Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10415
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Cruces Velazco, Nayely Melissa. | - |
dc.date.accessioned | 2025-10-15T23:30:15Z | - |
dc.date.available | 2023 | - |
dc.date.available | 2025-10-15T23:30:15Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Cruces Velazco, N. M. (2023). Evaluación in silico de la capacidad de captura de CO2 en liquidos ionicos derivados de aminoacidos. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10415 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10415 | - |
dc.description | El aumento progresivo de emisiones de gases de efecto invernadero (GEIs) en especial de dióxido de carbono CO2 y su retención en la atmosfera, los ha convertido en los principales responsables del incremento de las temperaturas en la superficie de la tierra, efecto conocido como cambio climático1 . Los líquidos iónicos definidos como sales con una temperatura de fusión inferior a 100°C, han sido estudiados como candidatos prometedores en la captura y conversión de CO2, gracias a sus particulares propiedades adquiridas de su composición de iones. En esta investigación se evaluó una serie de 5 líquidos iónicos a base de colina/aminoácido como agentes de captura de CO2 empleando el método DFT en el nivel de cálculo B3LYP/6-311++G(d,p) en el Software Gaussian y su interfase gráfica GaussView. Se analizaron energías de interacción, orbitales moleculares frontera HOMO y LUMO y parámetros estructurales, en las interacciones dipolo-dipolo de los líquidos iónicos y las interacciones dipolo-dipolo inducido del complejo [LI+CO2]. La investigación se realizó en el grupo de energía transformación química y medio ambiente (IBEAR), el cual en una de sus líneas de investigación, viene evaluando la capacidad de captura de GEIs en líquidos iónicos2 . | es_CO |
dc.description.abstract | The progressive increase in greenhouse gas (GHG) emissions, especially carbon dioxide CO2 and its retention in the atmosphere, has made them the main cause of the increase in the earth's surface temperatures, an effect known as climate change1 . Ionic liquids, defined as salts with a melting temperature below 100 °C, have been studied as promising candidates for CO2 capture and conversion, thanks to their particular properties acquired from their ion composition. In this investigation, a series of 5 choline/amino acid-based ionic liquids were evaluated as CO2 capture agents employing the DFT method at the B3LYP/6-311++G(d,p) computational level in Gaussian Software and its graphical interface GaussView. Interaction energies, HOMO and LUMO frontier molecular orbitals and structural parameters were analyzed in the dipole-dipole interactions of ionic liquids and the induced dipole-dipole interactions of the [LI+CO2] complex. The research was carried out in the energy, chemical transformation and environment group (IBEAR), which in one of its lines of research has been evaluating the capacity to capture GHGs in ionic liquids2 . | es_CO |
dc.format.extent | 85 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Gases de efecto invernadero. | es_CO |
dc.subject | Líquidos iónicos. | es_CO |
dc.subject | Dióxido de carbono. | es_CO |
dc.subject | Teoría funcional de densidad | es_CO |
dc.title | Evaluación in silico de la capacidad de captura de CO2 en liquidos ionicos derivados de aminoacidos. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2023 | - |
dc.relation.references | Shahbazi, H.; Abolmaali, A. M.; Alizadeh, H.; Salavati, H.; Zokaei, H.; Zandavi, R.; Torbatian, S.; Yazgi, D.; Hosseini, V. An Emission Inventory Update for Tehran: The Difference between Air Pollution and Greenhouse Gas Source Contributions. Atmos. Res. 2022, 275. https://doi.org/10.1016/J.ATMOSRES.2022.106240. | es_CO |
dc.relation.references | Sanchez-Peinado, W. D.; Amado-González, E.; Fuentes-Ordóñez, E. G. TechnicalEconomic Analysis of [ Bmim ][ BF4 ] for the Post-Combustion CO2 Capture at “ Termocentro ” Thermoelectric Plant , Colombia. 2020, 25 (December), 54–78. | es_CO |
dc.relation.references | Bocchini, S.; Castro, C.; Cocuzza, M.; Ferrero, S.; Latini, G.; Martis, A.; Pirri, F.; Scaltrito, L.; Rocca, V.; Verga, F.; Viberti, D. The Virtuous CO 2 Circle or the Three Cs : Capture , Cache , and Convert. 2017, 2017. | es_CO |
dc.relation.references | Anderson, K. E.; Mielke, S. L.; Siepmann, J. I.; Truhlar, D. G. Bond Angle Distributions of Carbon Dioxide in the Gas , Supercritical , and Solid Phases †. Phys. Chem. 2009, 113, 2053–2059. https://doi.org/https://doi.org/10.1021/jp808711y. | es_CO |
dc.relation.references | Dong, K.; Dong, X.; Jiang, Q.; Zhao, J. Assessing Energy Resilience and Its Greenhouse Effect: A Global Perspective. Energy Econ. 2017, 104 (0140–9883), 105659. https://doi.org/10.1016/J.ENECO.2021.105659. | es_CO |
dc.relation.references | Latini, G.; Signorile, M.; Rosso, F.; Fin, A.; Bordiga, S.; Bocchini, S.; Giordani, S.; Pirri, F.; Crocell, V. Efficient and Reversible CO 2 Capture in Bio-Based Ionic Liquids Solutions. J. CO2 Util. 2022, 55 (October 2021), 101815. https://doi.org/10.1016/j.jcou.2021.101815. | es_CO |
dc.relation.references | Ukaogo, P. O.; Ewuzie, U.; Onwuka, C. V. 21. Environmental Pollution: Causes, Effects, and the Remedies; INC, 2020. https://doi.org/10.1016/B978-0-12-819001- 2.00021-8. | es_CO |
dc.relation.references | Yamaka, W.; Phadkantha, R.; Rakpho, P. Economic and Energy Impacts on Greenhouse Gas Emissions: A Case Study of China and the USA. Energy Reports 2021, 7, 240–247. https://doi.org/10.1016/J.EGYR.2021.06.040. | es_CO |
dc.relation.references | Global, T.; Cycle, C. Anthropogenic Alterations to the Global Carbon Cycle and Climate Change, Chapter 11.; Elsevier Inc. All rights reserved, 2020. https://doi.org/10.1016/B978-0-12-820244-9.00011-1. | es_CO |
dc.relation.references | Lacis, A. A. Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature. Sci. AAAS 2013, 356 (2010), 356–359. https://doi.org/10.1126/science.1190653. | es_CO |
dc.relation.references | Treut, L.; Somerville, R.; Cubasch, U.; Ding, Y.; Mauritzen, C.; Mokssit, A.; Peterson, T.; Prather, M.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K. B.; Tignor, M.; Kingdom, U. Historical Overview of Climate Change Science. Cambridge Univ. Press. Cambridge, United Kingdom New York, NY, USA 2007. | es_CO |
dc.relation.references | Voz de América - Redacción. Los gases de efecto invernadero vuelven a batir un récord https://www.vozdeamerica.com/a/cambio-climatico-gases-efectoinvernadero-baten-recordf/3049879.html. | es_CO |
dc.relation.references | Lai, X.; Gu, H.; Chen, Q.; Tang, X.; Zhou, Y.; Gao, F.; Han, X.; Guo, Y.; Bhagat, R.; Zheng, Y. Investigating Greenhouse Gas Emissions and Environmental Impacts from the Production of Lithium-Ion Batteries in China. J. Clean. Prod. 2022, 372. https://doi.org/10.1016/J.JCLEPRO.2022.133756. | es_CO |
dc.relation.references | Chemical Society. La curva de Keeling www.acs.org/landmarks. | es_CO |
dc.relation.references | Jensen, M. P.; Allen, C. D.; Eguchi, T.; Hilton, W. A.; Hof, C. A. M.; Dutton, P. H. Environmental Warming and Feminization of One of the Largest Sea Turtle Populations in the World. Curr. Biol. 2018, 28 (1), 154-159.e4. https://doi.org/10.1016/j.cub.2017.11.057. | es_CO |
dc.relation.references | Bindoff, N.L., W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O’Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. W. Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Ni. Cambridge University Press, Cambridge, UK and New York, NY, USA. 2019, pp 447–587. 78 https://doi.org/https://doi.org/10.1017/9781009157964.007. | es_CO |
dc.relation.references | Oppenheimer, M., B.C. Glavovic , J. Hinkel, R. van de Wal, A.K. Magnan, A. AbdElgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, and Z. S. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. MassonDelmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, . Cambridge University Press, Cambridge, UK and New York, NY, USA. 2019, pp 321–445. https://doi.org/https://doi.org/10.1017/9781009157964.006. | es_CO |
dc.relation.references | Velicogna, I.; Mohajerani, Y.; Geruo, A.; Landerer, F.; Noel, B.; Rignot, E.; Sutterley, T.; Den, M. Van; Wessem, J. M. Van; Wiese, D. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica from the GRACE and GRACE Follow-On Missions . Am. Geophys. Union 2020, 1–16. https://doi.org/10.1029/2020GL087291. | es_CO |
dc.relation.references | Vadikkeettil, Y.; Subramaniam, Y.; Murugan, R.; Ananthapadmanabhan, P. V.; Mostaghimi, J.; Pershin, L.; Batiot-Dupeyrat, C.; Kobayashi, Y. Plasma Assisted Decomposition and Reforming of Greenhouse Gases: A Review of Current Status and Emerging Trends. Renew. Sustain. Energy Rev. 2022, 161. https://doi.org/10.1016/J.RSER.2022.112343. | es_CO |
dc.relation.references | Mitchell, R. B. I NTERNATIONAL E NVIRONMENTAL A GREEMENTS : A Survey of Their Features , Formation , and Effects. Mahidol Univ. 2003. https://doi.org/10.1146/annurev.energy.28.050302.105603. | es_CO |
dc.relation.references | NATIONS, U. UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE UNITED NATIONS. In UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE; 1992; pp 1–33. | es_CO |
dc.relation.references | Gao, Y.; Gao, X.; Zhang, X. The 2 ° C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change — From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 2017, 3 (2), 272–278. https://doi.org/10.1016/J.ENG.2017.01.022. | es_CO |
dc.relation.references | Diana Ivanova, M. B. Implications of Shrinking Household Sizes for Meeting the 1.5°C Climate Targets. Ecol. Econ. 2022, 202 (0921–8009). https://doi.org/https://doi.org/10.1016/j.ecolecon.2022.107590. | es_CO |
dc.relation.references | Zhou, Y. M.; Feng, Y. S. The Strategy and Technology Selection for Non-CO2 Greenhouse Gas Emission Control. Adv. Clim. Chang. Res. 2014, 5 (1), 28–33. https://doi.org/10.3724/SP.J.1248.2014.028. | es_CO |
dc.relation.references | Weng, Y.; Xue, M.; Cui, X.; Li, X.; Key, S.; Pollution, P. IPTC-19173-MS Methane Emissions in China ’ s Oil and Gas Production : Impacts and Control Measures Introduction. Int. Pet. Technol. Conf. 2019, No. IPTC-19173-MS. | es_CO |
dc.relation.references | Wilbanks, T. J.; Kates, R. W. Global Change in Local Places: How Scale Matters. Clim. Change 1999, 43 (3), 601–628. https://doi.org/10.1023/A:1005418924748. | es_CO |
dc.relation.references | Karakurt, I.; Aydin, G.; Aydiner, K. Sources and Mitigation of Methane Emissions by Sectors : A Critical Review. Renew. Energy 2012, 39 (1), 40–48. https://doi.org/10.1016/j.renene.2011.09.006. | es_CO |
dc.relation.references | Graziosi, F.; Arduini, J.; Furlani, F.; Giostra, U.; Cristofanelli, P.; Fang, X.; Schmidbauer, N.; Vollmer, M. K.; Young, D.; Maione, M. European Emissions of the Powerful Greenhouse Gases Hydro Fl Uorocarbons Inferred from Atmospheric Measurements and Their Comparison with Annual National Reports to UNFCCC. Atmos. Environ. 2017, 158, 85–97. https://doi.org/10.1016/j.atmosenv.2017.03.029. | es_CO |
dc.relation.references | Tsai, W.; Chen, H.; Hsien, W. A Review of Uses , Environmental Hazards and Recovery / Recycle Technologies of Perfluorocarbons ( PFCs ) Emissions from the Semiconductor Manufacturing Processes. 2002, 15, 65–75. | es_CO |
dc.relation.references | Parthiban, A.; Ashwin, A.; Gopal, R.; Siwayanan, P.; Chew, W. Disposal Methods , Health Effects and Emission Regulations for Sulfur Hexafluoride and Its by-Products. J. Hazard. Mater. 2021, 417 (May), 126107. https://doi.org/10.1016/j.jhazmat.2021.126107. | es_CO |
dc.relation.references | Weiss, R. F.; Mu, J.; Salameh, P. K.; Harth, C. M. Nitrogen Trifluoride in the Global Atmosphere. 2008, 35 (October), 1–3. https://doi.org/10.1029/2008GL035913. | es_CO |
dc.relation.references | Ptak, S.; Zarski, A.; Kapusniak, J. The Importance of Ionic Liquids in the Modification | es_CO |
dc.relation.references | of Starch and Processing of Starch-Based Materials. Materials (Basel). 2020, 13 (20), 1–19. https://doi.org/10.3390/MA13204479. | es_CO |
dc.relation.references | Herrmann, S.; Streb, C. New Synthetic Routes to Polyoxometalate Containing Ionic Liquids: An Investigation of Their Properties. New Synth. Routes to Polyoxometalate Contain. Ion. Liq. An Investig. their Prop. 2015, 1–122. https://doi.org/10.1007/978- 3-658-08796-8. | es_CO |
dc.relation.references | Rhodes, C. J. Progress in Science Current Commentary Ionic Liquids and Green Futures. Sci. Prog. 2011, 94, 211–219. https://doi.org/10.3184/003685011X13051285144048. | es_CO |
dc.relation.references | Shukla, S. K.; Khokarale, S. G.; Bui, T. Q.; Mikkola, J. P. T. Ionic Liquids: Potential Materials for Carbon Dioxide Capture and Utilization. Front. Mater. 2019, 6 (2296– 8016), 6–42. https://doi.org/10.3389/fmats.2019.00042. | es_CO |
dc.relation.references | Wang, B.; Zhu, M.; Liu, M.; Wang, Y.; Zhou, Y.; Ma, J. Design of Novel Dual Functional Ionic Liquids and DFT Study on Their CO2 Absorption Mechanism. J. Mol. Liq. 2022, 366, 120340. https://doi.org/10.1016/J.MOLLIQ.2022.120340. | es_CO |
dc.relation.references | Huang, Z.; Karami, D.; Mahinpey, N.; Tn, A. B. Chemical Engineering Research and Design Study on the Efficiency of Multiple Amino Groups in Ionic Liquids on Their Sorbents Performance for Low-Temperature CO 2 Capture. Chem. Eng. Res. Des. 2021, 167, 198–206. https://doi.org/10.1016/j.cherd.2021.01.016. | es_CO |
dc.relation.references | Lavanya, R.; Srinivasadesikan, V.; Lin, M.; Padmini, V. Development of an Optical Biosensor for the Determination of Choline in Human Biofluids. J. Mol. Struct. 2023, 1280 (0022–2860), 135040. https://doi.org/10.1016/J.MOLSTRUC.2023.135040. | es_CO |
dc.relation.references | Verma, C.; Obot, I. B.; Bahadur, I.; Sherif, E. M.; Ebenso, E. E. Choline Based Ionic Liquids as Sustainable Corrosion Inhibitors on Mild Steel Surface in Acidic Medium: Gravimetric, Electrochemical, Surface Morphology, DFT and Monte Carlo Simulation Studies. Appl. Surf. Sci. 2018. https://doi.org/10.1016/j.apsusc.2018.06.035. | es_CO |
dc.relation.references | Latini, G.; Signorile, M.; Rosso, F.; Fin, A.; Bordiga, S.; Bocchini, S.; Giordani, S.; Pirri, F.; Crocell, V. Efficient and Reversible CO 2 Capture in Bio-Based Ionic Liquids Solutions. 2022, 55 (July 2021). https://doi.org/10.1016/j.jcou.2021.101815. | es_CO |
dc.relation.references | Noorani, N.; Mehrdad, A.; Ahadzadeh, I. CO2 Absorption in Amino Acid-Based Ionic Liquids : Experimental and Theoretical Studies. Fluid Phase Equilib. 2021, 547, 113185. https://doi.org/10.1016/j.fluid.2021.113185. | es_CO |
dc.relation.references | Ramondo, F.; Muzio, S. Di. Reaction Mechanism of CO 2 with Choline-Amino Acid Ionic Liquids : A Computational Study. Entropy 2022, 24, 1–16. https://doi.org/https://doi.org/10.3390/e24111572. | es_CO |
dc.relation.references | Mammino, L. Computational Chemistry and Green Chemistry: Familiarizing Chemistry Students with the Modes and Benefits of Promising Synergies. Sustain. Chem. Pharm. 2022, 29, 100743–100750. https://doi.org/https://doi.org/10.1016/j.scp.2022.100743. | es_CO |
dc.relation.references | He, L.; Bai, L.; Dionysiou, D. D.; Wei, Z.; Spinney, R.; Chu, C.; Lin, Z.; Xiao, R. Applications of Computational Chemistry , Artificial Intelligence , and Machine Learning in Aquatic Chemistry Research. Chem. Eng. J. 2021, 426 (May), 131810. https://doi.org/10.1016/j.cej.2021.131810. | es_CO |
dc.relation.references | Lusk, M. T.; Mattsson, A. E.; Editors, G. High-Performance Computing for Materials Design to Advance Energy Science. 2011, 36 (March), 169–174. https://doi.org/10.1557/mrs.2011.30. | es_CO |
dc.relation.references | Slater, J. C. A Simplification of the Hartree-Fock Method; 1935; Vol. 376. | es_CO |
dc.relation.references | Geerlings, P.; Proft, F. De; Langenaeker, W. Conceptual Density Functional Theory. Chem. Phys. 2003, 103, 1793−1873. https://doi.org/10.1021/cr990029p. | es_CO |
dc.relation.references | Kohn, W.; Becke, A. D.; Parr, R. G. Density Functional Theory of Electronic Structure. Chem. Phys. 1996, 0 (96), 12974–12980. https://doi.org/10.1021/jp960669l. | es_CO |
dc.relation.references | Tirado-rives, J.; Jorgensen, W. L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. theory Comput. 2008, 4, 297–306. https://doi.org/10.1021/ct700248k. | es_CO |
dc.relation.references | Dunning, T. H.; Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations . I . The Atoms Boron through Neon and Hydrogen Gaussian Basis Sets for Use in Correlated Molecular Calculations . I . The Atoms Boron through Neon and Hydrogen. Chem. Phys. 1989, 1007, 90. https://doi.org/10.1063/1.456153. | es_CO |
dc.relation.references | Piela, L. Chapter 3. Chasing the Correlation Dragon: Density Functional Theory (DFT), Ideas of Q.; Piela, L., Ed.; Ideas of Quantum Chemistry, 2020. https://doi.org/https://doi.org/10.1016/B978-0-44-464248-6.00011-9. | es_CO |
dc.relation.references | Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A.; Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Selfconsistent Molecular Orbital Methods . XX . A Basis Set for Correlated Wave Functions Self-Consistent Molecular Orbital Methods . XX . A Basis Set for Correlated Wave Functions. Chem. Phys. 1980, 650. https://doi.org/10.1063/1.438955. | es_CO |
dc.relation.references | Cao, B.; Du, J.; Liu, S.; Zhu, X.; Sun, X. Carbon Dioxide Capture by AminoFunctionalized Ionic Liquids : DFT Based Theoretical Analysis Substantiated by FTIR Investigation †. RSC Adv. 2016, 6, 10462–10470. https://doi.org/10.1039/C5RA23959A. | es_CO |
dc.relation.references | Hyuk-Yong Kwon, Zachary Morrow, C. T. Kelley, and E. J. Interpolation Methods for Molecular Potential Energy Surface Construction. J. Phys. Chem. A 2021, 9725– 9735. https://doi.org/DOI: 10.1021/acs.jpca.1c06812. | es_CO |
dc.relation.references | Guevara, D. L. ESTUDIO TEÓRICO DE LAS INTERACCIONES INTERMOLECULARES ENTRE LÍQUIDOS IÓNICOS DERIVADOS DE IMIDAZOLIO Y PIRIDINIO Y COMPUESTOS AROMÁTICOS POLICÍCLICOS, Universidad Veracruzana, 2016. | es_CO |
dc.relation.references | Fernández Vega, L., Ruidiaz Buelvas, M. A., Pérez Hincapié, L., & Pérez-Gamboa, A. Propiedades Estructurales, Espectroscópicas y Ópticas de 4-( 6- ( Dimetilamino ) Benzo [ d ] Tiazol-2-Il ) Benzonitrilo Como Modelo de Sistema D-E-A Por Métodos Computacionales, Universidad Autónoma del Caribe, 2018. https://doi.org/https://doi.org/10.15665/rp.v16i1.1548. | es_CO |
dc.relation.references | Iniesta Chavez, V. Estudio Computacional de Las Interacciones No Covalentes de Purinas, Benemérita Universidad Autonoma de Puebla, 2020. | es_CO |
dc.relation.references | Jincheng Yu, Neil Qiang Su, and W. Y. Describing Chemical Reactivity with Frontier Molecular Orbitalets. JACS Au 2022, 2, 1383–1394. https://doi.org/DOI: 10.1021/jac | es_CO |
dc.relation.references | Morco, R. P.; Musa, A. Y.; Wren, J. C. The Molecular Structures and the Relationships between the Calculated Molecular and Observed Bulk Phase Properties of Phosphonium-Based Ionic Liquids. Solid State Ionics 2014, 258, 74–81. https://doi.org/10.1016/j.ssi.2014.02.004. | es_CO |
dc.relation.references | Wang, B.; Zhu, M.; Liu, M.; Wang, Y.; Zhou, Y.; Ma, J. Design of Novel Dual Functional Ionic Liquids and DFT Study on Their CO2 Absorption Mechanism. J. Mol. Liq. 2022, 366, 120340. https://doi.org/10.1016/J.MOLLIQ.2022.120340. | es_CO |
dc.relation.references | Hadjittofis, E.; Das, S. C.; Zhang, G. G. Z.; Heng, J. Y. Y. Chapter 8. Interfacial Phenomena. In Developing Solid Oral Dosage Forms; Elsevier Inc., 2017; pp 225– 252. https://doi.org/10.1016/B978-0-12-802447-8.00008-X. | es_CO |
dc.relation.references | J.H. Adair, E. Suvaci, J. S. Surface and Colloid Chemistry. In Encyclopedia of Materials: Science and Technology, Elsevier; 2001; pp 1–10. https://doi.org/https://doi.org/10.1016/B0-08-043152-6/01622-3. | es_CO |
dc.relation.references | Lü, R.; Wang, S.; Lu, Y. 1-Propyl-4 , 5-Dibromo-3-Methylimidazolium Bromide. Chem. Phys. Lett. 2011, 505 (4–6), 87–91. https://doi.org/10.1016/j.cplett.2011.02.027. | es_CO |
dc.relation.references | Abelian, A.; Dybek, M.; Wallach, J.; Gaye, B.; Adejare, A. Pharmaceutical Chemistry. Remington: The Science and Practice of Pharmacy. 2021, pp 105–128. https://doi.org/10.1016/B978-0-12-820007-0.00006-4. | es_CO |
dc.relation.references | Jesus, G. A. “ANALISIS COMPUTACIONAL DE LOS FUNCIONALES MINNESOTA EN LOS SISTEMAS MOLECULARES ORGANICOS CT-7 (C33H31IN2O2), CT-500 (C43H59IN2O4) y CT-525(C40H41IN2O2) PARA SU POSIBLE APLICACION EN CELDAS SOLARES, CENTRO DE INVESTIGACIÓN EN MATERIALES AVANZADOS DEPARTAMENTO DE ESTUDIOS DE POSGRADO, 2013. | es_CO |
dc.relation.references | A. E. Reed, L. A. Curtiss, and F. W. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Phys. 1988, 899–926. https://doi.org/10.1021/cr00088a005. | es_CO |
dc.relation.references | Gaussian.com. Using GaussView 6 https://gaussian.com/gv6main/. | es_CO |
dc.relation.references | John Pople. Gaussian. Ciencias de la computación y robótica: Pittsburgh, Pensilvania 1970. https://doi.org/doi:10.1002/jcc.20049. | es_CO |
dc.relation.references | Ma, J.; Wang, Y.; Yang, X.; Zhu, M.; Wang, B. DFT Study on the Chemical Absorption Mechanism of CO 2 in Diamino Protic Ionic Liquids. Phys. Chem. Chem. 2021, 125, 1416–1428. https://doi.org/10.1021/acs.jpcb.0c08500. | es_CO |
dc.relation.references | Calcara, M.; Caricaterra, M. CO 2 Dipole Moment : A Simple Model and Its Implications for CO 2 -Rock Interactions. Minerals 2023, 13, 81. https://doi.org/https://doi.org/10.3390/min13010087. | es_CO |
dc.relation.references | Santra, M.; Kunzru, D.; Rabari, D. A Stability Analysis of Choline Chloride : Urea Deep Eutectic Solvent Using Density Functional Theory. Comput. Theor. Chem. 2022, 1217 (October), 113921. https://doi.org/10.1016/j.comptc.2022.113921. | es_CO |
dc.relation.references | Ochterski, J. W.; Ph, D. Thermochemistry in Gaussian; 2022. | es_CO |
dc.relation.references | Armakovic, S.; Armakovic, S. J.; Alsenoy, C. Van; Anto, P. L. Spectroscopic Investigations , DFT Calculations , Molecular Docking and MD Simulations of 3- [( 4-Carboxyphenyl ) Carbamoyl ] -4- Hydroxy-2-Oxo-1 , 2-Dihydroxy Quinoline-6- Carboxylic Acid. J. Mol. Struct. 2022, 1264, 133315. https://doi.org/10.1016/j.molstruc.2022.133315. | es_CO |
dc.relation.references | M. Sucheta, A.G. Pramod, Mohamed Zikriya, K. Mohammed Salma, N. Venugopal, R. Chaithra, D. Harshitha, S. Amudan, C.G. Renuka, S. M. Frontier Molecular Orbital, Molecular Structure and Thermal Properties of 2,4,6,8-Tetramethyl-2,3,6,7- Tetrahydro-s-Indacene-1,5-Dione Using DFT Calculation. Mater. Today Proceedings, 2022, 62, 5241–5244. https://doi.org/https://doi.org/10.1016/j.matpr.2022.03.215. | es_CO |
dc.relation.references | Glu, C. À.; Zhang, Y.; Chen, X.; Wang, H.; Diao, K.; Chen, J. Journal of Molecular Structure : THEOCHEM DFT Study on the Structure and Cation – Anion Interaction of Amino Acid Ionic Liquid. J. Mol. Struct. THEOCHEM 2010, 952 (1–3), 16–24. https://doi.org/10.1016/j.theochem.2010.03.033. | es_CO |
dc.relation.references | Mandal, P. K.; Arunan, E. Hydrogen Bond Radii for the Hydrogen Waals Radius of Hydrogen. Chem. Phys. 2014, 3880 (2001), 9–12. https://doi.org/10.1063/1.1343905. | es_CO |
dc.relation.references | M. Tredwell, V. G. Fluorine in Medicinal Chemistry: Importance of Chirality. In Comprehensive Chirality; ScienceDirect, 2012; pp 70–85. https://doi.org/https://doi.org/10.1016/B978-0-08-095167-6.00106-3. | es_CO |
dc.relation.references | Murray, J. S.; Politzer, P. Molecular Surfaces , van Der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions *; 2009; Vol. 82 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Cruces_2023_TG.pdf | 2,73 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.