• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10415
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorCruces Velazco, Nayely Melissa.-
    dc.date.accessioned2025-10-15T23:30:15Z-
    dc.date.available2023-
    dc.date.available2025-10-15T23:30:15Z-
    dc.date.issued2023-
    dc.identifier.citationCruces Velazco, N. M. (2023). Evaluación in silico de la capacidad de captura de CO2 en liquidos ionicos derivados de aminoacidos. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10415es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10415-
    dc.descriptionEl aumento progresivo de emisiones de gases de efecto invernadero (GEIs) en especial de dióxido de carbono CO2 y su retención en la atmosfera, los ha convertido en los principales responsables del incremento de las temperaturas en la superficie de la tierra, efecto conocido como cambio climático1 . Los líquidos iónicos definidos como sales con una temperatura de fusión inferior a 100°C, han sido estudiados como candidatos prometedores en la captura y conversión de CO2, gracias a sus particulares propiedades adquiridas de su composición de iones. En esta investigación se evaluó una serie de 5 líquidos iónicos a base de colina/aminoácido como agentes de captura de CO2 empleando el método DFT en el nivel de cálculo B3LYP/6-311++G(d,p) en el Software Gaussian y su interfase gráfica GaussView. Se analizaron energías de interacción, orbitales moleculares frontera HOMO y LUMO y parámetros estructurales, en las interacciones dipolo-dipolo de los líquidos iónicos y las interacciones dipolo-dipolo inducido del complejo [LI+CO2]. La investigación se realizó en el grupo de energía transformación química y medio ambiente (IBEAR), el cual en una de sus líneas de investigación, viene evaluando la capacidad de captura de GEIs en líquidos iónicos2 .es_CO
    dc.description.abstractThe progressive increase in greenhouse gas (GHG) emissions, especially carbon dioxide CO2 and its retention in the atmosphere, has made them the main cause of the increase in the earth's surface temperatures, an effect known as climate change1 . Ionic liquids, defined as salts with a melting temperature below 100 °C, have been studied as promising candidates for CO2 capture and conversion, thanks to their particular properties acquired from their ion composition. In this investigation, a series of 5 choline/amino acid-based ionic liquids were evaluated as CO2 capture agents employing the DFT method at the B3LYP/6-311++G(d,p) computational level in Gaussian Software and its graphical interface GaussView. Interaction energies, HOMO and LUMO frontier molecular orbitals and structural parameters were analyzed in the dipole-dipole interactions of ionic liquids and the induced dipole-dipole interactions of the [LI+CO2] complex. The research was carried out in the energy, chemical transformation and environment group (IBEAR), which in one of its lines of research has been evaluating the capacity to capture GHGs in ionic liquids2 .es_CO
    dc.format.extent85es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectGases de efecto invernadero.es_CO
    dc.subjectLíquidos iónicos.es_CO
    dc.subjectDióxido de carbono.es_CO
    dc.subjectTeoría funcional de densidades_CO
    dc.titleEvaluación in silico de la capacidad de captura de CO2 en liquidos ionicos derivados de aminoacidos.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2023-
    dc.relation.referencesShahbazi, H.; Abolmaali, A. M.; Alizadeh, H.; Salavati, H.; Zokaei, H.; Zandavi, R.; Torbatian, S.; Yazgi, D.; Hosseini, V. An Emission Inventory Update for Tehran: The Difference between Air Pollution and Greenhouse Gas Source Contributions. Atmos. Res. 2022, 275. https://doi.org/10.1016/J.ATMOSRES.2022.106240.es_CO
    dc.relation.referencesSanchez-Peinado, W. D.; Amado-González, E.; Fuentes-Ordóñez, E. G. TechnicalEconomic Analysis of [ Bmim ][ BF4 ] for the Post-Combustion CO2 Capture at “ Termocentro ” Thermoelectric Plant , Colombia. 2020, 25 (December), 54–78.es_CO
    dc.relation.referencesBocchini, S.; Castro, C.; Cocuzza, M.; Ferrero, S.; Latini, G.; Martis, A.; Pirri, F.; Scaltrito, L.; Rocca, V.; Verga, F.; Viberti, D. The Virtuous CO 2 Circle or the Three Cs : Capture , Cache , and Convert. 2017, 2017.es_CO
    dc.relation.referencesAnderson, K. E.; Mielke, S. L.; Siepmann, J. I.; Truhlar, D. G. Bond Angle Distributions of Carbon Dioxide in the Gas , Supercritical , and Solid Phases †. Phys. Chem. 2009, 113, 2053–2059. https://doi.org/https://doi.org/10.1021/jp808711y.es_CO
    dc.relation.referencesDong, K.; Dong, X.; Jiang, Q.; Zhao, J. Assessing Energy Resilience and Its Greenhouse Effect: A Global Perspective. Energy Econ. 2017, 104 (0140–9883), 105659. https://doi.org/10.1016/J.ENECO.2021.105659.es_CO
    dc.relation.referencesLatini, G.; Signorile, M.; Rosso, F.; Fin, A.; Bordiga, S.; Bocchini, S.; Giordani, S.; Pirri, F.; Crocell, V. Efficient and Reversible CO 2 Capture in Bio-Based Ionic Liquids Solutions. J. CO2 Util. 2022, 55 (October 2021), 101815. https://doi.org/10.1016/j.jcou.2021.101815.es_CO
    dc.relation.referencesUkaogo, P. O.; Ewuzie, U.; Onwuka, C. V. 21. Environmental Pollution: Causes, Effects, and the Remedies; INC, 2020. https://doi.org/10.1016/B978-0-12-819001- 2.00021-8.es_CO
    dc.relation.referencesYamaka, W.; Phadkantha, R.; Rakpho, P. Economic and Energy Impacts on Greenhouse Gas Emissions: A Case Study of China and the USA. Energy Reports 2021, 7, 240–247. https://doi.org/10.1016/J.EGYR.2021.06.040.es_CO
    dc.relation.referencesGlobal, T.; Cycle, C. Anthropogenic Alterations to the Global Carbon Cycle and Climate Change, Chapter 11.; Elsevier Inc. All rights reserved, 2020. https://doi.org/10.1016/B978-0-12-820244-9.00011-1.es_CO
    dc.relation.referencesLacis, A. A. Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature. Sci. AAAS 2013, 356 (2010), 356–359. https://doi.org/10.1126/science.1190653.es_CO
    dc.relation.referencesTreut, L.; Somerville, R.; Cubasch, U.; Ding, Y.; Mauritzen, C.; Mokssit, A.; Peterson, T.; Prather, M.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor, M.; Kingdom, U. Historical Overview of Climate Change Science. Cambridge Univ. Press. Cambridge, United Kingdom New York, NY, USA 2007.es_CO
    dc.relation.referencesVoz de América - Redacción. Los gases de efecto invernadero vuelven a batir un récord https://www.vozdeamerica.com/a/cambio-climatico-gases-efectoinvernadero-baten-recordf/3049879.html.es_CO
    dc.relation.referencesLai, X.; Gu, H.; Chen, Q.; Tang, X.; Zhou, Y.; Gao, F.; Han, X.; Guo, Y.; Bhagat, R.; Zheng, Y. Investigating Greenhouse Gas Emissions and Environmental Impacts from the Production of Lithium-Ion Batteries in China. J. Clean. Prod. 2022, 372. https://doi.org/10.1016/J.JCLEPRO.2022.133756.es_CO
    dc.relation.referencesChemical Society. La curva de Keeling www.acs.org/landmarks.es_CO
    dc.relation.referencesJensen, M. P.; Allen, C. D.; Eguchi, T.; Hilton, W. A.; Hof, C. A. M.; Dutton, P. H. Environmental Warming and Feminization of One of the Largest Sea Turtle Populations in the World. Curr. Biol. 2018, 28 (1), 154-159.e4. https://doi.org/10.1016/j.cub.2017.11.057.es_CO
    dc.relation.referencesBindoff, N.L., W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O’Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. W. Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Ni. Cambridge University Press, Cambridge, UK and New York, NY, USA. 2019, pp 447–587. 78 https://doi.org/https://doi.org/10.1017/9781009157964.007.es_CO
    dc.relation.referencesOppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan, A. AbdElgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. S. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. MassonDelmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, . Cambridge University Press, Cambridge, UK and New York, NY, USA. 2019, pp 321–445. https://doi.org/https://doi.org/10.1017/9781009157964.006.es_CO
    dc.relation.referencesVelicogna, I.; Mohajerani, Y.; Geruo, A.; Landerer, F.; Noel, B.; Rignot, E.; Sutterley, T.; Den, M. Van; Wessem, J. M. Van; Wiese, D. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica from the GRACE and GRACE Follow-On Missions . Am. Geophys. Union 2020, 1–16. https://doi.org/10.1029/2020GL087291.es_CO
    dc.relation.referencesVadikkeettil, Y.; Subramaniam, Y.; Murugan, R.; Ananthapadmanabhan, P. V.; Mostaghimi, J.; Pershin, L.; Batiot-Dupeyrat, C.; Kobayashi, Y. Plasma Assisted Decomposition and Reforming of Greenhouse Gases: A Review of Current Status and Emerging Trends. Renew. Sustain. Energy Rev. 2022, 161. https://doi.org/10.1016/J.RSER.2022.112343.es_CO
    dc.relation.referencesMitchell, R. B. I NTERNATIONAL E NVIRONMENTAL A GREEMENTS : A Survey of Their Features , Formation , and Effects. Mahidol Univ. 2003. https://doi.org/10.1146/annurev.energy.28.050302.105603.es_CO
    dc.relation.referencesNATIONS, U. UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE UNITED NATIONS. In UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE; 1992; pp 1–33.es_CO
    dc.relation.referencesGao, Y.; Gao, X.; Zhang, X. The 2 ° C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change — From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 2017, 3 (2), 272–278. https://doi.org/10.1016/J.ENG.2017.01.022.es_CO
    dc.relation.referencesDiana Ivanova, M. B. Implications of Shrinking Household Sizes for Meeting the 1.5°C Climate Targets. Ecol. Econ. 2022, 202 (0921–8009). https://doi.org/https://doi.org/10.1016/j.ecolecon.2022.107590.es_CO
    dc.relation.referencesZhou, Y. M.; Feng, Y. S. The Strategy and Technology Selection for Non-CO2 Greenhouse Gas Emission Control. Adv. Clim. Chang. Res. 2014, 5 (1), 28–33. https://doi.org/10.3724/SP.J.1248.2014.028.es_CO
    dc.relation.referencesWeng, Y.; Xue, M.; Cui, X.; Li, X.; Key, S.; Pollution, P. IPTC-19173-MS Methane Emissions in China ’ s Oil and Gas Production : Impacts and Control Measures Introduction. Int. Pet. Technol. Conf. 2019, No. IPTC-19173-MS.es_CO
    dc.relation.referencesWilbanks, T. J.; Kates, R. W. Global Change in Local Places: How Scale Matters. Clim. Change 1999, 43 (3), 601–628. https://doi.org/10.1023/A:1005418924748.es_CO
    dc.relation.referencesKarakurt, I.; Aydin, G.; Aydiner, K. Sources and Mitigation of Methane Emissions by Sectors : A Critical Review. Renew. Energy 2012, 39 (1), 40–48. https://doi.org/10.1016/j.renene.2011.09.006.es_CO
    dc.relation.referencesGraziosi, F.; Arduini, J.; Furlani, F.; Giostra, U.; Cristofanelli, P.; Fang, X.; Schmidbauer, N.; Vollmer, M. K.; Young, D.; Maione, M. European Emissions of the Powerful Greenhouse Gases Hydro Fl Uorocarbons Inferred from Atmospheric Measurements and Their Comparison with Annual National Reports to UNFCCC. Atmos. Environ. 2017, 158, 85–97. https://doi.org/10.1016/j.atmosenv.2017.03.029.es_CO
    dc.relation.referencesTsai, W.; Chen, H.; Hsien, W. A Review of Uses , Environmental Hazards and Recovery / Recycle Technologies of Perfluorocarbons ( PFCs ) Emissions from the Semiconductor Manufacturing Processes. 2002, 15, 65–75.es_CO
    dc.relation.referencesParthiban, A.; Ashwin, A.; Gopal, R.; Siwayanan, P.; Chew, W. Disposal Methods , Health Effects and Emission Regulations for Sulfur Hexafluoride and Its by-Products. J. Hazard. Mater. 2021, 417 (May), 126107. https://doi.org/10.1016/j.jhazmat.2021.126107.es_CO
    dc.relation.referencesWeiss, R. F.; Mu, J.; Salameh, P. K.; Harth, C. M. Nitrogen Trifluoride in the Global Atmosphere. 2008, 35 (October), 1–3. https://doi.org/10.1029/2008GL035913.es_CO
    dc.relation.referencesPtak, S.; Zarski, A.; Kapusniak, J. The Importance of Ionic Liquids in the Modificationes_CO
    dc.relation.referencesof Starch and Processing of Starch-Based Materials. Materials (Basel). 2020, 13 (20), 1–19. https://doi.org/10.3390/MA13204479.es_CO
    dc.relation.referencesHerrmann, S.; Streb, C. New Synthetic Routes to Polyoxometalate Containing Ionic Liquids: An Investigation of Their Properties. New Synth. Routes to Polyoxometalate Contain. Ion. Liq. An Investig. their Prop. 2015, 1–122. https://doi.org/10.1007/978- 3-658-08796-8.es_CO
    dc.relation.referencesRhodes, C. J. Progress in Science Current Commentary Ionic Liquids and Green Futures. Sci. Prog. 2011, 94, 211–219. https://doi.org/10.3184/003685011X13051285144048.es_CO
    dc.relation.referencesShukla, S. K.; Khokarale, S. G.; Bui, T. Q.; Mikkola, J. P. T. Ionic Liquids: Potential Materials for Carbon Dioxide Capture and Utilization. Front. Mater. 2019, 6 (2296– 8016), 6–42. https://doi.org/10.3389/fmats.2019.00042.es_CO
    dc.relation.referencesWang, B.; Zhu, M.; Liu, M.; Wang, Y.; Zhou, Y.; Ma, J. Design of Novel Dual Functional Ionic Liquids and DFT Study on Their CO2 Absorption Mechanism. J. Mol. Liq. 2022, 366, 120340. https://doi.org/10.1016/J.MOLLIQ.2022.120340.es_CO
    dc.relation.referencesHuang, Z.; Karami, D.; Mahinpey, N.; Tn, A. B. Chemical Engineering Research and Design Study on the Efficiency of Multiple Amino Groups in Ionic Liquids on Their Sorbents Performance for Low-Temperature CO 2 Capture. Chem. Eng. Res. Des. 2021, 167, 198–206. https://doi.org/10.1016/j.cherd.2021.01.016.es_CO
    dc.relation.referencesLavanya, R.; Srinivasadesikan, V.; Lin, M.; Padmini, V. Development of an Optical Biosensor for the Determination of Choline in Human Biofluids. J. Mol. Struct. 2023, 1280 (0022–2860), 135040. https://doi.org/10.1016/J.MOLSTRUC.2023.135040.es_CO
    dc.relation.referencesVerma, C.; Obot, I. B.; Bahadur, I.; Sherif, E. M.; Ebenso, E. E. Choline Based Ionic Liquids as Sustainable Corrosion Inhibitors on Mild Steel Surface in Acidic Medium: Gravimetric, Electrochemical, Surface Morphology, DFT and Monte Carlo Simulation Studies. Appl. Surf. Sci. 2018. https://doi.org/10.1016/j.apsusc.2018.06.035.es_CO
    dc.relation.referencesLatini, G.; Signorile, M.; Rosso, F.; Fin, A.; Bordiga, S.; Bocchini, S.; Giordani, S.; Pirri, F.; Crocell, V. Efficient and Reversible CO 2 Capture in Bio-Based Ionic Liquids Solutions. 2022, 55 (July 2021). https://doi.org/10.1016/j.jcou.2021.101815.es_CO
    dc.relation.referencesNoorani, N.; Mehrdad, A.; Ahadzadeh, I. CO2 Absorption in Amino Acid-Based Ionic Liquids : Experimental and Theoretical Studies. Fluid Phase Equilib. 2021, 547, 113185. https://doi.org/10.1016/j.fluid.2021.113185.es_CO
    dc.relation.referencesRamondo, F.; Muzio, S. Di. Reaction Mechanism of CO 2 with Choline-Amino Acid Ionic Liquids : A Computational Study. Entropy 2022, 24, 1–16. https://doi.org/https://doi.org/10.3390/e24111572.es_CO
    dc.relation.referencesMammino, L. Computational Chemistry and Green Chemistry: Familiarizing Chemistry Students with the Modes and Benefits of Promising Synergies. Sustain. Chem. Pharm. 2022, 29, 100743–100750. https://doi.org/https://doi.org/10.1016/j.scp.2022.100743.es_CO
    dc.relation.referencesHe, L.; Bai, L.; Dionysiou, D. D.; Wei, Z.; Spinney, R.; Chu, C.; Lin, Z.; Xiao, R. Applications of Computational Chemistry , Artificial Intelligence , and Machine Learning in Aquatic Chemistry Research. Chem. Eng. J. 2021, 426 (May), 131810. https://doi.org/10.1016/j.cej.2021.131810.es_CO
    dc.relation.referencesLusk, M. T.; Mattsson, A. E.; Editors, G. High-Performance Computing for Materials Design to Advance Energy Science. 2011, 36 (March), 169–174. https://doi.org/10.1557/mrs.2011.30.es_CO
    dc.relation.referencesSlater, J. C. A Simplification of the Hartree-Fock Method; 1935; Vol. 376.es_CO
    dc.relation.referencesGeerlings, P.; Proft, F. De; Langenaeker, W. Conceptual Density Functional Theory. Chem. Phys. 2003, 103, 1793−1873. https://doi.org/10.1021/cr990029p.es_CO
    dc.relation.referencesKohn, W.; Becke, A. D.; Parr, R. G. Density Functional Theory of Electronic Structure. Chem. Phys. 1996, 0 (96), 12974–12980. https://doi.org/10.1021/jp960669l.es_CO
    dc.relation.referencesTirado-rives, J.; Jorgensen, W. L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. theory Comput. 2008, 4, 297–306. https://doi.org/10.1021/ct700248k.es_CO
    dc.relation.referencesDunning, T. H.; Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations . I . The Atoms Boron through Neon and Hydrogen Gaussian Basis Sets for Use in Correlated Molecular Calculations . I . The Atoms Boron through Neon and Hydrogen. Chem. Phys. 1989, 1007, 90. https://doi.org/10.1063/1.456153.es_CO
    dc.relation.referencesPiela, L. Chapter 3. Chasing the Correlation Dragon: Density Functional Theory (DFT), Ideas of Q.; Piela, L., Ed.; Ideas of Quantum Chemistry, 2020. https://doi.org/https://doi.org/10.1016/B978-0-44-464248-6.00011-9.es_CO
    dc.relation.referencesKrishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A.; Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Selfconsistent Molecular Orbital Methods . XX . A Basis Set for Correlated Wave Functions Self-Consistent Molecular Orbital Methods . XX . A Basis Set for Correlated Wave Functions. Chem. Phys. 1980, 650. https://doi.org/10.1063/1.438955.es_CO
    dc.relation.referencesCao, B.; Du, J.; Liu, S.; Zhu, X.; Sun, X. Carbon Dioxide Capture by AminoFunctionalized Ionic Liquids : DFT Based Theoretical Analysis Substantiated by FTIR Investigation †. RSC Adv. 2016, 6, 10462–10470. https://doi.org/10.1039/C5RA23959A.es_CO
    dc.relation.referencesHyuk-Yong Kwon, Zachary Morrow, C. T. Kelley, and E. J. Interpolation Methods for Molecular Potential Energy Surface Construction. J. Phys. Chem. A 2021, 9725– 9735. https://doi.org/DOI: 10.1021/acs.jpca.1c06812.es_CO
    dc.relation.referencesGuevara, D. L. ESTUDIO TEÓRICO DE LAS INTERACCIONES INTERMOLECULARES ENTRE LÍQUIDOS IÓNICOS DERIVADOS DE IMIDAZOLIO Y PIRIDINIO Y COMPUESTOS AROMÁTICOS POLICÍCLICOS, Universidad Veracruzana, 2016.es_CO
    dc.relation.referencesFernández Vega, L., Ruidiaz Buelvas, M. A., Pérez Hincapié, L., & Pérez-Gamboa, A. Propiedades Estructurales, Espectroscópicas y Ópticas de 4-( 6- ( Dimetilamino ) Benzo [ d ] Tiazol-2-Il ) Benzonitrilo Como Modelo de Sistema D-E-A Por Métodos Computacionales, Universidad Autónoma del Caribe, 2018. https://doi.org/https://doi.org/10.15665/rp.v16i1.1548.es_CO
    dc.relation.referencesIniesta Chavez, V. Estudio Computacional de Las Interacciones No Covalentes de Purinas, Benemérita Universidad Autonoma de Puebla, 2020.es_CO
    dc.relation.referencesJincheng Yu, Neil Qiang Su, and W. Y. Describing Chemical Reactivity with Frontier Molecular Orbitalets. JACS Au 2022, 2, 1383–1394. https://doi.org/DOI: 10.1021/jaces_CO
    dc.relation.referencesMorco, R. P.; Musa, A. Y.; Wren, J. C. The Molecular Structures and the Relationships between the Calculated Molecular and Observed Bulk Phase Properties of Phosphonium-Based Ionic Liquids. Solid State Ionics 2014, 258, 74–81. https://doi.org/10.1016/j.ssi.2014.02.004.es_CO
    dc.relation.referencesWang, B.; Zhu, M.; Liu, M.; Wang, Y.; Zhou, Y.; Ma, J. Design of Novel Dual Functional Ionic Liquids and DFT Study on Their CO2 Absorption Mechanism. J. Mol. Liq. 2022, 366, 120340. https://doi.org/10.1016/J.MOLLIQ.2022.120340.es_CO
    dc.relation.referencesHadjittofis, E.; Das, S. C.; Zhang, G. G. Z.; Heng, J. Y. Y. Chapter 8. Interfacial Phenomena. In Developing Solid Oral Dosage Forms; Elsevier Inc., 2017; pp 225– 252. https://doi.org/10.1016/B978-0-12-802447-8.00008-X.es_CO
    dc.relation.referencesJ.H. Adair, E. Suvaci, J. S. Surface and Colloid Chemistry. In Encyclopedia of Materials: Science and Technology, Elsevier; 2001; pp 1–10. https://doi.org/https://doi.org/10.1016/B0-08-043152-6/01622-3.es_CO
    dc.relation.referencesLü, R.; Wang, S.; Lu, Y. 1-Propyl-4 , 5-Dibromo-3-Methylimidazolium Bromide. Chem. Phys. Lett. 2011, 505 (4–6), 87–91. https://doi.org/10.1016/j.cplett.2011.02.027.es_CO
    dc.relation.referencesAbelian, A.; Dybek, M.; Wallach, J.; Gaye, B.; Adejare, A. Pharmaceutical Chemistry. Remington: The Science and Practice of Pharmacy. 2021, pp 105–128. https://doi.org/10.1016/B978-0-12-820007-0.00006-4.es_CO
    dc.relation.referencesJesus, G. A. “ANALISIS COMPUTACIONAL DE LOS FUNCIONALES MINNESOTA EN LOS SISTEMAS MOLECULARES ORGANICOS CT-7 (C33H31IN2O2), CT-500 (C43H59IN2O4) y CT-525(C40H41IN2O2) PARA SU POSIBLE APLICACION EN CELDAS SOLARES, CENTRO DE INVESTIGACIÓN EN MATERIALES AVANZADOS DEPARTAMENTO DE ESTUDIOS DE POSGRADO, 2013.es_CO
    dc.relation.referencesA. E. Reed, L. A. Curtiss, and F. W. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Phys. 1988, 899–926. https://doi.org/10.1021/cr00088a005.es_CO
    dc.relation.referencesGaussian.com. Using GaussView 6 https://gaussian.com/gv6main/.es_CO
    dc.relation.referencesJohn Pople. Gaussian. Ciencias de la computación y robótica: Pittsburgh, Pensilvania 1970. https://doi.org/doi:10.1002/jcc.20049.es_CO
    dc.relation.referencesMa, J.; Wang, Y.; Yang, X.; Zhu, M.; Wang, B. DFT Study on the Chemical Absorption Mechanism of CO 2 in Diamino Protic Ionic Liquids. Phys. Chem. Chem. 2021, 125, 1416–1428. https://doi.org/10.1021/acs.jpcb.0c08500.es_CO
    dc.relation.referencesCalcara, M.; Caricaterra, M. CO 2 Dipole Moment : A Simple Model and Its Implications for CO 2 -Rock Interactions. Minerals 2023, 13, 81. https://doi.org/https://doi.org/10.3390/min13010087.es_CO
    dc.relation.referencesSantra, M.; Kunzru, D.; Rabari, D. A Stability Analysis of Choline Chloride : Urea Deep Eutectic Solvent Using Density Functional Theory. Comput. Theor. Chem. 2022, 1217 (October), 113921. https://doi.org/10.1016/j.comptc.2022.113921.es_CO
    dc.relation.referencesOchterski, J. W.; Ph, D. Thermochemistry in Gaussian; 2022.es_CO
    dc.relation.referencesArmakovic, S.; Armakovic, S. J.; Alsenoy, C. Van; Anto, P. L. Spectroscopic Investigations , DFT Calculations , Molecular Docking and MD Simulations of 3- [( 4-Carboxyphenyl ) Carbamoyl ] -4- Hydroxy-2-Oxo-1 , 2-Dihydroxy Quinoline-6- Carboxylic Acid. J. Mol. Struct. 2022, 1264, 133315. https://doi.org/10.1016/j.molstruc.2022.133315.es_CO
    dc.relation.referencesM. Sucheta, A.G. Pramod, Mohamed Zikriya, K. Mohammed Salma, N. Venugopal, R. Chaithra, D. Harshitha, S. Amudan, C.G. Renuka, S. M. Frontier Molecular Orbital, Molecular Structure and Thermal Properties of 2,4,6,8-Tetramethyl-2,3,6,7- Tetrahydro-s-Indacene-1,5-Dione Using DFT Calculation. Mater. Today Proceedings, 2022, 62, 5241–5244. https://doi.org/https://doi.org/10.1016/j.matpr.2022.03.215.es_CO
    dc.relation.referencesGlu, C. À.; Zhang, Y.; Chen, X.; Wang, H.; Diao, K.; Chen, J. Journal of Molecular Structure : THEOCHEM DFT Study on the Structure and Cation – Anion Interaction of Amino Acid Ionic Liquid. J. Mol. Struct. THEOCHEM 2010, 952 (1–3), 16–24. https://doi.org/10.1016/j.theochem.2010.03.033.es_CO
    dc.relation.referencesMandal, P. K.; Arunan, E. Hydrogen Bond Radii for the Hydrogen Waals Radius of Hydrogen. Chem. Phys. 2014, 3880 (2001), 9–12. https://doi.org/10.1063/1.1343905.es_CO
    dc.relation.referencesM. Tredwell, V. G. Fluorine in Medicinal Chemistry: Importance of Chirality. In Comprehensive Chirality; ScienceDirect, 2012; pp 70–85. https://doi.org/https://doi.org/10.1016/B978-0-08-095167-6.00106-3.es_CO
    dc.relation.referencesMurray, J. S.; Politzer, P. Molecular Surfaces , van Der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions *; 2009; Vol. 82es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Cruces_2023_TG.pdf2,73 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.