• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10411
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorTriana Suárez, Kerly Del carmen.-
    dc.date.accessioned2025-10-15T21:49:15Z-
    dc.date.available2023-
    dc.date.available2025-10-15T21:49:15Z-
    dc.date.issued2023-
    dc.identifier.citationTriana Suárez, K. D. (2023). Evaluación in silico de la interacción del MENTOL en líquidos iónicos derivados de colina y aminoácidos. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10411es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10411-
    dc.descriptionLos líquidos iónicos (LIs) están compuestos por iones: cationes orgánicos y aniones orgánicos o inorgánicos. Los LIs presentan baja volatilidad, alta estabilidad térmica y estructuras ajustables, estas características hacen que los LIs tengan la capacidad de sustituir a los solventes tradicionales en muchos campos. En el presente trabajo, se realizó una evaluación in silico de las interacciones de los complejos [AALIs + mentol] empleando glicinato de colina, prolinato de colina, sarcosinato de colina, y fenilalaninato de colina, con la finalidad de evaluar si estos AALIs son una alternativa ecológica a los solventes convencionales en procesos de extracción del mentol. Para llevar a cabo esta investigación se empleó el software Gaussian 09 y su visualizador GaussView ejecutando el método teórico DFT en el nivel de cálculo B3LYP/6-311++G (d, p), calculando y analizando las energías de optimización e interacción (fuerza de van der Waals tipo dipolo – dipolo), orbitales moleculares fronteras (HOMO y LUMO), energía ΔEGap, mapas de potenciales electrostáticos moleculares (MEP) y parámetros estructurales (ángulo y longitud). Como resultado se estableció que los cuatro complejos tuvieron la capacidad de interacción con la molécula de mentol.es_CO
    dc.description.abstractIonic liquids (ILs) consist of ions, encompassing organic cations and organic or inorganic anions. ILs are distinguished by their low volatility, elevated thermal stability, and tunable molecular structures. These attributes confer upon ILs the potential to supplant conventional solvents in numerous application domains. In this investigation, a computational, in silico evaluation was undertaken to scrutinize the interactions of the [AALIs + menthol] complexes utilizing choline glycinate, choline prolinat, choline sarcosinate, and choline phenylalaninate. The primary objective was to discern whether these AALIs represent ecologically benign alternatives to traditional solvents in the context of menthol extraction processes. The computational analyses were conducted with Gaussian 09 software, in conjunction with its GaussView visualization tool, employing the Density Functional Theory (DFT) method at the B3LYP/6-311++G (d, p) level of theory. The computed properties encompassed optimization and interaction energies, particularly of the dipole-dipole van der Waals type, molecular orbital energies (HOMO and LUMO), ΔEGap energy, molecular electrostatic potential (MEP) maps, and various structural parameters including bond angles and lengths. The outcomes of this study unequivocally affirmed the capacity of all four complexes to engage in interactions with the menthol molecule.es_CO
    dc.format.extent85es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectTeoría de funcional de densidad.es_CO
    dc.subjectInteracciones intramoleculares.es_CO
    dc.subjectPotencial electrostático molecular.es_CO
    dc.subjectAceite esencial.es_CO
    dc.titleEvaluación in silico de la interacción del MENTOL en líquidos iónicos derivados de colina y aminoácidos.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2023-
    dc.relation.referencesAkhtari, K., Hassanzadeh, K., Fakhraei, B., Fakhraei, N., Hassanzadeh, H., & Zarei, S. A. (2013). A density functional theory study of the reactivity descriptors and antioxidant behavior of Crocin. Computational and Theoretical Chemistry, 1013, 123–129. https://doi.org/10.1016/j.comptc.2013.03.015es_CO
    dc.relation.referencesAnand, G., Sivasubramanian, M., Manimehan, I., Ruby, A., Abinayashri, R., & Asmitha, R. K. (2023). Synthesis, spectroscopic elucidation (FT-IR, FT-Raman, UV–vis), quantum chemical computation (PES, FMO, HOMO–LUMO, MEP, NLO, Hirshfeld) and molecular docking studies on 2-thiophenecarboxamide crystal. Journal of Molecular Structure, 1286(April), 135586. https://doi.org/10.1016/j.molstruc.2023.135586es_CO
    dc.relation.referencesArbab, A. I., & Mohamed, F. O. (2021). Wave–particle duality revisited. Optik, 248(October), 168061. https://doi.org/10.1016/j.ijleo.2021.168061es_CO
    dc.relation.referencesAtoms, D. T., Parr, M. R. G., & Yang, W. (1989). Book Review. Density Functional Theory of Atoms and Molecules, 47, 10101.es_CO
    dc.relation.referencesBakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology, 46(2), 446–475. https://doi.org/10.1016/j.fct.2007.09.106es_CO
    dc.relation.referencesBardaweel, S. K., Bakchiche, B., ALSalamat, H. A., Rezzoug, M., Gherib, A., & Flamini, G. (2018). Chemical composition, antioxidant, antimicrobial and Antiproliferative activities of essential oil of Mentha spicata L. (Lamiaceae) from Algerian Saharan atlas. BMC Complementary and Alternative Medicine, 18(1), 1–7. https://doi.org/10.1186/s12906-018-2274-xes_CO
    dc.relation.referencesBartolomé, P. M. (2012). “Estudio computacional de la reactividad química: Reacción de cationes metálicos con piridina”. 1–69.es_CO
    dc.relation.referencesBehr, S., & Graswald, B. R. (2022). Dissociation limit in Kohn–Sham density functional theory. Nonlinear Analysis, Theory, Methods and Applications, 215, 112633. https://doi.org/10.1016/j.na.2021.112633es_CO
    dc.relation.referencesCedeño, A., Jhonny Muñoz, E., Muñoz, A., & Pillasaguay, S. (2019). Comparación de métodos de destilación para la obtención de aceite esencial de eucalipto. Colón Ciencias Tecnología y Negocios, 6(1), 1–10. http://portal.amelica.org/ameli/jatsRepo/215/2151021002/index.htmles_CO
    dc.relation.referencesChampagne, B., Deleuze, M. S., de Proft, F., & Leyssens, T. (2013). Theoretical chemistry in Belgium. En Theoretical Chemistry Accounts (Vol. 132, Número 7). https://doi.org/10.1007/s00214-013-1372-6es_CO
    dc.relation.referencesDatawheel LLC. (2023). Datawheel LLC. https://oec.world/es/profile/bilateralproduct/essential-oils/reporter/coles_CO
    dc.relation.referencesDe, L., Blanco-acuña, E. F., Pérez-hincapié, L., & Pérez-gamboa, A. (2018). ONL , HOMO – LUMO y reactividad de 1 , 3 , 5-trifenilpirazol Conformational , spectroscopic , NLO , HOMO-LUMO and reactivity of 1 , 3 , 5-triphenylpirazole computational study Estudo conformacional através de simulação computacional , espectroscópico , ON. 31(2), 51– 66. https://doi.org/10.18273/revion.v31n2-2018004es_CO
    dc.relation.referencesDege, N., Gökce, H., Doğan, O. E., Alpaslan, G., Ağar, T., Muthu, S., & Sert, Y. (2022). Quantum computational, spectroscopic investigations on N-(2-((2-chloro-4,5- dicyanophenyl)amino)ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with different solvents, molecular docking and drug-likeness researches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 638(January). https://doi.org/10.1016/j.colsurfa.2022.128311es_CO
    dc.relation.referencesDemirciog, Z. (2015). Theoretical analysis ( NBO , NPA , Mulliken Population Method ) and molecular orbital studies ( hardness , chemical potential , electrophilicity and Fukui function analysis ) of ( E ) -2- (( 4-hydroxy- 2-methylphenylimino ) methyl ) -3- methoxyphenol. 1091, 183–195. https://doi.org/10.1016/j.molstruc.2015.02.076es_CO
    dc.relation.referencesDíaz Alvarez, J. C. M. R. R. B. A. R. (2012). Líquidos iónicos : propiedades fisicoquímicas y aplicación potencial en el mejoramiento de crudos pesados Ionic liquids : physicochemical properties and potential application in upgrading of heavy crude oils. Revista ION, 25(1), 61–87.es_CO
    dc.relation.referencesDonato, R., Sacco, C., Pini, G., & Bilia, A. R. (2020). Antifungal activity of different essential oils against Malassezia pathogenic species. Journal of Ethnopharmacology, 249, 112376. https://doi.org/10.1016/j.jep.2019.112376es_CO
    dc.relation.referencesEl Ouafy, H., Aamor, M., Oubenali, M., Mbarki, M., El Haimouti, A., & El Ouafy, T. (2022). Molecular Structure, Electrostatic Potential and HOMO, LUMO Studies of 4-Aminoaniline, 4-Nitroaniline and 4-Isopropylaniline by DFT. Science and Technology Asia, 27(1), 9–19. https://doi.org/10.14456/scitechasia.2022.2es_CO
    dc.relation.referencesFakhraee, M. (2019). Amino acid ionic liquids based on imidazolium-hydroxyl functionalized cation: New insight from molecular dynamics simulations. Journal of Molecular Liquids, 279, 51–62. https://doi.org/10.1016/j.molliq.2019.01.109es_CO
    dc.relation.referencesFan, J. P., Yuan, C., Lai, X. H., Xie, C. F., Chen, H. P., & Peng, H. L. (2022). Density, viscosity and electrical conductivity of four amino acid based ionic liquids derived from L-Histidine, L-Lysine, L-Serine, and Glycine. Journal of Molecular Liquids, 364, 119944. https://doi.org/10.1016/j.molliq.2022.119944es_CO
    dc.relation.referencesFedotova, M. V., Kruchinin, S. E., & Chuev, G. N. (2019). Features of local ordering of biocompatible ionic liquids: The case of choline-based amino acid ionic liquids. Journal of Molecular Liquids, 296, 112081. https://doi.org/10.1016/j.molliq.2019.112081es_CO
    dc.relation.referencesFosco, C. D., & Hansen, G. (2023). A functional approach to the Van der Waals interaction. Annals of Physics, 455, 169388. https://doi.org/10.1016/j.aop.2023.169388es_CO
    dc.relation.referencesFukui, K. (1982). Role of frontier orbitals in chemical reactions. Science, 218(4574), 747– 754. https://doi.org/10.1126/science.218.4574.747es_CO
    dc.relation.referencesFukumoto, K., Yoshizawa, M., & Ohno, H. (2005). Room temperature ionic liquids from 20 natural amino acids. Journal of the American Chemical Society, 127(8), 2398–2399. https://doi.org/10.1021/ja043451ies_CO
    dc.relation.referencesGao, Y., Zhang, W., Li, L., Wang, Z., Shu, Y., & Wang, J. (2023). Ionic liquid-based gels for biomedical applications. Chemical Engineering Journal, 452(P1), 139248. https://doi.org/10.1016/j.cej.2022.139248es_CO
    dc.relation.referencesGarcía, A. S. R. (2018). Naturalis. Boletín De La Coordinación De Física Y Química, 29, 1– 8.es_CO
    dc.relation.referencesGiacomantone, J., Bria, O. N., Lorenti, L., & De Giusti, A. E. (2017). Modelos y métodos computacionales en Ingeniería (a17). Cic, 714–717. http://hdl.handle.net/10915/62516es_CO
    dc.relation.referencesGómez, J. (2013). “Analisis Computacional De Los Funcionales”. 7. https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/462/1/Tesis Jesús Ivan Gómez Arras.pdfes_CO
    dc.relation.referencesGuevara, diana lucía campa. (2016). “ESTUDIO TEÓRICO DE LAS INTERACCIONES INTERMOLECULARES ENTRE LÍQUIDOS IÓNICOS DERIVADOS DE IMIDAZOLIO Y PIRIDINIO Y COMPUESTOS AROMÁTICOS POLICÍCLICOS. http://cdigital.uv.mx/handle/1944/51726es_CO
    dc.relation.referencesHernández-Bravo, R., Miranda, A. D., Parra, J. G., Alvarado-Orozco, J. M., DomínguezEsquivel, J. M., & Mujica, V. (2022). Experimental and theoretical study on the effectiveness of ionic liquids as corrosion inhibitors. Computational and Theoretical Chemistry, 1210(February). https://doi.org/10.1016/j.comptc.2022.113640es_CO
    dc.relation.referencesHurtado, P., & Villa, A. (2016). Estudio de mercado de aceite esencial de naranja en Colombia en el período 2009-2014 Market research of orange essential oil in Colombia during the period 2009-2014. Revista Colombiana De Ciencias Hortícolas, 10(2), 301– 310. https://revistas.uptc.edu.co/revistas/index.php/ciencias_horticolas/article/view/4653/pd fes_CO
    dc.relation.referencesKant, R., & Kumar, A. (2022). Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustainable Chemistry and Pharmacy, 30(September), 100829. https://doi.org/10.1016/j.scp.2022.100829es_CO
    dc.relation.referencesKeshavarz, S. T., Imani, M., & Farahmandghavi, F. (2020). Adsorption and solidification of peppermint oil on microcrystalline cellulose surface: An experimental and DFT study. Journal of Molecular Structure, 1205, 127558. https://doi.org/10.1016/j.molstruc.2019.127558es_CO
    dc.relation.referencesKharraf, S. El, El-Guendouz, S., Farah, A., Mateus, M. C., Hadrami, E. M. El, & Miguel, M. G. (2023). Impact of fifteen combinations of the main components of rosemary, lavender and citrus essential oils on in vitro biological activities. South African Journal of Botany, 156, 162–168. https://doi.org/10.1016/j.sajb.2023.02.034es_CO
    dc.relation.referencesKirchhecker, S., & Esposito, D. (2016). Amino acid based ionic liquids: A green and sustainable perspective. Current Opinion in Green and Sustainable Chemistry, 2, 28– 33. https://doi.org/10.1016/j.cogsc.2016.09.001es_CO
    dc.relation.referencesKohn, W., Becke, A. D., & Parr, R. G. (1996). Density Functional Theory of Electronic Structure. 0(96), 12974–12980. https://doi.org/10.1021/jp960669les_CO
    dc.relation.referencesKrishnan, R., Binkley, J. S., Seeger, R., Pople, J. A., Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Selfconsistent molecular orbital methods . XX . A basis set for correlated wave functions Self-consistent molecular orbital methods . XX . A basis set for correlated wave functions. 650. https://doi.org/10.1063/1.438955es_CO
    dc.relation.referencesKurth, S., Marques, M. A. L., & Gross, E. K. U. (2005). Density-Functional Theory. Encyclopedia of Condensed Matter Physics, 395–402. https://doi.org/10.1016/B0-12- 369401-9/00445-9es_CO
    dc.relation.referencesLeszczynski, J. (2012). Handbook of computational chemistry. En Handbook of Computational Chemistry. https://doi.org/10.1007/978-94-007-0711-5es_CO
    dc.relation.referencesLewars, E. G. (2011). Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics. En Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. https://doi.org/10.1007/978-90-481-3862-3es_CO
    dc.relation.referencesLewars, E. G. (2011). Computational chemistry: Introduction to the theory and applications of molecular and quantum mechanics. En Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. https://doi.org/10.1007/978-90-481-3862-3es_CO
    dc.relation.referencesLi, X., Ma, N., Zhang, L., Ling, G., & Zhang, P. (2022). Applications of choline-based ionic liquids in drug delivery. International Journal of Pharmaceutics, 612(November 2021), 121366. https://doi.org/10.1016/j.ijpharm.2021.121366es_CO
    dc.relation.referencesLópez-Sobaler, A. M., Lorenzo-Mora, A. M., Dolores Salas-González, M., Peral-Suárez, Á., Aparicio, A., & Ortega, R. M. (2020). Importance of choline in cognitive function. Nutricion Hospitalaria, 37(Ext2), 18–23. https://doi.org/10.20960/nh.03351es_CO
    dc.relation.referencesLópez, M. (2004). Los aceites esenciales | Offarm. Elseiver, 23(7), 88–91. https://es.labohevea.com/downloads/HE_es.pdf%0Ahttps://www.elsevier.es/es-revista-offarm-4- articulo-los-aceites-esenciales-13064296es_CO
    dc.relation.referencesMathammal, R., Sangeetha, K., Sangeetha, M., Mekala, R., & Gadheeja, S. (2016). Molecular structure, vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO analysis of 3,5 di tert butyl 4 hydroxy benzoic acid. Journal of Molecular Structure, 1120, 1–14. https://doi.org/10.1016/j.molstruc.2016.05.008es_CO
    dc.relation.referencesMessaoudi, M., Rebiai, A., Sawicka, B., Atanassova, M., Ouakouak, H., Larkem, I., Egbuna, C., Awuchi, C. G., Boubekeur, S., Ferhat, M. A., Begaa, S., & Benchikha, N. (2022). Effect of extraction methods on polyphenols, flavonoids, mineral elements, and biological activities of essential oil and extracts of mentha pulegium l. Molecules, 27(1). https://doi.org/10.3390/molecules27010011es_CO
    dc.relation.referencesMetin, M., Kawano, T., & Okobira, T. (2023). Benchmarking computational chemistry approaches on iminodiacetic acid. Journal of the Indian Chemical Society, 100(2), 100895. https://doi.org/10.1016/j.jics.2023.100895es_CO
    dc.relation.referencesMichalski, J., Odrzygóźdź, C., Mester, P., Narożna, D., & Cłapa, T. (2023). Defeat undefeatable: Ionic liquids as novel antimicrobial agents. Journal of Molecular Liquids, 369. https://doi.org/10.1016/j.molliq.2022.120782es_CO
    dc.relation.referencesMichalski, J., Odrzygóźdź, C., Mester, P., Narożna, D., & Cłapa, T. (2023). Defeat undefeatable: Ionic liquids as novel antimicrobial agents. Journal of Molecular Liquids, 369. https://doi.org/10.1016/j.molliq.2022.120782es_CO
    dc.relation.referencesMó, O., & Yáñez, M. (2011). La química computacional en la nueva frontera. Arbor, 187(EXTRA), 143–155. https://doi.org/10.3989/arbor.2011.extran1119es_CO
    dc.relation.referencesMoncada, J., Tamayo, J. A., & Cardona, C. A. (2016). Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. Journal of Cleaner Production, 112, 172–181. https://doi.org/10.1016/j.jclepro.2015.09.067es_CO
    dc.relation.referencesNoorani, N., & Mehrdad, A. (2022). Cholinium-amino acid ionic liquids as biocompatible agents for carbon dioxide absorption. Journal of Molecular Liquids, 357, 119078. https://doi.org/10.1016/j.molliq.2022.119078es_CO
    dc.relation.referencesPark, S. J., & Seo, M. K. (2011). Intermolecular Force. En Interface Science and Technology (Vol. 18). https://doi.org/10.1016/B978-0-12-375049-5.00001-3es_CO
    dc.relation.referencesPatil, K. R., Surwade, A. D., Rajput, P. J., & Shaikh, V. R. (2021). Investigations of solute– solvent interactions in aqueous solutions of amino acids ionic liquids having the common nitrate as anion at different temperatures. Journal of Molecular Liquids, 329, 115546. https://doi.org/10.1016/j.molliq.2021.115546es_CO
    dc.relation.referencesPereira, F., Xiao, K., Latino, D. A. R. S., Wu, C., Zhang, Q., & Aires-De-Sousa, J. (2017). Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals. Journal of Chemical Information and Modeling, 57(1), 11–21. https://doi.org/10.1021/acs.jcim.6b00340es_CO
    dc.relation.referencesPolitzer, P., & Murray, J. S. (2002). The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 108(3), 134–142. https://doi.org/10.1007/s00214-002-0363-9es_CO
    dc.relation.referencesPyrkov, A., Aliper, A., Bezrukov, D., Lin, Y.-C., Polykovskiy, D., Kamya, P., Ren, F., & Zhavoronkov, A. (2023). Quantum computing for near-term applications in generative chemistry and drug discovery. Drug Discovery Today, 28(8), 103675. https://doi.org/10.1016/j.drudis.2023.103675es_CO
    dc.relation.referencesRadivojac, A., Bera, O., Zeković, Z., Teslić, N., Mrkonjić, Ž., Bursać Kovačević, D., Putnik, P., & Pavlić, B. (2021). Extraction of peppermint essential oils and lipophilic compounds: Assessment of process kinetics and environmental impacts with multiple techniques. Molecules, 26(10). https://doi.org/10.3390/molecules26102879es_CO
    dc.relation.referencesRahman, M. H., Khajeh, A., Panwar, P., Patel, M., Martini, A., & Menezes, P. L. (2022). Recent progress on phosphonium-based room temperature ionic liquids: Synthesis, properties, tribological performances and applications. Tribology International, 167(October 2021), 107331. https://doi.org/10.1016/j.triboint.2021.107331es_CO
    dc.relation.referencesRamalingam, S., Karabacak, M., Periandy, S., Puviarasan, N., & Tanuja, D. (2012). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Spectroscopic ( infrared , Raman , UV and NMR ) analysis , Gaussian hybrid computational investigation ( MEP maps / HOMO and LUMO ) on cyclohexanone oxime. SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 96, 207–220. https://doi.org/10.1016/j.saa.2012.03.090es_CO
    dc.relation.referencesRasheed, D. M., Serag, A., Abdel Shakour, Z. T., & Farag, M. (2021). Novel trends and applications of multidimensional chromatography in the analysis of food, cosmetics and medicine bearing essential oils. Talanta, 223(P1), 121710. https://doi.org/10.1016/j.talanta.2020.121710es_CO
    dc.relation.referencesRodríguez, Losana, A., & Juan Zúñiga, J. (1982). Función momento dipolar para moléculas diatómicas. Anales de la Universidad de Murcia (Ciencias), 0(0), 273–296.es_CO
    dc.relation.referencesRodríguez, M. C. I. R. (2022). EVALUACIÓN DE LA EFECTIVIDAD DEL ACEITE ESENCIAL DE MENTA COMO CONSERVANTE NATURAL EN EL NUEVO PRODUCTO DE LA EMPRESA PRODUCTOS NATURELA S.A.S. BEBIDA LISTA PARA TOMAR TIPO SHOT (READY TO DRINK - RTD). Angewandte Chemie International Edition, 6(11), 951–952., Mi, 5–24. https://repositorio.unillanos.edu.co/bitstream/handle/001/2836/Trabajo de grado%2C Evaluación de la efectividad del aceite esencial de menta como conservante natural en el nuevo producto de la empresa productos Naturela S.A.S. bebida lista para tomar tipoes_CO
    dc.relation.referencesSanchez, L., Cortes, E., Rangel, N., Flores, V., Flores, M., & Márquez, F. J. E. (2019). Estudio computacional de las interacciones moleculares entre el ácido itacónico y compuestos antimaláricos: un paso importante para el diseño racional de sistemas de liberación controlada de fármacos. . Afinidad, June. https://dialnet.unirioja.es/servlet/articulo?codigo=7130308es_CO
    dc.relation.referencesSanchez, M. F. (2006). Manual práctico de aceites esenciales, aromas y perfumes.es_CO
    dc.relation.referencesShaw, D., Tripathi, A. D., Paul, V., Agarwal, A., Mishra, P. K., & Kumar, M. (2023). Valorization of essential oils from citrus peel powder using hydro-distillation. Sustainable Chemistry and Pharmacy, 32(February), 101036. https://doi.org/10.1016/j.scp.2023.101036es_CO
    dc.relation.referencesSkalicka-Woźniak, K., & Walasek, M. (2014). Preparative separation of menthol and pulegone from peppermint oil (Mentha piperita L.) by high-performance countercurrent chromatography. Phytochemistry Letters, 10, xciv–xcviii. https://doi.org/10.1016/j.phytol.2014.06.007es_CO
    dc.relation.referencesSyahmina, A., & Usuki, T. (2020). Ionic Liquid-Assisted Extraction of Essential Oils from Thujopsis dolobrata (Hiba). ACS Omega, 5(45), 29618–29622. https://doi.org/10.1021/acsomega.0c04860es_CO
    dc.relation.referencesTao, D. J., Cheng, Z., Chen, F. F., Li, Z. M., Hu, N., & Chen, X. S. (2013). Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids. Journal of Chemical and Engineering Data, 58(6), 1542–1548. https://doi.org/10.1021/je301103des_CO
    dc.relation.referencesTej Varma, Y., Agarwal, D. S., Sarmah, A., Joshi, L., Sakhuja, R., & Pant, D. D. (2017). Solvent effects on the absorption and emission spectra of novel (E)-4-((4- (heptyloxy)phenyl)diazenyl)benzyl (((9H-fluoren-9-yl)methoxy)carbonyl)-D-alaninate (Fmoc-al-az): Determination of dipole moment by experimental and theoretical study. Journal of Molecular Structure, 1129, 248–255. https://doi.org/10.1016/j.molstruc.2016.09.078es_CO
    dc.relation.referencesTorres. et al. (2009). Introducción a la química computacional. https://ocw.uma.es/pluginfile.php/1294/mod_resource/content/0/Tema1_01_doc.pdfes_CO
    dc.relation.referencesUniversidad Autonomica de Madrid. (1970). Fundamentos calculos basicos DFT. Conceptos importantes. Guion de practicas. 1–34.es_CO
    dc.relation.referencesVanasundari, K., Balachandran, V., Kavimani, M., & Narayana, B. (2017). Spectroscopic investigation, vibrational assignments, Fukui functions, HOMO-LUMO, MEP and molecular docking evaluation of 4 – [(3, 4 – dichlorophenyl) amino] 2 – methylidene 4 – oxo butanoic acid by DFT method. Journal of Molecular Structure, 1147, 136–147. https://doi.org/10.1016/j.molstruc.2017.06.096es_CO
    dc.relation.referencesVorontsov, A. V., & Smirniotis, P. G. (2023). Advancements in hydrogen energy research with the assistance of computational chemistry. International Journal of Hydrogen Energy, xxxx. https://doi.org/10.1016/j.ijhydene.2022.12.356es_CO
    dc.relation.referencesWang, B., Zhu, M., Liu, M., Wang, Y., Zhou, Y., & Ma, J. (2022). Design of novel dual functional ionic liquids and DFT study on their CO 2 absorption mechanism. Journal of Molecular Liquids, 366, 120340. https://doi.org/10.1016/j.molliq.2022.120340es_CO
    dc.relation.referencesWang, W., & Zhou, C. (2021). A two-layer aggregation model with effective consistency for large-scale Gaussian process regression. Engineering Applications of Artificial Intelligence, 106(July), 104449. https://doi.org/10.1016/j.engappai.2021.104449es_CO
    dc.relation.referencesWang, Y. L., Li, B., Sarman, S., Mocci, F., Lu, Z. Y., Yuan, J., Laaksonen, A., & Fayer, M. D. (2020). Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews, 120(13), 5798–5877. https://doi.org/10.1021/acs.chemrev.9b00693es_CO
    dc.relation.referencesWilkes, J. S. (2002). A short history of ionic liquids - From molten salts to neoteric solvents. Green Chemistry, 4(2), 73–80. https://doi.org/10.1039/b110838ges_CO
    dc.relation.referencesYang, J., Luo, K., Lu, X., He, W., Zhao, S., Fang, Z., Feng, Y., Zhu, N., & Guo, K. (2023). Selective extraction of polyhydroxy compounds using hydrophobic ionic liquids. Separation and Purification Technology, 318(December 2022), 123973. https://doi.org/10.1016/j.seppur.2023.123973es_CO
    dc.relation.referencesYe, Z., Zhou, J., Liao, P., Finfrock, Y. Z., Liu, Y., Shu, C., & Liu, P. (2022). Jo ur na l P re r f. Applied Geochemistry, 105242. https://doi.org/10.1016/j.gerr.2023.100010es_CO
    dc.relation.referencesYoung, D. C. (2001). A practical guide for applying techniques to real-world problems. En Comput. Chem. A (Vol. 9).es_CO
    dc.relation.referencesZhang, L., Liang, X., Ou, Z., Ye, M., Shi, Y., Chen, Y., Zhao, J., Zheng, D., & Xiang, H. (2020). Screening of chemical composition, anti-arthritis, antitumor and antioxidant capacities of essential oils from four Zingiberaceae herbs. Industrial Crops and Products, 149(March), 112342. https://doi.org/10.1016/j.indcrop.2020.112342es_CO
    dc.relation.referencesZhang, Y., Chen, X. Y., Wang, H. J., Diao, K. S., & Chen, J. M. (2010). DFT study on the structure and cation-anion interaction of amino acid ionic liquid of [C3mim]+[Glu]-Journal of Molecular Structure: THEOCHEM, 952(1–3), 16–24. https://doi.org/10.1016/j.theochem.2010.03.033.es_CO
    dc.relation.referencesZhao, H., Ren, S., Yang, H., Tang, S., Guo, C., Liu, M., & Tao, Q. (2022). Biomedicine & Pharmacotherapy Peppermint essential oil : its phytochemistry , biological activity , pharmacological effect and application. Biomedicine & Pharmacotherapy, 154, 113559. https://doi.org/10.1016/j.biopha.2022.113559es_CO
    dc.relation.referencesZhao, J., Song, Y., Wang, L., Guo, H., Marigentti, F., & Liu, X. (2023). Forecasting the eddy current loss of a large turbo generator using hybrid ensemble Gaussian process regression. Engineering Applications of Artificial Intelligence, 121(March), 106022. https://doi.org/10.1016/j.engappai.2023.106022es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Triana_2023_TG.pdf2,63 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.