Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10413
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Lozano Vera, Maria Alejandra. | - |
dc.date.accessioned | 2025-10-15T22:45:14Z | - |
dc.date.available | 2023 | - |
dc.date.available | 2025-10-15T22:45:14Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Lozano Vera, M. A. (2023). Diseño de un biocarbón tipo BOCASHI a partir de pericarpio de Café Castillo. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10413 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10413 | - |
dc.description | En esta investigación se utilizó el pericarpio que es un residuo poscosecha de café, rico en lignina y hemicelulosa, compuestos que lo hace aprovechable como soporte estructural de materiales porosos. Lo anterior, permitió el desarrollo de un sistema pirolítico para obtener biocarbones, que mezclados con óxidos alcalinos, como el óxido de calcio (CaO) contribuyeron a la generación de un bocashi, que se caracteriza por su buena retención de materia orgánica y de nutrientes, aumenta la permeabilidad del suelo, reduce las emisiones de gases de efecto invernadero, mejora la porosidad del suelo, y aumenta la diversidad microbiana previniendo enfermedades. El bocashi obtenido se caracterizó por espectroscopía infrarroja por transformada de Fourier (ATR-FTIR), análisis termogravimétrico (TGA), los volátiles por cromatografía de gases (GC), propiedades fisicoquímicas y porcentaje total de nitrógeno, logrando establecer que se obtuvo un material estable, de tipo carbono grafito, con concentraciones de nitrógeno del 1,5 al 2,0% y buenos contenidos de fósforo. Con estos resultados, los bocashi se aplicaron sobre plantas de rábano (Raphanus sativus) realizando seguimiento al tallo, hoja y largo de raíz, logrando establecer que los materiales sintetizados son apropiados para aumentar el crecimiento de las plantas estudiadas. | es_CO |
dc.description.abstract | In this research, the pericarp, which is a post-harvest residue of coffee, rich in lignin and hemicellulose, compounds that make it usable as a structural support for porous materials, was improved. This allowed the development of a pyrolytic system to obtain biocarbons, which mixed with alkaline oxides, such as calcium oxide (CaO), contributed to the generation of a bokashi, which is characterized by its good retention of organic matter and nutrients. increases soil permeability, reduces greenhouse gas emissions, improves soil porosity, and increases microbial diversity, preventing diseases. The obtained bokashi was characterized by Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), gas chromatography (GC) volatiles, physicochemical properties and total percentage of nitrogen, establishing that a stable material was obtained with a carbon graphite type, with nitrogen concentrations of 15 to 20% and good phosphorus content. With these results, the bokashi were applied to radish (Raphanus sativus) plants, monitoring the stem, leaf, and root length, establishing that the synthesized materials are appropriate to increase the growth of the studied plants. | es_CO |
dc.format.extent | 76 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | Pericarpio de café. | es_CO |
dc.subject | Bocashi. | es_CO |
dc.subject | Biocarbón. | es_CO |
dc.subject | Pirólisis. | es_CO |
dc.title | Diseño de un biocarbón tipo BOCASHI a partir de pericarpio de Café Castillo. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2023 | - |
dc.relation.references | Acchar, W., Dultra, E. J. V., Segadães, A. M. (2013). Untreated coffee husk ashes used as flux in ceramic tiles. Applied Clay Science, 75–76, 141–147. https://doi.org/10.1016/j.clay.2013.03.009 | es_CO |
dc.relation.references | Alhogbi, B. G. (2017). Potential of coffee husk biomass waste for the adsorption of Pb (II) ion from aqueous solutions. Sustainable Chemistry and Pharmacy, 6, 21–25. https://doi.org/10.1016/j.scp.2017.06.004 | es_CO |
dc.relation.references | Amalina, F., Razak, A. S. A., Krishnan, S., Zularisam, A. W., Nasrullah, M. (2022). A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review. Cleaner Materials, 3(100045). https://doi.org/10.1016/j.clema.2022.100045 | es_CO |
dc.relation.references | Aristizabal A., C., Duque O., H. (2006). Caracterización del proceso de beneficio de café en cinco departamentos cafeteros de Colombia. Cenicafe. http://hdl.handle.net/10778/208 | es_CO |
dc.relation.references | Azeem, M., Ali, A., Arockiam Jeyasundar, P. G. S., Bashir, S., Hussain, Q., Wahid, F., Ali, E. F., Abdelrahman, H., Li, R., Antoniadis, V., Rinklebe, J., Shaheen, S. M., Li, G., Zhang, Z. (2021). Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a miningcontaminated soil. Chemosphere, 282(131016). https://doi.org/10.1016/j.chemosphere.2021.131016 | es_CO |
dc.relation.references | Barrera López, J. A., Sánchez Velandia, P. F. (2020). Evaluación de la cascarilla de café como sustituto a las grasas utilizadas en la elaboración de brownies. Universidad de los Andes. | es_CO |
dc.relation.references | Becerra-Quintana, R., Lozada, M., Quintana-Mendoza, J., Torres, A., Henao, J. (2023). Uso de desechos de yuca (Manihot esculenta Crantz) en la remoción de verde y naranja de metilo. Revista científica, 46(1), 51–60. https://doi.org/10.14483/23448350.19930 | es_CO |
dc.relation.references | Berihun, D. (2017). Removal of chromium from industrial wastewater by adsorption using coffee husk. Journal of Material Science & Engineering, 06(02). https://doi.org/10.4172/2169-0022.1000331 | es_CO |
dc.relation.references | Bogusz, A., Nowak, K., Stefaniuk, M., Dobrowolski, R., & Oleszczuk, P. (2017). Synthesis of biochar from residues after biogas production with respect to cadmium and nickel removal from wastewater. Journal of Environmental Management, 201, 268 - 276. https://doi.org/10.1016/j.jenvman.2017.06.019 | es_CO |
dc.relation.references | Boudet Antomarchi, A., Boicet Fabré, T., Durán Ricardo, S., & Meriño Hernández, Y. (2017). Effect on tomato (Solanum lycopersicum L.) of different doses of organic fertilizer bocashi under agroecological conditions. Centro Agrícola, 44(4), 37-42. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253- 57852017000400006&lng=es&tlng=en | es_CO |
dc.relation.references | Cai, H., Ba, Z., Yang, K., Zhang, Q., Zhao, K., & Gu, S. (2017). Pyrolysis characteristics of typical biomass thermoplastic composites. Results in physics, 7, 3230-3235. https://doi.org/10.1016/j.rinp.2017.07.071 | es_CO |
dc.relation.references | Campos, R., Pinto, V., Melo, L., da Rocha, S., & Coimbra, J. (2021). New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. Future Foods, 4, 100058. https://doi.org/10.1016/j.fufo.2021.100058 | es_CO |
dc.relation.references | Caporaso, N., Whitworth, M., Cui, C., & Fisk, I. (2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPMEGC-MS. Food Research International, 108, 628-640. https://doi.org/10.1016/j.foodres.2018.03.077 | es_CO |
dc.relation.references | Castro, V. M., Valenzuela, J. J., & Ramos, J. D. (2022). Evaluación del proceso de beneficio semiseco (Honey) en las variedades de Café (Coffee arábica) Castillo, Colombia y Caturra y su efecto en la calidad en taza. Ingeniería y Región, 27, 6- 11. https://doi.org/10.25054/22161325.3148 | es_CO |
dc.relation.references | Chaparro-Garnica, J., Mostazo-López, M. J., Salinas-Torres, D., Morallon, E., & & Cazorla-Amorós, D. (2020). Residuos de biomasa como plataforma para obtener materiales carbonosos porosos mediante carbonización hidrotermal en presencia de H3PO4. Boletín del Grupo Español del Carbón, 55, 22-27. http://hdl.handle.net/10045/108197 | es_CO |
dc.relation.references | Chen, W. H., Lin, B. J., Lin, Y. Y., Chu, Y. S., Ubando, A. T., Show, P. L., . . . Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887 | es_CO |
dc.relation.references | Cortés, C. A. (2018). Evaluación del proceso de clasificación de café (Coffee arabica L.) por el método de la espectroscopia infrarroja FTIR. Ingeniería y región , 19, 12- 17. https://doi.org/10.25054/22161325.1890 | es_CO |
dc.relation.references | da Silva Carneiro, J. S., Ribeiro, I. C., Nardis, B. O., Barbosa, C. F., Lustosa Filho, J. F., & Melo, L. C. (2021). Long-term effect of biochar-based fertilizers application in tropical soil: agronomic efficiency and phosphorus availability. Science of the Total Environment, 760, 143955. https://doi.org/10.1016/j.scitotenv.2020.143955 | es_CO |
dc.relation.references | Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment—conversion technologies and applications. Applied Sciences, 10(10), 3492. https://doi.org/10.3390/app10103492 | es_CO |
dc.relation.references | Escalante Rebolledo, A., Pérez López, G., Hidalgo Moreno, C., López Collado, J., Campo Alves, J., Valtierra Pacheco, E., & Etchevers Barra, J. (2016). Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo. Terra Latinoamericana, 34(3), 367-382. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187- 57792016000300367&lng=es&nrm=iso | es_CO |
dc.relation.references | Febrianto, N., & Zhu, F. (2023). Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chemistry, 135489. https://doi.org/10.1016/j.foodchem.2023.135489 | es_CO |
dc.relation.references | Fernandez, J., Bernardino, C., Mahler, C., Santelli, R., Brasil, B., Borges, R., . . . Cincotto, F. (2021). Biochar Generated from Agro-Industry Sugarcane Residue by Low Temperature Pyrolysis Utilized as an Adsorption Agent for the Removal of Thiamethoxam Pesticide in Wastewater. Water Air Soil Pollut, 232, 1-13. https://doi.org/10.1007/s11270-021-05030-5 | es_CO |
dc.relation.references | Flores Córdova, M., Soto Parra, J., Salas Salazar, N., Sánchez Chávez, E., & Piña Ramírez, F. (20018). Efecto del subproducto industrial CaCO3 en los atributos de calidad, contenido fenólico y capacidad antioxidante de manzana cvs Golden Delicious y Top Red. Nova scientia, 10(20), 64-82. https://doi.org/10.21640/ns.v10i20.1190 | es_CO |
dc.relation.references | Gale, M., Nguyen, T., Moreno, M., & Gilliard-AbdulAziz, K. L. (2021). Physiochemical properties of biochar and activated carbon from biomass residue: influence of process conditions to adsorbent properties. ACS omega, 6(15), 10224-10233. https://doi.org/10.1021/acsomega.1c00530 | es_CO |
dc.relation.references | Glosario del café. (02 de 07 de 2018). Yara None: https://www.yara.com.ar/nutricionvegetal/cafe/cafe-glosario/ | es_CO |
dc.relation.references | Gosgot Angeles, W., Rivera López, R. Y., Rascón, J., Barrena Gurbillón, M. A., Ordinola Ramirez, C. M., Oliva, M., & Montenegro Santillan, Y. (2021). Valorización energética de residuos orgánicos mediante pirólisis. Revista De Investigación De Agroproducción Sustentable, 5(2), 26-36. https://doi.org/10.25127/aps.20212.766 | es_CO |
dc.relation.references | Ha, J. H., & Lee, I. G. (2020). Study of a method to effectively remove char byproduct generated from fast pyrolysis of lignocellulosic biomass in a bubbling fluidized bed reactor. Processes, 8(11), 1407. https://doi.org/10.3390/pr8111407 | es_CO |
dc.relation.references | Hall, R., Trevisan, F., & de Vos, R. (2022). Coffee berry and green bean chemistry– Opportunities for improving cup quality and crop circularity. Food Research International, 151, 110825. https://doi.org/10.1016/j.foodres.2021.110825 | es_CO |
dc.relation.references | Han, L. R. (2018). Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Science of the Total Environment, 616, 335-344. https://doi.org/10.1016/j.scitotenv.2017.11.014 | es_CO |
dc.relation.references | Hassan, M., Liu, Y., Naidu, R., Parikh, S., Du, J., Qi, F., & Willett, I. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of the Total Environment, 744, 140714. https://doi.org/10.1016/j.scitotenv.2020.140714 | es_CO |
dc.relation.references | Helguero Gutiérrez, A., Bustillos Peña, L., & Hernani Díaz, J. G. (2018). Obtención de biogás mediante la fermentación anaerobia de estiércol: Anahí Helguero Gutiérrez, Lautaro Bustillos Peña, Javier Gonzalo Hernani Díaz. Revista Estudiantil AGRO-VET, 2(2), 185-191. https://agrovet.umsa.bo/index.php/AGV/article/view/91 | es_CO |
dc.relation.references | Herrera, E. L., F. C., Alfaro, R., Solís, J. L., Gómez, M., Keiski, R. L., & Cruz, J. F. (2018). Producción de biocarbón a partir de biomasa residual y su uso en la germinación y crecimiento en vivero de Capparis scabrida (Sapote). Scientia Agropecuaria, 9(4), 569-577. | es_CO |
dc.relation.references | Hume, R., Marschner, P., Schilling, R., Mason, S., & Mosley, L. (2022). Detection of agriculturally relevant lime concentrations in soil using mid-infrared spectroscopy. Geoderma, 409(1), 115639. https://doi.org/10.1016/j.geoderma.2021.115639 | es_CO |
dc.relation.references | Jian, X., Zhuang, X., Li, B., Xu, X., Wei, Z., Song, Y., & & Jiang, E. (2018). Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environmental Technology & Innovation, 10, 27-35. https://doi.org/10.1016/j.eti.2018.01.004 | es_CO |
dc.relation.references | Kaetzl, K., Lübken, M., Nettmann, E., Krimmler, S., & Wichern, M. (2020). Slow sand filtration of raw wastewater using biochar as an alternative filtration media. Scientific reports, 10(1), 1229. https:// doi.org/10.1038/s41598-020-57981-0 | es_CO |
dc.relation.references | Kaetzl, K., Lübken, M., Uzun, G., Gehring, T., Nettmann, E., Stenchly, K., & Wichern, M. (2019). On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries. Science of the Total Environment, 682, 601 - 610. https://doi.org/https://doi.org/10.1016/j. | es_CO |
dc.relation.references | Kameyama, K. M. (2019). The preliminary study of water-retention related properties of biochar produced from various feedstock at different pyrolysis temperatures. Materials, 12(11), 1732. https://doi.org/10.3390/ma12111732 | es_CO |
dc.relation.references | Kiggundu, N., & Sittamukyoto, J. (20019). Pryloysis of coffee husks for biochar production. Journal of Environmental Protection, 10(12). https://doi.org/10.4236/jep.2019.1012092 | es_CO |
dc.relation.references | Klug, M. (2012). Pirólisis, un proceso para derretir la biomasa. Revista De Química, 26(1-2), 37-40. https://revistas.pucp.edu.pe/index.php/quimica/article/view/5547 | es_CO |
dc.relation.references | Kumar, A., Bhattacharya, T., Hasnain, S. M., Nayak, A. K., & Hasnain, M. S. (2020). Applications of biomass-derived materials for energy production, conversion, and storage. Materials Science for Energy Technologies, 3, 905-920. https://doi.org/10.1016/j.mset.2020.10.012 | es_CO |
dc.relation.references | Kumar, P. N., Nagappan, V., & Karthikeyan, C. (2019). Effects of fly ash, calcium carbonate fillers on mechanical, moisture absorption properties in poly vinyl chloride resin. Materials Today: Proceedings, 16, 1219-1225. https://doi.org /10.1016/j.matpr.2019.05.217 | es_CO |
dc.relation.references | Kwon, E. E., Lee, T., Ok, Y. S., Tsang, D. C., Park, C., & Lee, J. (2018). Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 153, 726-731. https://doi.org/10.1016/j.energy.2018.04.100 | es_CO |
dc.relation.references | Lau, A. Y., Tsang, D. C., Graham, N. J., Ok, Y. S., Yang, X., & Li, X. D. (2017). Surfacemodified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere, 169, 89 -98. https://doi.org/10.1016/j.chemosphere.2016.11.048 | es_CO |
dc.relation.references | Lin, Y. C., Ho, S. H., Zhou, Y., & & Ren, N. Q. (2018). Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource technology, 259, 104-110. https://doi.org/10.1016/j.biortech.2018.02.094 | es_CO |
dc.relation.references | Liu, C., Sun, B., Zhang, X., Liu, X., Drosos, M., Li, L., & Pan, G. (2021). The WaterSoluble Pool in Biochar Dominates Maize Plant Growth Promotion Under Biochar Amendment. Journal of Plant Growth Regul, 40, 1466-1476. https://doi.org/10.1007/s00344-020-10203-3 | es_CO |
dc.relation.references | Liu, W. J., Jiang, H., & Yu, H. Q. (2019). Emerging applications of biochar-based materials for energy storage and conversion. Energy & environmental science, 12(6), 1751-1779. https://doi.org/10.1039/C9EE00206E | es_CO |
dc.relation.references | Liu, Z., Xu, Z., Xu, L., Buyong, F., Chay, T. C., Li, Z., . . . Wang, X. (2022). Modified biochar: synthesis and mechanism for removal of environmental heavy metals. Carbon Research, 1(1), 8. https://doi.org/10.1007/s44246-022-00007-3 | es_CO |
dc.relation.references | López-Beceiro, J., Díaz-Díaz, A. M., Álvarez-García, A., Tarrío-Saavedra, J., Naya, S., & Artiaga, R. (2021). The Complexity of Lignin Thermal Degradation in the Isothermal Context. Processes, 9(7), 1154. https://doi.org/10.3390/pr9071154 | es_CO |
dc.relation.references | Ma, Z., Yang, Y., Wu, Y., Xu, J., Peng, H., Liu, X., . . . Wang, S. (2019). In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 140, 195-204. https://doi.org/10.1016/j.jaap.2019.03.015 | es_CO |
dc.relation.references | Maceda, A., Soto-Hernández, M., Peña-Valdivia, C. B., Trejo, C., & Terrazas, T. (2021). Lignina: composición, síntesis y evolución. Madera y bosques, 27(2). https://doi.org/10.21829/myb.2021.2722137 | es_CO |
dc.relation.references | Manals-Cutiño, E. M., Salas-Tort, D., & Penedo-Medina, M. (2018). Caracterización de la biomasa vegetal cascarilla de café. Tecnología Química, 38(1), 169 - 181 . http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224- 61852018000100013&lng=es&tlng=pt | es_CO |
dc.relation.references | Mao, J. Z. (2019). Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environmental Pollution, 253, 779-789. https://doi.org/10.1016/j.envpol.2019.07.051 | es_CO |
dc.relation.references | Maps y directions. (24 de 07 de 2023). Buscar Coordenadas GPS: https://www.mapsdirections.info/coordenadas-de-googlemaps.htm | es_CO |
dc.relation.references | Milian-Luperón, L., Hernández-Rodríguez, M., Falcón-Hernández, J., & Otero-Calvis, A. (2020). Obtención de bioproductos por pirólisis lenta de cascarilla de café y cacao como candidatos aptos para ser utilizados como enmienda del suelo y fuente de energía. Revista Colombiana de Química, 49(2), 23-29. https://doi.org/10.15446/rev.colomb.quim.v49n2.83231 | es_CO |
dc.relation.references | Moneva-Roca, J. (2020). Análisis y evaluación actual del abono tipo bocashi como alternativa ecológica ante los agroquímicos. Universidad Miguel Hernández. https://hdl.handle.net/11000/5930 | es_CO |
dc.relation.references | Moreno Torrado, R. d., Sánchez Torrado, H. D., Santana Santana, N. A., & Manzano Angarita, J. Y. (2022). Estudio de la mezcla de concreto con los residuos de la cascarilla del café. Formación Estratégica, 3(1), 115-129. https://formacionestrategica.com/index.php/foes/article/view/79 | es_CO |
dc.relation.references | Murthy, T. K., Gowrishankar, B. S., K. R., Chandraprabha, M. N., & Mathew, B. B. (2020). Magnetic modification of coffee husk hydrochar for adsorptive removal of methylene blue: Isotherms, kinetics and thermodynamic studies. Environmental Chemistry and Ecotoxicology, 2, 205-212. https://doi.org/10.1016/j.enceco.2020.10.002 | es_CO |
dc.relation.references | Murthy, T. K., Gowrishankar, B. S., Prabha, M. C., Kruthi, M., & Krishna, R. H. (2019). Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: equilibrium, kinetics and thermodynamic studies. Microchemical Journal, 146, 192-201. https://doi.org/10.1016/j.microc.2018.12.067 | es_CO |
dc.relation.references | Nidheesh, P., Gopinath, A., Ranjith, N., Akre, A., Sreedharan, V., & & Kumar, M. (2021). Potential role of biochar in advanced oxidation processes: a sustainable approach. Chemical Engineering Journal, 405, 126582. https://doi.org/10.1016/j.cej.2020.126582 | es_CO |
dc.relation.references | Ortiz, R. A. (2016). Caracterización físico-química de residuos agroindustriales (cascarilla de arroz y cascarilla de café), como materia prima potencial para la obtención de bioetano. Laboratorios de Química UNAN-Managua I-II semestre, 122. http://repositorio.unan.edu.ni/id/eprint/3793 | es_CO |
dc.relation.references | Ortiz, W. (2014). Tratamientos aplicables a materiales lignocelulósicos para la obtención de etanol y productos químicos. Revista de Tecnología (Archivo), 13(1), 39-44. https://doi.org/10.18270/rt.v13i1.1297 | es_CO |
dc.relation.references | Park, J., Yun, J., Kang, S., Kim, S., Cho, J., Wang, J., & Seo, D. (2021). Removal of potentially toxic metal by biochar derived from rendered solid residue with high content of protein and bone tissue. Ecotoxicology and Environmental Safety, 208, 111690. https://doi.org/10.1016/j.ecoenv.2020.111690 | es_CO |
dc.relation.references | Peñuela, A. E.-U. (2021). Obtenga café de calidad en el proceso de beneficio. Cenicafé, Guía más agronomía, más productividad, más calidad, 3, 198-218. https://doi.org/10.38141/10791/0014_11 | es_CO |
dc.relation.references | Puerta, G., & Rios, S. (2011). Composición química del mucílago de café según el tiempo de fermentación y refrigeración. Cenicafe, 62(2), 23-40. http://hdl.handle.net/10778/478 | es_CO |
dc.relation.references | Puerta-Quintero, G. (2000). Beneficie correctamente su café y conserve la calidad de bebida. Cenicafé, 276. http://hdl.handle.net/10778/561 | es_CO |
dc.relation.references | Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255-273. https://doi.org/10.1016/j.rser.2017.05.057 | es_CO |
dc.relation.references | Quyen, V. T., Pham, T. H., Kim, J., Thanh, D., Thang, P. Q., Le, Q. V., . . . T., K. (2021). Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere, 284, 131312. https://doi.org/10.1016/j.chemosphere.2021.131312 | es_CO |
dc.relation.references | Ramos Agüero, D., & Terry Alfonso, E. (2014). Generalidades de los abonos orgánicos: Importancia del Bocashi como alternativa nutricional para suelos y plantas. Cultivos tropicales, 35(4), 52-59. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258- 59362014000400007&lng=es&tlng=es | es_CO |
dc.relation.references | Rebolledo Hernández, M., Cocotle-Ronzón, Y., Hernández Martínez, E., Morales Zarate, E., & Acosta Domíngez, L. (2022). Physicochemical, functional and flow properties of a coffee husk flour. CIENCIA Ergo-Sum, 30(3). https://cienciaergosum.uaemex.mx/article/view/17597 | es_CO |
dc.relation.references | Romero Millán, L. M., Cruz Domínguez, M. A., y Sierra Vargas, F. E. (2016). Efecto de la temperatura en el potencial de aprovechamiento energético de los productos de la pirólisis del cuesco de palma. Tecnura, 20(48), 89-99. https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a06 | es_CO |
dc.relation.references | Ruiz, M. (2017). Caracterización de productos destilados de aceites piroliticos de cascarilla de café. Universidad de los Andes . http://hdl.handle.net/1992/39869 | es_CO |
dc.relation.references | Sabogal-Otálora, A. M., Palomo-Hernández, L. F., y Piñeros-Castro, Y. (2022). Sugar production from husk coffee using combined pretreatments. Chemical Engineering and Processing-Process Intensification, 176, 108966. https://doi.org/10.1016/j.cep.2022.108966 | es_CO |
dc.relation.references | Safaei Khorram, M., Fatemi, A., Khan, M., Kiefer, R., y Jafarnia, S. (2018). Riesgo potencial de brote de malezas al aumentar las tasas de aplicación de biocarbón en leguminosas de crecimiento lento, lentejas (Lens culinaris Medik.). Diario de la ciencia de la alimentación y la agricultura, 98(6), 2080-2088. https://doi.org/10.1002/jsfa.8689 | es_CO |
dc.relation.references | Sankaran, R. M. (2021). The expansion of lignocellulose biomass conversion into bioenergy via nanobiotechnology. Frontiers in Nanotechnology, 3, 96. https://doi.org/10.3389/fnano.2021.793528 | es_CO |
dc.relation.references | Shakya, A., y Agarwal, T. (2019). Removal of Cr (VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. Journal of molecular liquids, 293, 111497. https://doi.org/10.1016/j.molliq.2019.111497 | es_CO |
dc.relation.references | Shi, W. J. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701, 134424. https://doi.org/10.1016/j.scitotenv.2019.134424 | es_CO |
dc.relation.references | Singh, C. T. (2020). Biochar: a sustainable tool in soil pollutant bioremediation. Bioremediation of Industrial Waste for Environmental Safety, 2(Biological Agents and Methods for Industrial Waste Management), 475-494. https://doi.org/10.1007/978-981-13-3426-9_19 | es_CO |
dc.relation.references | Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., y Garcia-Perez, M (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37-48. https://doi.org/https://doi.org/10.1016/j.biombioe.2015.11.010 | es_CO |
dc.relation.references | The Weather channel. (s.f.). Pronóstico del tiempo mensual para Guaca, Santander de weather.com: https://weather.com/esUY/tiempo/mensual/l/735de527793a9dbf7e8bd4b7431618b63a60ae43362a6b7c 02fcc272aafe624d | es_CO |
dc.relation.references | Thi Quyen, V., Pham, T. H., Kim, J., Thanh, D. M., Thang, P. Q., Van Le, Q., . . . Kim, T. (2021). Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere, 284, 131312. https://doi.org/10.1016/j.chemosphere.2021.131312 | es_CO |
dc.relation.references | Thi Quyen, V., Pham, T. H., Kim, J., Thanh, D. M., Thang, P. Q., Van Le, Q., . . . Kim, T. (2021). Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere, 284, 131312. https://doi.org/10.1016/j.chemosphere.2021.131312 | es_CO |
dc.relation.references | Tomczyk, A., & Sokołowska, Z. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215. https://doi.org/10.1007/s11157-020-09523-3 | es_CO |
dc.relation.references | Tomohito Kameda, S. T. (2017). Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism. Journal of Dispersion Science and Technology, 38(7), 1063-1066. http://dx.doi.org/10.1080/01932691.2016.1219953 | es_CO |
dc.relation.references | Torres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., y Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista Ion, 32(2), 59-66. https://doi.org/10.18273/revion.v32n2-2019006 | es_CO |
dc.relation.references | Venkatesh, G., Gopinath, K. A., Reddy, K. S., Reddy, B. S., Prabhakar, M., Srinivasarao, C., y Kumari, V. (2022). Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use. Sustainability, 14(4), 2295. https://doi.org/10.3390/su14042295 | es_CO |
dc.relation.references | Viltres-Rodríguez, R. y Alarcón, Z. (2022). Caracterización química del bio-aceite de pirólisis rápida de biomasa. Revista Cubana de Química, 34(1), 131-158. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224- 54212022000100131&lng=es&nrm=iso | es_CO |
dc.relation.references | Wang, J., y Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002-1022. https://doi.org/10.1016/j.jclepro.2019.04.282 | es_CO |
dc.relation.references | Waters, C. L., Janupala, R. R., Mallinson, R. G., y Lobban, L. L. (2017). Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. Journal of analytical and applied pyrolysis, 126, 380-389. https://doi.org/10.1016/j.jaap.2017.05.008 | es_CO |
dc.relation.references | Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. https://doi.org/10.1016/j.fuel.2017.12.054 | es_CO |
dc.relation.references | Wystalska, K. K.-K. (2023). Influence of Technical Parameters of the Pyrolysis Process on the Surface Area, Porosity, and Hydrophobicity of Biochar from Sunflower Husk Pellet. Sustainability, 15(1), 394. https://doi.org/10.3390/su15010394 | es_CO |
dc.relation.references | Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570 | es_CO |
dc.relation.references | Yakout, S. M. (2017). Physicochemical characteristics of biochar produced from rice straw at different pyrolysis temperature for soil amendment and removal of organics. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87, 207 - 214. https://doi.org/10.1007/s40010-017-0343-z | es_CO |
dc.relation.references | You, X., Suo, F., Yin, S., Wang, X., Zheng, H., Fang, S., . . . Li, Y. (2021). Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. Journal of Hazardous Materials, 417, 1126047. https://doi.org/10.1016/j.jhazmat.2021.126047 | es_CO |
dc.relation.references | Zazycki, M. A., Godinho, M., Perondi, D., Foletto, E. L., & Collazzo, G. C. (2018). New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. Journal of Cleaner Production, 171, 57-65. https://doi.org/10.1016/j.jclepro.2017.10.007 | es_CO |
dc.relation.references | Zhang, C., Zhang, L., Gao, J., Zhang, S., Liu, Q., Duan, P., & Hu, X. (2020). Evolution of the functional groups/structures of biochar and heteroatoms during the pyrolysis of seaweed. Algal Research, 48, 101900. https://doi.org/10.1016/j.algal.2020.101900 | es_CO |
dc.relation.references | Zhang, Z. F. (2022). A comprehensive review of bio-oil, bio-binder and bio-asphalt materials: Their source, composition, preparation and performance. Journal of Traffic and Transportation Engineering, 9(2), 151-166. https://doi.org/10.1016/j.jtte.2022.01.003 | es_CO |
dc.relation.references | Zhao, M., Dai, Y., Zhang, M., Feng, C., Qin, B., Zhang, W., . . . & Qiu, R. (2020). Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 717, 136894. https://doi.org/10.1016/j.scitotenv.2020.136894 | es_CO |
dc.relation.references | Zheng, A. Z. (2014). Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass. Journal of Molecular Catalysis A: Chemical, 383, 23-30. https://doi.org/10.1016/j.molcata.2013.11.005 | es_CO |
dc.relation.references | Zhou, G., Xu, X., Qiu, X., & & Zhang, J. (2019). Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresource technology, 272, 10-18. https://doi.org/10.1016/j.biortech.2018.09.135 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Lozano_2023_TG.pdf | 2,66 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.