• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10413
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorLozano Vera, Maria Alejandra.-
    dc.date.accessioned2025-10-15T22:45:14Z-
    dc.date.available2023-
    dc.date.available2025-10-15T22:45:14Z-
    dc.date.issued2023-
    dc.identifier.citationLozano Vera, M. A. (2023). Diseño de un biocarbón tipo BOCASHI a partir de pericarpio de Café Castillo. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10413es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10413-
    dc.descriptionEn esta investigación se utilizó el pericarpio que es un residuo poscosecha de café, rico en lignina y hemicelulosa, compuestos que lo hace aprovechable como soporte estructural de materiales porosos. Lo anterior, permitió el desarrollo de un sistema pirolítico para obtener biocarbones, que mezclados con óxidos alcalinos, como el óxido de calcio (CaO) contribuyeron a la generación de un bocashi, que se caracteriza por su buena retención de materia orgánica y de nutrientes, aumenta la permeabilidad del suelo, reduce las emisiones de gases de efecto invernadero, mejora la porosidad del suelo, y aumenta la diversidad microbiana previniendo enfermedades. El bocashi obtenido se caracterizó por espectroscopía infrarroja por transformada de Fourier (ATR-FTIR), análisis termogravimétrico (TGA), los volátiles por cromatografía de gases (GC), propiedades fisicoquímicas y porcentaje total de nitrógeno, logrando establecer que se obtuvo un material estable, de tipo carbono grafito, con concentraciones de nitrógeno del 1,5 al 2,0% y buenos contenidos de fósforo. Con estos resultados, los bocashi se aplicaron sobre plantas de rábano (Raphanus sativus) realizando seguimiento al tallo, hoja y largo de raíz, logrando establecer que los materiales sintetizados son apropiados para aumentar el crecimiento de las plantas estudiadas.es_CO
    dc.description.abstractIn this research, the pericarp, which is a post-harvest residue of coffee, rich in lignin and hemicellulose, compounds that make it usable as a structural support for porous materials, was improved. This allowed the development of a pyrolytic system to obtain biocarbons, which mixed with alkaline oxides, such as calcium oxide (CaO), contributed to the generation of a bokashi, which is characterized by its good retention of organic matter and nutrients. increases soil permeability, reduces greenhouse gas emissions, improves soil porosity, and increases microbial diversity, preventing diseases. The obtained bokashi was characterized by Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), gas chromatography (GC) volatiles, physicochemical properties and total percentage of nitrogen, establishing that a stable material was obtained with a carbon graphite type, with nitrogen concentrations of 15 to 20% and good phosphorus content. With these results, the bokashi were applied to radish (Raphanus sativus) plants, monitoring the stem, leaf, and root length, establishing that the synthesized materials are appropriate to increase the growth of the studied plants.es_CO
    dc.format.extent76es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectPericarpio de café.es_CO
    dc.subjectBocashi.es_CO
    dc.subjectBiocarbón.es_CO
    dc.subjectPirólisis.es_CO
    dc.titleDiseño de un biocarbón tipo BOCASHI a partir de pericarpio de Café Castillo.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2023-
    dc.relation.referencesAcchar, W., Dultra, E. J. V., Segadães, A. M. (2013). Untreated coffee husk ashes used as flux in ceramic tiles. Applied Clay Science, 75–76, 141–147. https://doi.org/10.1016/j.clay.2013.03.009es_CO
    dc.relation.referencesAlhogbi, B. G. (2017). Potential of coffee husk biomass waste for the adsorption of Pb (II) ion from aqueous solutions. Sustainable Chemistry and Pharmacy, 6, 21–25. https://doi.org/10.1016/j.scp.2017.06.004es_CO
    dc.relation.referencesAmalina, F., Razak, A. S. A., Krishnan, S., Zularisam, A. W., Nasrullah, M. (2022). A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review. Cleaner Materials, 3(100045). https://doi.org/10.1016/j.clema.2022.100045es_CO
    dc.relation.referencesAristizabal A., C., Duque O., H. (2006). Caracterización del proceso de beneficio de café en cinco departamentos cafeteros de Colombia. Cenicafe. http://hdl.handle.net/10778/208es_CO
    dc.relation.referencesAzeem, M., Ali, A., Arockiam Jeyasundar, P. G. S., Bashir, S., Hussain, Q., Wahid, F., Ali, E. F., Abdelrahman, H., Li, R., Antoniadis, V., Rinklebe, J., Shaheen, S. M., Li, G., Zhang, Z. (2021). Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a miningcontaminated soil. Chemosphere, 282(131016). https://doi.org/10.1016/j.chemosphere.2021.131016es_CO
    dc.relation.referencesBarrera López, J. A., Sánchez Velandia, P. F. (2020). Evaluación de la cascarilla de café como sustituto a las grasas utilizadas en la elaboración de brownies. Universidad de los Andes.es_CO
    dc.relation.referencesBecerra-Quintana, R., Lozada, M., Quintana-Mendoza, J., Torres, A., Henao, J. (2023). Uso de desechos de yuca (Manihot esculenta Crantz) en la remoción de verde y naranja de metilo. Revista científica, 46(1), 51–60. https://doi.org/10.14483/23448350.19930es_CO
    dc.relation.referencesBerihun, D. (2017). Removal of chromium from industrial wastewater by adsorption using coffee husk. Journal of Material Science & Engineering, 06(02). https://doi.org/10.4172/2169-0022.1000331es_CO
    dc.relation.referencesBogusz, A., Nowak, K., Stefaniuk, M., Dobrowolski, R., & Oleszczuk, P. (2017). Synthesis of biochar from residues after biogas production with respect to cadmium and nickel removal from wastewater. Journal of Environmental Management, 201, 268 - 276. https://doi.org/10.1016/j.jenvman.2017.06.019es_CO
    dc.relation.referencesBoudet Antomarchi, A., Boicet Fabré, T., Durán Ricardo, S., & Meriño Hernández, Y. (2017). Effect on tomato (Solanum lycopersicum L.) of different doses of organic fertilizer bocashi under agroecological conditions. Centro Agrícola, 44(4), 37-42. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0253- 57852017000400006&lng=es&tlng=enes_CO
    dc.relation.referencesCai, H., Ba, Z., Yang, K., Zhang, Q., Zhao, K., & Gu, S. (2017). Pyrolysis characteristics of typical biomass thermoplastic composites. Results in physics, 7, 3230-3235. https://doi.org/10.1016/j.rinp.2017.07.071es_CO
    dc.relation.referencesCampos, R., Pinto, V., Melo, L., da Rocha, S., & Coimbra, J. (2021). New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. Future Foods, 4, 100058. https://doi.org/10.1016/j.fufo.2021.100058es_CO
    dc.relation.referencesCaporaso, N., Whitworth, M., Cui, C., & Fisk, I. (2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPMEGC-MS. Food Research International, 108, 628-640. https://doi.org/10.1016/j.foodres.2018.03.077es_CO
    dc.relation.referencesCastro, V. M., Valenzuela, J. J., & Ramos, J. D. (2022). Evaluación del proceso de beneficio semiseco (Honey) en las variedades de Café (Coffee arábica) Castillo, Colombia y Caturra y su efecto en la calidad en taza. Ingeniería y Región, 27, 6- 11. https://doi.org/10.25054/22161325.3148es_CO
    dc.relation.referencesChaparro-Garnica, J., Mostazo-López, M. J., Salinas-Torres, D., Morallon, E., & & Cazorla-Amorós, D. (2020). Residuos de biomasa como plataforma para obtener materiales carbonosos porosos mediante carbonización hidrotermal en presencia de H3PO4. Boletín del Grupo Español del Carbón, 55, 22-27. http://hdl.handle.net/10045/108197es_CO
    dc.relation.referencesChen, W. H., Lin, B. J., Lin, Y. Y., Chu, Y. S., Ubando, A. T., Show, P. L., . . . Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887es_CO
    dc.relation.referencesCortés, C. A. (2018). Evaluación del proceso de clasificación de café (Coffee arabica L.) por el método de la espectroscopia infrarroja FTIR. Ingeniería y región , 19, 12- 17. https://doi.org/10.25054/22161325.1890es_CO
    dc.relation.referencesda Silva Carneiro, J. S., Ribeiro, I. C., Nardis, B. O., Barbosa, C. F., Lustosa Filho, J. F., & Melo, L. C. (2021). Long-term effect of biochar-based fertilizers application in tropical soil: agronomic efficiency and phosphorus availability. Science of the Total Environment, 760, 143955. https://doi.org/10.1016/j.scitotenv.2020.143955es_CO
    dc.relation.referencesEnaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment—conversion technologies and applications. Applied Sciences, 10(10), 3492. https://doi.org/10.3390/app10103492es_CO
    dc.relation.referencesEscalante Rebolledo, A., Pérez López, G., Hidalgo Moreno, C., López Collado, J., Campo Alves, J., Valtierra Pacheco, E., & Etchevers Barra, J. (2016). Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo. Terra Latinoamericana, 34(3), 367-382. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187- 57792016000300367&lng=es&nrm=isoes_CO
    dc.relation.referencesFebrianto, N., & Zhu, F. (2023). Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chemistry, 135489. https://doi.org/10.1016/j.foodchem.2023.135489es_CO
    dc.relation.referencesFernandez, J., Bernardino, C., Mahler, C., Santelli, R., Brasil, B., Borges, R., . . . Cincotto, F. (2021). Biochar Generated from Agro-Industry Sugarcane Residue by Low Temperature Pyrolysis Utilized as an Adsorption Agent for the Removal of Thiamethoxam Pesticide in Wastewater. Water Air Soil Pollut, 232, 1-13. https://doi.org/10.1007/s11270-021-05030-5es_CO
    dc.relation.referencesFlores Córdova, M., Soto Parra, J., Salas Salazar, N., Sánchez Chávez, E., & Piña Ramírez, F. (20018). Efecto del subproducto industrial CaCO3 en los atributos de calidad, contenido fenólico y capacidad antioxidante de manzana cvs Golden Delicious y Top Red. Nova scientia, 10(20), 64-82. https://doi.org/10.21640/ns.v10i20.1190es_CO
    dc.relation.referencesGale, M., Nguyen, T., Moreno, M., & Gilliard-AbdulAziz, K. L. (2021). Physiochemical properties of biochar and activated carbon from biomass residue: influence of process conditions to adsorbent properties. ACS omega, 6(15), 10224-10233. https://doi.org/10.1021/acsomega.1c00530es_CO
    dc.relation.referencesGlosario del café. (02 de 07 de 2018). Yara None: https://www.yara.com.ar/nutricionvegetal/cafe/cafe-glosario/es_CO
    dc.relation.referencesGosgot Angeles, W., Rivera López, R. Y., Rascón, J., Barrena Gurbillón, M. A., Ordinola Ramirez, C. M., Oliva, M., & Montenegro Santillan, Y. (2021). Valorización energética de residuos orgánicos mediante pirólisis. Revista De Investigación De Agroproducción Sustentable, 5(2), 26-36. https://doi.org/10.25127/aps.20212.766es_CO
    dc.relation.referencesHa, J. H., & Lee, I. G. (2020). Study of a method to effectively remove char byproduct generated from fast pyrolysis of lignocellulosic biomass in a bubbling fluidized bed reactor. Processes, 8(11), 1407. https://doi.org/10.3390/pr8111407es_CO
    dc.relation.referencesHall, R., Trevisan, F., & de Vos, R. (2022). Coffee berry and green bean chemistry– Opportunities for improving cup quality and crop circularity. Food Research International, 151, 110825. https://doi.org/10.1016/j.foodres.2021.110825es_CO
    dc.relation.referencesHan, L. R. (2018). Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Science of the Total Environment, 616, 335-344. https://doi.org/10.1016/j.scitotenv.2017.11.014es_CO
    dc.relation.referencesHassan, M., Liu, Y., Naidu, R., Parikh, S., Du, J., Qi, F., & Willett, I. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of the Total Environment, 744, 140714. https://doi.org/10.1016/j.scitotenv.2020.140714es_CO
    dc.relation.referencesHelguero Gutiérrez, A., Bustillos Peña, L., & Hernani Díaz, J. G. (2018). Obtención de biogás mediante la fermentación anaerobia de estiércol: Anahí Helguero Gutiérrez, Lautaro Bustillos Peña, Javier Gonzalo Hernani Díaz. Revista Estudiantil AGRO-VET, 2(2), 185-191. https://agrovet.umsa.bo/index.php/AGV/article/view/91es_CO
    dc.relation.referencesHerrera, E. L., F. C., Alfaro, R., Solís, J. L., Gómez, M., Keiski, R. L., & Cruz, J. F. (2018). Producción de biocarbón a partir de biomasa residual y su uso en la germinación y crecimiento en vivero de Capparis scabrida (Sapote). Scientia Agropecuaria, 9(4), 569-577.es_CO
    dc.relation.referencesHume, R., Marschner, P., Schilling, R., Mason, S., & Mosley, L. (2022). Detection of agriculturally relevant lime concentrations in soil using mid-infrared spectroscopy. Geoderma, 409(1), 115639. https://doi.org/10.1016/j.geoderma.2021.115639es_CO
    dc.relation.referencesJian, X., Zhuang, X., Li, B., Xu, X., Wei, Z., Song, Y., & & Jiang, E. (2018). Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environmental Technology & Innovation, 10, 27-35. https://doi.org/10.1016/j.eti.2018.01.004es_CO
    dc.relation.referencesKaetzl, K., Lübken, M., Nettmann, E., Krimmler, S., & Wichern, M. (2020). Slow sand filtration of raw wastewater using biochar as an alternative filtration media. Scientific reports, 10(1), 1229. https:// doi.org/10.1038/s41598-020-57981-0es_CO
    dc.relation.referencesKaetzl, K., Lübken, M., Uzun, G., Gehring, T., Nettmann, E., Stenchly, K., & Wichern, M. (2019). On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries. Science of the Total Environment, 682, 601 - 610. https://doi.org/https://doi.org/10.1016/j.es_CO
    dc.relation.referencesKameyama, K. M. (2019). The preliminary study of water-retention related properties of biochar produced from various feedstock at different pyrolysis temperatures. Materials, 12(11), 1732. https://doi.org/10.3390/ma12111732es_CO
    dc.relation.referencesKiggundu, N., & Sittamukyoto, J. (20019). Pryloysis of coffee husks for biochar production. Journal of Environmental Protection, 10(12). https://doi.org/10.4236/jep.2019.1012092es_CO
    dc.relation.referencesKlug, M. (2012). Pirólisis, un proceso para derretir la biomasa. Revista De Química, 26(1-2), 37-40. https://revistas.pucp.edu.pe/index.php/quimica/article/view/5547es_CO
    dc.relation.referencesKumar, A., Bhattacharya, T., Hasnain, S. M., Nayak, A. K., & Hasnain, M. S. (2020). Applications of biomass-derived materials for energy production, conversion, and storage. Materials Science for Energy Technologies, 3, 905-920. https://doi.org/10.1016/j.mset.2020.10.012es_CO
    dc.relation.referencesKumar, P. N., Nagappan, V., & Karthikeyan, C. (2019). Effects of fly ash, calcium carbonate fillers on mechanical, moisture absorption properties in poly vinyl chloride resin. Materials Today: Proceedings, 16, 1219-1225. https://doi.org /10.1016/j.matpr.2019.05.217es_CO
    dc.relation.referencesKwon, E. E., Lee, T., Ok, Y. S., Tsang, D. C., Park, C., & Lee, J. (2018). Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 153, 726-731. https://doi.org/10.1016/j.energy.2018.04.100es_CO
    dc.relation.referencesLau, A. Y., Tsang, D. C., Graham, N. J., Ok, Y. S., Yang, X., & Li, X. D. (2017). Surfacemodified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere, 169, 89 -98. https://doi.org/10.1016/j.chemosphere.2016.11.048es_CO
    dc.relation.referencesLin, Y. C., Ho, S. H., Zhou, Y., & & Ren, N. Q. (2018). Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource technology, 259, 104-110. https://doi.org/10.1016/j.biortech.2018.02.094es_CO
    dc.relation.referencesLiu, C., Sun, B., Zhang, X., Liu, X., Drosos, M., Li, L., & Pan, G. (2021). The WaterSoluble Pool in Biochar Dominates Maize Plant Growth Promotion Under Biochar Amendment. Journal of Plant Growth Regul, 40, 1466-1476. https://doi.org/10.1007/s00344-020-10203-3es_CO
    dc.relation.referencesLiu, W. J., Jiang, H., & Yu, H. Q. (2019). Emerging applications of biochar-based materials for energy storage and conversion. Energy & environmental science, 12(6), 1751-1779. https://doi.org/10.1039/C9EE00206Ees_CO
    dc.relation.referencesLiu, Z., Xu, Z., Xu, L., Buyong, F., Chay, T. C., Li, Z., . . . Wang, X. (2022). Modified biochar: synthesis and mechanism for removal of environmental heavy metals. Carbon Research, 1(1), 8. https://doi.org/10.1007/s44246-022-00007-3es_CO
    dc.relation.referencesLópez-Beceiro, J., Díaz-Díaz, A. M., Álvarez-García, A., Tarrío-Saavedra, J., Naya, S., & Artiaga, R. (2021). The Complexity of Lignin Thermal Degradation in the Isothermal Context. Processes, 9(7), 1154. https://doi.org/10.3390/pr9071154es_CO
    dc.relation.referencesMa, Z., Yang, Y., Wu, Y., Xu, J., Peng, H., Liu, X., . . . Wang, S. (2019). In-depth comparison of the physicochemical characteristics of bio-char derived from biomass pseudo components: Hemicellulose, cellulose, and lignin. Journal of Analytical and Applied Pyrolysis, 140, 195-204. https://doi.org/10.1016/j.jaap.2019.03.015es_CO
    dc.relation.referencesMaceda, A., Soto-Hernández, M., Peña-Valdivia, C. B., Trejo, C., & Terrazas, T. (2021). Lignina: composición, síntesis y evolución. Madera y bosques, 27(2). https://doi.org/10.21829/myb.2021.2722137es_CO
    dc.relation.referencesManals-Cutiño, E. M., Salas-Tort, D., & Penedo-Medina, M. (2018). Caracterización de la biomasa vegetal cascarilla de café. Tecnología Química, 38(1), 169 - 181 . http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224- 61852018000100013&lng=es&tlng=ptes_CO
    dc.relation.referencesMao, J. Z. (2019). Linking hydrophobicity of biochar to the water repellency and water holding capacity of biochar-amended soil. Environmental Pollution, 253, 779-789. https://doi.org/10.1016/j.envpol.2019.07.051es_CO
    dc.relation.referencesMaps y directions. (24 de 07 de 2023). Buscar Coordenadas GPS: https://www.mapsdirections.info/coordenadas-de-googlemaps.htmes_CO
    dc.relation.referencesMilian-Luperón, L., Hernández-Rodríguez, M., Falcón-Hernández, J., & Otero-Calvis, A. (2020). Obtención de bioproductos por pirólisis lenta de cascarilla de café y cacao como candidatos aptos para ser utilizados como enmienda del suelo y fuente de energía. Revista Colombiana de Química, 49(2), 23-29. https://doi.org/10.15446/rev.colomb.quim.v49n2.83231es_CO
    dc.relation.referencesMoneva-Roca, J. (2020). Análisis y evaluación actual del abono tipo bocashi como alternativa ecológica ante los agroquímicos. Universidad Miguel Hernández. https://hdl.handle.net/11000/5930es_CO
    dc.relation.referencesMoreno Torrado, R. d., Sánchez Torrado, H. D., Santana Santana, N. A., & Manzano Angarita, J. Y. (2022). Estudio de la mezcla de concreto con los residuos de la cascarilla del café. Formación Estratégica, 3(1), 115-129. https://formacionestrategica.com/index.php/foes/article/view/79es_CO
    dc.relation.referencesMurthy, T. K., Gowrishankar, B. S., K. R., Chandraprabha, M. N., & Mathew, B. B. (2020). Magnetic modification of coffee husk hydrochar for adsorptive removal of methylene blue: Isotherms, kinetics and thermodynamic studies. Environmental Chemistry and Ecotoxicology, 2, 205-212. https://doi.org/10.1016/j.enceco.2020.10.002es_CO
    dc.relation.referencesMurthy, T. K., Gowrishankar, B. S., Prabha, M. C., Kruthi, M., & Krishna, R. H. (2019). Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: equilibrium, kinetics and thermodynamic studies. Microchemical Journal, 146, 192-201. https://doi.org/10.1016/j.microc.2018.12.067es_CO
    dc.relation.referencesNidheesh, P., Gopinath, A., Ranjith, N., Akre, A., Sreedharan, V., & & Kumar, M. (2021). Potential role of biochar in advanced oxidation processes: a sustainable approach. Chemical Engineering Journal, 405, 126582. https://doi.org/10.1016/j.cej.2020.126582es_CO
    dc.relation.referencesOrtiz, R. A. (2016). Caracterización físico-química de residuos agroindustriales (cascarilla de arroz y cascarilla de café), como materia prima potencial para la obtención de bioetano. Laboratorios de Química UNAN-Managua I-II semestre, 122. http://repositorio.unan.edu.ni/id/eprint/3793es_CO
    dc.relation.referencesOrtiz, W. (2014). Tratamientos aplicables a materiales lignocelulósicos para la obtención de etanol y productos químicos. Revista de Tecnología (Archivo), 13(1), 39-44. https://doi.org/10.18270/rt.v13i1.1297es_CO
    dc.relation.referencesPark, J., Yun, J., Kang, S., Kim, S., Cho, J., Wang, J., & Seo, D. (2021). Removal of potentially toxic metal by biochar derived from rendered solid residue with high content of protein and bone tissue. Ecotoxicology and Environmental Safety, 208, 111690. https://doi.org/10.1016/j.ecoenv.2020.111690es_CO
    dc.relation.referencesPeñuela, A. E.-U. (2021). Obtenga café de calidad en el proceso de beneficio. Cenicafé, Guía más agronomía, más productividad, más calidad, 3, 198-218. https://doi.org/10.38141/10791/0014_11es_CO
    dc.relation.referencesPuerta, G., & Rios, S. (2011). Composición química del mucílago de café según el tiempo de fermentación y refrigeración. Cenicafe, 62(2), 23-40. http://hdl.handle.net/10778/478es_CO
    dc.relation.referencesPuerta-Quintero, G. (2000). Beneficie correctamente su café y conserve la calidad de bebida. Cenicafé, 276. http://hdl.handle.net/10778/561es_CO
    dc.relation.referencesQambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255-273. https://doi.org/10.1016/j.rser.2017.05.057es_CO
    dc.relation.referencesQuyen, V. T., Pham, T. H., Kim, J., Thanh, D., Thang, P. Q., Le, Q. V., . . . T., K. (2021). Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere, 284, 131312. https://doi.org/10.1016/j.chemosphere.2021.131312es_CO
    dc.relation.referencesRamos Agüero, D., & Terry Alfonso, E. (2014). Generalidades de los abonos orgánicos: Importancia del Bocashi como alternativa nutricional para suelos y plantas. Cultivos tropicales, 35(4), 52-59. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258- 59362014000400007&lng=es&tlng=eses_CO
    dc.relation.referencesRebolledo Hernández, M., Cocotle-Ronzón, Y., Hernández Martínez, E., Morales Zarate, E., & Acosta Domíngez, L. (2022). Physicochemical, functional and flow properties of a coffee husk flour. CIENCIA Ergo-Sum, 30(3). https://cienciaergosum.uaemex.mx/article/view/17597es_CO
    dc.relation.referencesRomero Millán, L. M., Cruz Domínguez, M. A., y Sierra Vargas, F. E. (2016). Efecto de la temperatura en el potencial de aprovechamiento energético de los productos de la pirólisis del cuesco de palma. Tecnura, 20(48), 89-99. https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a06es_CO
    dc.relation.referencesRuiz, M. (2017). Caracterización de productos destilados de aceites piroliticos de cascarilla de café. Universidad de los Andes . http://hdl.handle.net/1992/39869es_CO
    dc.relation.referencesSabogal-Otálora, A. M., Palomo-Hernández, L. F., y Piñeros-Castro, Y. (2022). Sugar production from husk coffee using combined pretreatments. Chemical Engineering and Processing-Process Intensification, 176, 108966. https://doi.org/10.1016/j.cep.2022.108966es_CO
    dc.relation.referencesSafaei Khorram, M., Fatemi, A., Khan, M., Kiefer, R., y Jafarnia, S. (2018). Riesgo potencial de brote de malezas al aumentar las tasas de aplicación de biocarbón en leguminosas de crecimiento lento, lentejas (Lens culinaris Medik.). Diario de la ciencia de la alimentación y la agricultura, 98(6), 2080-2088. https://doi.org/10.1002/jsfa.8689es_CO
    dc.relation.referencesSankaran, R. M. (2021). The expansion of lignocellulose biomass conversion into bioenergy via nanobiotechnology. Frontiers in Nanotechnology, 3, 96. https://doi.org/10.3389/fnano.2021.793528es_CO
    dc.relation.referencesShakya, A., y Agarwal, T. (2019). Removal of Cr (VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. Journal of molecular liquids, 293, 111497. https://doi.org/10.1016/j.molliq.2019.111497es_CO
    dc.relation.referencesShi, W. J. (2020). Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701, 134424. https://doi.org/10.1016/j.scitotenv.2019.134424es_CO
    dc.relation.referencesSingh, C. T. (2020). Biochar: a sustainable tool in soil pollutant bioremediation. Bioremediation of Industrial Waste for Environmental Safety, 2(Biological Agents and Methods for Industrial Waste Management), 475-494. https://doi.org/10.1007/978-981-13-3426-9_19es_CO
    dc.relation.referencesSuliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A. M., Dallmeyer, I., y Garcia-Perez, M (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 84, 37-48. https://doi.org/https://doi.org/10.1016/j.biombioe.2015.11.010es_CO
    dc.relation.referencesThe Weather channel. (s.f.). Pronóstico del tiempo mensual para Guaca, Santander de weather.com: https://weather.com/esUY/tiempo/mensual/l/735de527793a9dbf7e8bd4b7431618b63a60ae43362a6b7c 02fcc272aafe624des_CO
    dc.relation.referencesThi Quyen, V., Pham, T. H., Kim, J., Thanh, D. M., Thang, P. Q., Van Le, Q., . . . Kim, T. (2021). Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere, 284, 131312. https://doi.org/10.1016/j.chemosphere.2021.131312es_CO
    dc.relation.referencesThi Quyen, V., Pham, T. H., Kim, J., Thanh, D. M., Thang, P. Q., Van Le, Q., . . . Kim, T. (2021). Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater. Chemosphere, 284, 131312. https://doi.org/10.1016/j.chemosphere.2021.131312es_CO
    dc.relation.referencesTomczyk, A., & Sokołowska, Z. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215. https://doi.org/10.1007/s11157-020-09523-3es_CO
    dc.relation.referencesTomohito Kameda, S. T. (2017). Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism. Journal of Dispersion Science and Technology, 38(7), 1063-1066. http://dx.doi.org/10.1080/01932691.2016.1219953es_CO
    dc.relation.referencesTorres-Valenzuela, L. S., Sanín-Villarrea, A., Arango-Ramírez, A., y Serna-Jiménez, J. A. (2019). Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. Revista Ion, 32(2), 59-66. https://doi.org/10.18273/revion.v32n2-2019006es_CO
    dc.relation.referencesVenkatesh, G., Gopinath, K. A., Reddy, K. S., Reddy, B. S., Prabhakar, M., Srinivasarao, C., y Kumari, V. (2022). Characterization of biochar derived from crop residues for soil amendment, carbon sequestration and energy use. Sustainability, 14(4), 2295. https://doi.org/10.3390/su14042295es_CO
    dc.relation.referencesViltres-Rodríguez, R. y Alarcón, Z. (2022). Caracterización química del bio-aceite de pirólisis rápida de biomasa. Revista Cubana de Química, 34(1), 131-158. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224- 54212022000100131&lng=es&nrm=isoes_CO
    dc.relation.referencesWang, J., y Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002-1022. https://doi.org/10.1016/j.jclepro.2019.04.282es_CO
    dc.relation.referencesWaters, C. L., Janupala, R. R., Mallinson, R. G., y Lobban, L. L. (2017). Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. Journal of analytical and applied pyrolysis, 126, 380-389. https://doi.org/10.1016/j.jaap.2017.05.008es_CO
    dc.relation.referencesWeber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. https://doi.org/10.1016/j.fuel.2017.12.054es_CO
    dc.relation.referencesWystalska, K. K.-K. (2023). Influence of Technical Parameters of the Pyrolysis Process on the Surface Area, Porosity, and Hydrophobicity of Biochar from Sunflower Husk Pellet. Sustainability, 15(1), 394. https://doi.org/10.3390/su15010394es_CO
    dc.relation.referencesYaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570es_CO
    dc.relation.referencesYakout, S. M. (2017). Physicochemical characteristics of biochar produced from rice straw at different pyrolysis temperature for soil amendment and removal of organics. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 87, 207 - 214. https://doi.org/10.1007/s40010-017-0343-zes_CO
    dc.relation.referencesYou, X., Suo, F., Yin, S., Wang, X., Zheng, H., Fang, S., . . . Li, Y. (2021). Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. Journal of Hazardous Materials, 417, 1126047. https://doi.org/10.1016/j.jhazmat.2021.126047es_CO
    dc.relation.referencesZazycki, M. A., Godinho, M., Perondi, D., Foletto, E. L., & Collazzo, G. C. (2018). New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. Journal of Cleaner Production, 171, 57-65. https://doi.org/10.1016/j.jclepro.2017.10.007es_CO
    dc.relation.referencesZhang, C., Zhang, L., Gao, J., Zhang, S., Liu, Q., Duan, P., & Hu, X. (2020). Evolution of the functional groups/structures of biochar and heteroatoms during the pyrolysis of seaweed. Algal Research, 48, 101900. https://doi.org/10.1016/j.algal.2020.101900es_CO
    dc.relation.referencesZhang, Z. F. (2022). A comprehensive review of bio-oil, bio-binder and bio-asphalt materials: Their source, composition, preparation and performance. Journal of Traffic and Transportation Engineering, 9(2), 151-166. https://doi.org/10.1016/j.jtte.2022.01.003es_CO
    dc.relation.referencesZhao, M., Dai, Y., Zhang, M., Feng, C., Qin, B., Zhang, W., . . . & Qiu, R. (2020). Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Science of the Total Environment, 717, 136894. https://doi.org/10.1016/j.scitotenv.2020.136894es_CO
    dc.relation.referencesZheng, A. Z. (2014). Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass. Journal of Molecular Catalysis A: Chemical, 383, 23-30. https://doi.org/10.1016/j.molcata.2013.11.005es_CO
    dc.relation.referencesZhou, G., Xu, X., Qiu, X., & & Zhang, J. (2019). Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresource technology, 272, 10-18. https://doi.org/10.1016/j.biortech.2018.09.135es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Lozano_2023_TG.pdf2,66 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.