McEwen, A.B. Thermal properties of imidazolium ionic liquids. Thermochimica Acta, 2000, 357-358, 97-102.es_CO
    dc.relation.referencesOster, G. The dielectric properties of mixture liquids.Rockefeller Inst.Med. Res. 1946, 68, 2036–2040.es_CO
    dc.relation.referencesParrinello, M. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 7182.es_CO
    dc.relation.referencesPinto, R.; SilvanaMattedi, S.; Aznar, M.Synthesis and Physical Properties of Three Protic Ionic Liquids with the Ethyl-ammonium Cation. J. Chem. Eng. Trans. 2017, 43, 1165-1170.es_CO
    dc.relation.referencesPitzer, K. S.; Simonson, J. M. Thermodynamics of Multicomponent, Miscible, Ionic Systems: Theory and Equations. J. Phys. Chem. 1986, 90, 3005–3009.es_CO
    dc.relation.referencesRocha-Pinto, R.; Santos. D.; Mattedi, S.; Aznar, M. Density, refractive index, apparent volumes and excess molar volumes of four protic ionic liquids + water at T=298.15 and 323.15 K. Braz. J. Chem. Eng. 2015, 32, 671-682.es_CO
    dc.relation.referencesScheffler, T.B.; Hussey, C.L.; Seddon, K.R.; Kear, C.M.; Armitage, P.D. Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids: stabilization of hexachloromolybdate (2-) and hexachloromolydate (3-). Inorganic Chemistry, 1983, 22 (15), 2099-2100.es_CO
    dc.relation.referencesScheffler, T.B.; Huseey, C.L. Electrochemical study of tungsten chloro complex chemistry in the basic aluminum chloride-1-methylethylimidazolium chloride ionic liquid. Inorganic Chemistry, 1984, 23, 1926-1932.es_CO
    dc.relation.referencesSchröder, C.; Neumayr, G.;Steinhauser, O.On the collective network of ionic liquid/water mixtures. III. Structural analysis of ionic liquids on the basis of Voronoi decomposition. J. Chem. Phys. 2009, 130, 194503-194511.es_CO
    dc.relation.referencesSeddon, K.R.; Stark, M.J.; Torres, M.J. Influence of the chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 2000, 72 (12), pp. 2275-2287.es_CO
    dc.relation.referencesShvedene, N.V.; Borovskaya, S.V.; Sviridov, V.V.; Ismailova, E.R.; Pletnev, I.V. Measurement of Ionic Liquid Solubility in Water with Ion-Selective Electrodes. Analitical and Bioanalytical Chemistry, 2005, 381 (2), 427-430.es_CO
    dc.relation.referencesSingh, G.; Kumar, A. Ionic liquids: Physico-chemical, solvent properties and their applications in chemical processes. Indian Journal of Chemistry, 2008, 47A, 495- 503, 2008.es_CO
    dc.relation.referencesSprenger, K. G.; Jaeger, V. W.; Pfaendtner, J. The General AMBER Force Field (GAFF) Can Accurately Predict Thermodynamic and Transport Properties of Many Ionic Liquids. J. Phys. Chem. B, 2015, 119, 5882–5895.es_CO
    dc.relation.referencesTang, J.; Ma, Y.; Li, S.; Zhai, Q.; Jiang, Y.; Hu. M. Activity Coefficients of RbCl in Ethylene Glycol + Water and Glycerol + Water Mixed Solvents at 298.15 K. J. Chem. Eng. Data, 2011, 56, 2356–2361.es_CO
    dc.relation.referencesTokuda, H.; Hayamizu, K.; Ishii, K.; Hasan-Susan, A.B.; Watanabe, M. Physicochemical properties and structures of room temperatura ionic liquids. 1. Variation of anionic species. Journal of Physical Chemistry B, 2004, 108 (42), pp. 16593-16600.es_CO
    dc.relation.referencesVisser, A.E.; Holbrey, J.D.; Rogers, R.D. Hydrophobic ionic liquids incorporating Nalkylisoquinolinium cations and their utilization in liquid-liquid separations. Chemical Communications, 2010, 23, 2484–2485.es_CO
    dc.relation.referencesWalden, P.; Ueber die Molekulargrösse und elektrische Leitf¨ahigkeit einiger geschmolzener Salze (Molecular weights and electrical conductivity of several fused salts). Bulletin de l’Académie Impériale des Sciences de Saint-Pétersbourg, 1914, 8 (6), 405-422.es_CO
    dc.relation.referencesWang, P.; Anderko, A. Computation of dielectric constants of solvent mixtures and electrolyte solutions. Fluid Phase Equilib.2001, 186, 103–122.es_CO
    dc.relation.referencesWilkes, J.S.; Levisky, J.A.; Wilson, R.A.; Hussey, C.L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorganic Chemistry, 1982, 21 (3), 1263-1264.es_CO
    dc.relation.referencesWilkes, J.S.; Zaworotko, M.J. Air and water stable 1-Ethyl-3-Methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 1992, 13, pp. 965-967.es_CO
    dc.relation.referencesWilkes, J.S. Properties of ionic liquid solvents for catalysis. Journal of Molecular Catalysis A: Chemical, 2004, 214, pp. 11-17.es_CO
    dc.relation.referencesZhuo, K.; Chen, Y.; Kang, L. Dielectric Constants for Binary Amino Acid-Water Solutions from (278.15 to 313.15) K.J. Chem. Eng. Data 2009, 54. 137–141.es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Gonzales_2017_TG.pdfGonzales_2017_TG4,03 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.