Por favor, use este identificador para citar o enlazar este ítem:
http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10409
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Restrepo Vasquez, Juan Camilo. | - |
dc.date.accessioned | 2025-10-15T21:05:37Z | - |
dc.date.available | 2023 | - |
dc.date.available | 2025-10-15T21:05:37Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Restrepo Vasquez, J. C. (2023). Identificación de inhibidores selectivos de la CICLOOXIGENASA 2 mediante técnicas in silico. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10409 | es_CO |
dc.identifier.uri | http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10409 | - |
dc.description | Procesos inflamatorios llevados a cabo durante la progresión de patologías como la artritis, osteoartritis, hiperplasia prostática, cáncer, entre otras, se han vinculado con la sobreexpresión de enzimas como la ciclooxigenasa 2 (COX-2), la cual coexiste como una de las isoformas de la ciclooxigenasa (COX), siendo la COX-1 y COX-2 las principales isoformas de la COX. La inhibición de la isoforma COX-1 debida al uso de antiinflamatorios no esteroideos (AINS) conlleva a daños gastrointestinales y renales, por lo que se hace necesario el uso de AINS selectivos hacia la COX-2. En la actualidad, el único inhibidor selectivo (celecoxib) de la COX-2 aprobado por la FDA incrementa el riesgo de sufrir accidentes cerebrovasculares y cardiovasculares. Debido a esto, en este trabajo se buscó identificar posibles inhibidores selectivos de la COX-2 que pudieran llegar a presentar efectos antiinflamatorios con menos efectos secundarios. Para esto, se evaluaron 5000 metabolitos de plantas mediante virtual screening a través de un modelo farmacofórico, docking molecular, energía libre de enlace (EL) y dinámica molecular empleando el software Maestro de Schrödinger, LLC. Como resultado se logró identificar los metabolitos crisina (DS:-9,017; EL:-45,68 kcal/mol), apigenina (DS:-10,483; EL:-45,17 kcal/mol), galangina (DS:-9,943; EL:-53,52 kcal/mol) y 5,7- dihidroxi-3-isoprenil flavona (DS:-10,466; EL:- 75,03 kcal/mol) como posibles inhibidores, los cuales presentaron interacciones hidrofóbicas, π-π y puentes de hidrógeno con los residuos aminoacídicos Val523, Ser530, y Tyr385, fundamentales en la inhibición selectiva de la COX-2 ya que permiten la diferenciación de la COX-2 y metabolización del sustrato natural. Posteriormente, se evaluó la estabilidad de las poses predichas por los ensayos de docking para cada flavona mediante dinámica molecular, y los resultados obtenidos permitieron plantear como hipótesis que los sustituyentes alifáticos y no polares ubicados en el carbono 3 (C-3) de las flavonas juegan un rol fundamental en la selectividad hacia la COX-2, debido a que mejoran la estabilidad de las flavonas en complejo con la COX-2. Los resultados mostraron que el metabolito 5,7- dihidroxi-3-isoprenil flavona presentó una frecuencia de interacción tipo hidrofóbica con la Val523 del 54%, interacción similar a la observada en los compuestos de referencia (celecoxib=62%; rofecoxib=80%), lo cual nos permite validar la hipótesis planteada dado que el único metabolito capaz de establecer interacciones similares a los compuestos de referencia tiene un sustituyente alifático no polar en el C-3. Finalmente, se puedo concluir que las flavonas crisina, apigenina, galangina, y en especial la 5,7-dihidroxi-3-isoprenil flavona representa una nueva alternativa en el diseño y desarrollo de nuevos inhibidores selectivos de la COX-2, con menos efectos secundarios que los demostrados por los fármacos aprobados por la FDA. | es_CO |
dc.description.abstract | El autor no proporciona la información sobre este ítem. | es_CO |
dc.format.extent | 80 | es_CO |
dc.format.mimetype | application/pdf | es_CO |
dc.language.iso | es | es_CO |
dc.publisher | Universidad de Pamplona - Facultad de Ciencias Básicas. | es_CO |
dc.subject | El autor no proporciona la información sobre este ítem. | es_CO |
dc.title | Identificación de inhibidores selectivos de la CICLOOXIGENASA 2 mediante técnicas in silico. | es_CO |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_CO |
dc.date.accepted | 2023 | - |
dc.relation.references | Abdel-Aziz, A. A. M., El-Azab, A. S., AlSaif, N. A., Alanazi, M. M., El-Gendy, M. A., Obaidullah, A. J., Alkahtani, H. M., Almehizia, A. A., & Al-Suwaidan, I. A. (2020). Synthesis, anti-inflammatory, cytotoxic, and COX-1/2 inhibitory activities of cyclic imides bearing 3-benzenesulfonamide, oxime, and β-phenylalanine scaffolds: a molecular docking study. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 610–621. https://doi.org/10.1080/14756366.2020.1722120 | es_CO |
dc.relation.references | Abdellatif, K. R. A., Abdelall, E. K. A., Elshemy, H. A. H., Philoppes, J. N., Hassanein, E. H. M., & Kahk, N. M. (2021). Optimization of pyrazole-based compounds with 1,2,4- triazole-3-thiol moiety as selective COX-2 inhibitors cardioprotective drug candidates: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory, ulcerogenicity, cardiovascular evaluation, and mol. Bioorganic Chemistry, 114(June), 105122. https://doi.org/10.1016/j.bioorg.2021.105122 | es_CO |
dc.relation.references | Administración de los fármacos - Fármacos o sustancias - Manuale Merck versión para el público general. (n.d.). Retrieved October 24, 2022, from https://www.merckmanuals.com/es-us/hogar/f%C3%A1rmacos-osustancias/administraci%C3%B3n-y-cin%C3%A9tica-de-losf%C3%A1rmacos/administraci%C3%B3n-de-los-f%C3%A1rmacos | es_CO |
dc.relation.references | Ahmadi, M., Bekeschus, S., Weltmann, K. D., von Woedtke, T., & Wende, K. (2022). Nonsteroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Medicinal Chemistry, 13(5). https://doi.org/10.1039/d1md00280e | es_CO |
dc.relation.references | Ahmed, S., Rahman, A., Hasnain, A., Lalonde, M., Goldberg, V. M., & Haqqi, T. M. (2002). Original Contribution GREEN TEA POLYPHENOL EPIGALLOCATECHIN-3- GALLATE INHIBITS THE IL-1-INDUCED ACTIVITY AND EXPRESSION OF CYCLOOXYGENASE-2 AND NITRIC OXIDE SYNTHASE-2 IN HUMAN CHONDROCYTES. | es_CO |
dc.relation.references | Amano, H., Iwaki, F., Oki, M., Aoki, K., & Ohba, S. (2019). An osteogenic helioxanthin derivative suppresses the formation of bone-resorbing osteoclasts. Regenerative Therapy, 11, 290–296. https://doi.org/10.1016/j.reth.2019.08.007 | es_CO |
dc.relation.references | Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. In Advanced Drug Delivery Reviews (Vol. 101, pp. 89–98). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.05.007 | es_CO |
dc.relation.references | Beswick, P., Bingham, S., Bountra, C., Brown, T., Browning, K., Campbell, I., Chessell, I., Clayton, N., Collins, S., Corfield, J., Guntrip, S., Haslam, C., Lambeth, P., Lucas, F., Mathews, N., Murkit, G., Naylor, A., Pegg, N., Pickup, E., … Wiseman, J. (2004). Identification of 2,3-diaryl-pyrazolo[1,5-b]pyridazines as potent and selective cyclooxygenase-2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 14(21), 5445–5448. https://doi.org/10.1016/j.bmcl.2004.07.089 | es_CO |
dc.relation.references | Blobaum, A. L., & Marnett, L. J. (2007). Structural and functional basis of cyclooxygenase inhibition. In Journal of Medicinal Chemistry (Vol. 50, Issue 7, pp. 1425–1441). https://doi.org/10.1021/jm0613166 | es_CO |
dc.relation.references | Borges, A., Casoti, R., e Silva, M. L. A., da Cunha, N. L., da Rocha Pissurno, A. P., Kawano, D. F., & da Silva de Laurentiz, R. (2018). COX Inhibition Profiles and Molecular Docking Studies of the Lignan Hinokinin and Some Synthetic Derivatives. Molecular Informatics, 37(12). https://doi.org/10.1002/minf.201800037 | es_CO |
dc.relation.references | Brune, K., & Patrignani, P. (2015). New insights into the use of currently available nonsteroidal anti-inflammatory drugs. In Journal of Pain Research (Vol. 8, pp. 105–118). Dove Medical Press Ltd. https://doi.org/10.2147/JPR.S75160 | es_CO |
dc.relation.references | Termer, M., Carola, C., Salazar, A., Keck, C. M., Hemberger, J., & von Hagen, J. (2021). Identification of plant metabolite classes from Waltheria Indica L. extracts regulating inflammatory immune responses via COX-2 inhibition. Journal of Ethnopharmacology, 270. https://doi.org/10.1016/j.jep.2020.113741 | es_CO |
dc.relation.references | Van Breemen, R. B., & Li, Y. (2005). Caco-2 cell permeability assays to measure drug absorption. In Expert Opinion on Drug Metabolism and Toxicology (Vol. 1, Issue 2, pp. 175–185). https://doi.org/10.1517/17425255.1.2.175 | es_CO |
dc.relation.references | Vandenberg, J. I., Perry, M. D., Perrin, M. J., Mann, S. A., Ke, Y., Hill, A. P., & hERG K, H. A. (2012). hERG K CHANNELS: STRUCTURE, FUNCTION, AND CLINICAL SIGNIFICANCE. Physiol Rev, 92, 1393–1478. https://doi.org/10.1152/physrev.00036.2011.-The | es_CO |
dc.relation.references | Vega de Leon, A. (2018, September 20). El proceso de desarrollo de medicamentos - Sruk. Society of Spanish Researches in the United Kingdom. https://sruk.org.uk/es/elproceso-de-desarrollo-de-medicamentos/ | es_CO |
dc.relation.references | Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. In Chemical Reviews (Vol. 119, Issue 16, pp. 9478–9508). American Chemical Society. https://doi.org/10.1021/acs.chemrev.9b00055 | es_CO |
dc.relation.references | Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. In Quarterly Reviews of Biophysics (Vol. 48, Issue 4, pp. 488–515). Cambridge University Press. https://doi.org/10.1017/S0033583515000190 | es_CO |
dc.relation.references | What are the main differences between HTVS, SP, and XP docking? | Schrödinger. (n.d.). Retrieved April 9, 2023, from https://www.schrodinger.com/kb/1013 | es_CO |
dc.relation.references | What are the ranges for fitness, vector, volume, and site scores in Phase? | Schrödinger. (n.d.). Retrieved October 24, 2022, from https://www.schrodinger.com/kb/1646 | es_CO |
dc.relation.references | Wiegand, T. J., & Shlamovitz. (2021). Nonsteroidal Anti-inflammatory Drug (NSAID) Toxicity Overview Practice Essentials. https://emedicine.medscape.com/article/816117- printhttps://emedicine.medscape.com/article/816117-print | es_CO |
dc.relation.references | Zarghi, A., & Arfaei, S. (2011). Selective COX-2 Inhibitors : A Review of Their StructureActivity Relationships. 10(October), 655–683. | es_CO |
dc.relation.references | Chan, F. K. L., Ching, J. Y. L., Tse, Y. K., Lam, K., Wong, G. L. H., Ng, S. C., Lee, V., Au, K. W. L., Cheong, P. K., Suen, B. Y., Chan, H., Kee, K. M., Lo, A., Wong, V. W. S., Wu, J. C. Y., & Kyaw, M. H. (2017). Gastrointestinal safety of celecoxib versus naproxen in patients with cardiothrombotic diseases and arthritis after upper gastrointestinal bleeding (CONCERN): an industry-independent, double-blind, doubledummy, randomised trial. The Lancet, 389(10087), 2375–2382. https://doi.org/10.1016/S0140-6736(17)30981-9 | es_CO |
dc.relation.references | Zarghi, A., Ghodsi, R., Azizi, E., Daraie, B., Hedayati, M., & Dadrass, O. G. (2009). Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors. Bioorganic and Medicinal Chemistry, 17(14), 5312–5317. https://doi.org/10.1016/j.bmc.2009.05.084 | es_CO |
dc.relation.references | Zhang, B., Hu, X. T., Gu, J., Yang, Y. S., Duan, Y. T., & Zhu, H. L. (2020). Discovery of novel sulfonamide-containing aminophosphonate derivatives as selective COX-2 inhibitors and anti-tumor candidates. Bioorganic Chemistry, 105(July), 104390. https://doi.org/10.1016/j.bioorg.2020.104390 | es_CO |
dc.relation.references | Zhou, Z., Felts, A. K., Friesner, R. A., & Levy, R. M. (2007). Comparative performance of several flexible docking programs and scoring functions: Enrichment studies for a diverse set of pharmaceutically relevant targets. Journal of Chemical Information and Modeling, 47(4), 1599–1608. https://doi.org/10.1021/ci7000346 | es_CO |
dc.relation.references | Chavatte, P., & Farce, A. (2006). A Computational View of COX-2 Inhibition (Vol. 6). http://www.rcsb.org/pdb/index. | es_CO |
dc.relation.references | Chen, C., Wang, C., Zhou, X., Xu, L., Chen, H., Qian, K., Jia, B., Su, G., & Fu, J. (2021). Nonsteroidal anti-inflammatory drugs for retinal neurodegenerative diseases. Prostaglandins and Other Lipid Mediators, 156(November 2020), 106578. https://doi.org/10.1016/j.prostaglandins.2021.106578 | es_CO |
dc.relation.references | Cho, H., Yun, C. W., Park, W. K., Kong, J. Y., Kim, K. S., Park, Y., Lee, S., & Kim, B. K. (2004). Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacological Research, 49(1), 37–43. https://doi.org/10.1016/S1043-6618(03)00248-2 | es_CO |
dc.relation.references | Cole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D., & Taylor, R. (2005). Comparing protein-ligand docking programs is difficult. In Proteins: Structure, Function and Genetics (Vol. 60, Issue 3, pp. 325–332). https://doi.org/10.1002/prot.20497 | es_CO |
dc.relation.references | Cournia, Z., Allen, B., & Sherman, W. (2017). Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. In Journal of Chemical Information and Modeling (Vol. 57, Issue 12, pp. 2911–2937). American Chemical Society. https://doi.org/10.1021/acs.jcim.7b00564 | es_CO |
dc.relation.references | Dao, T. T., Chi, Y. S., Kim, J., Kim, H. P., Kim, S., & Park, H. (2004). Synthesis and inhibitory activity against COX-2 catalyzed prostaglandin production of chrysin derivatives. Bioorganic and Medicinal Chemistry Letters, 14(5), 1165–1167. https://doi.org/10.1016/j.bmcl.2003.12.087 | es_CO |
dc.relation.references | De Vivo, M., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of Molecular Dynamics and Related Methods in Drug Discovery. In Journal of Medicinal Chemistry (Vol. 59, Issue 9, pp. 4035–4061). American Chemical Society. https://doi.org/10.1021/acs.jmedchem.5b01684 | es_CO |
dc.relation.references | de Zorzi, V. N., Haupenthal, F., Cardoso, A. S., Cassol, G., Facundo, V. A., Bálico, L. J., Lima, D. K. S., Santos, A. R. S., Furian, A. F., Oliveira, M. S., Royes, L. F. F., & Fighera, M. R. (2019). Galangin Prevents Increased Susceptibility to PentylenetetrazolStimulated Seizures by Prostaglandin E2. Neuroscience, 413, 154–168. https://doi.org/10.1016/j.neuroscience.2019.06.002 | es_CO |
dc.relation.references | Divins, M.-J. (2014). Antiinflamatorios. Farmacia Profesional, 28(5), 19–22. https://www.elsevier.es/es-revista-farmacia-profesional-3-articulo-antiinflamatoriosX0213932414516582 | es_CO |
dc.relation.references | Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. https://doi.org/10.1007/s10822-006-9087-6 | es_CO |
dc.relation.references | Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: A novel approach to pharmacophore modeling and 3D database searching. In Chemical Biology and Drug Design (Vol. 67, Issue 5, pp. 370–372). https://doi.org/10.1111/j.1747- 0285.2006.00384.x | es_CO |
dc.relation.references | Duchowicz, P. R., Talevi, A., Bellera, C., Bruno-Blanch, L. E., & Castro, E. A. (2007). Application of descriptors based on Lipinski’s rules in the QSPR study of aqueous solubilities. Bioorganic and Medicinal Chemistry, 15(11), 3711–3719. https://doi.org/10.1016/j.bmc.2007.03.044 | es_CO |
dc.relation.references | El-Azab, A. S., Abdel-Aziz, A. A. M., Abou-Zeid, L. A., El-Husseiny, W. M., ElMorsy, A. M., El-Gendy, M. A., & El-Sayed, M. A. A. (2018). Synthesis, antitumour activities and molecular docking of thiocarboxylic acid ester-based NSAID scaffolds: COX-2 inhibition and mechanistic studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 989–998. https://doi.org/10.1080/14756366.2018.1474878 | es_CO |
dc.relation.references | El-Husseiny, W. M., El-Sayed, M. A. A., Abdel-Aziz, N. I., El-Azab, A. S., Asiri, Y. A., & Abdel-Aziz, A. A. M. (2018). Structural alterations based on naproxen scaffold: Synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking. European Journal of Medicinal Chemistry, 158, 134–143. https://doi.org/10.1016/j.ejmech.2018.09.007 | es_CO |
dc.relation.references | El-Husseiny, W. M., El-Sayed, M. A. A., El-Azab, A. S., AlSaif, N. A., Alanazi, M. M., & Abdel-Aziz, A. A. M. (2020). Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 744–758. https://doi.org/10.1080/14756366.2020.1740695 | es_CO |
dc.relation.references | El-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A., & Eltahir, K. E. H. (2011). Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorganic and Medicinal Chemistry, 19(11), 3416–3424. https://doi.org/10.1016/j.bmc.2011.04.027 | es_CO |
dc.relation.references | Ferreira, C. A., Campos, M. L., Irioda, A. C., Stremel, D. P., Trindade, A. C. L. B., & Pontarolo, R. (2017). Anti-Inflammatory Effect of Malva sylvestris, Sida cordifolia, and Pelargonium graveolens Is Related to Inhibition of Prostanoid Production. Molecules (Basel, Switzerland), 22(11). https://doi.org/10.3390/molecules22111883 | es_CO |
dc.relation.references | Forouzesh, N., & Mishra, N. (2021). An effective MM/GBSA protocol for absolute binding free energy calculations: A case study on SARS-CoV-2 spike protein and the human ACE2 receptor. Molecules, 26(8). https://doi.org/10.3390/molecules26082383 | es_CO |
dc.relation.references | Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430 | es_CO |
dc.relation.references | Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o | es_CO |
dc.relation.references | García Meijide, J. A., & Gómez-Reino Carnota, J. J. (2000). Fisiopatología de la ciclooxigenasa-1 y ciclooxigenasa-2. Revista Española de Reumatología, 27(1), 33–35. http://www.elsevier.es/es-revista-revista-espanola-reumatologia-29-articulofisiopatologia-ciclooxigenasa-1-ciclooxigenasa-2-8546 | es_CO |
dc.relation.references | Ghodsi, R., Zarghi, A., Daraei, B., & Hedayati, M. (2010). Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorganic and Medicinal Chemistry, 18(3), 1029–1033. https://doi.org/10.1016/j.bmc.2009.12.060 | es_CO |
dc.relation.references | Ghosh, R., Garcia, G. E., Crosbyy, K., Inouez, H., Thompson, I. M., Troyer, D. A., & Kumar, A. P. (2007). Regulation of Cox-2 by cyclic AMP response element binding protein in prostate cancer: Potential role for nexrutine. Neoplasia, 9(11), 893–899. https://doi.org/10.1593/neo.07502 | es_CO |
dc.relation.references | Gong, L., Thorn, C. F., Bertagnolli, M. M., Grosser, T., Altman, R. B., & Klein, T. E. (2012). Celecoxib pathways: Pharmacokinetics and pharmacodynamics. In Pharmacogenetics and Genomics (Vol. 22, Issue 4, pp. 310–318). Lippincott Williams and Wilkins. https://doi.org/10.1097/FPC.0b013e32834f94cb | es_CO |
dc.relation.references | Gowayed, M. A., El Achy, S., Kamel, M. A., & El-Tahan, R. A. (2020). Polymyxin B prevents the development of adjuvant arthritis via modulation of TLR/Cox-2 signaling pathway. Life Sciences, 259. https://doi.org/10.1016/j.lfs.2020.118250 | es_CO |
dc.relation.references | Guedes, I. A., Magalhães, C. S., & Dardene, L. E. (2014). Bioinformática : da biologia à flexibilidade molecular. Bioinformática - Da Biologia à Flexibilidade Molecular, 189– 208. https://lume.ufrgs.br/handle/10183/166105 | es_CO |
dc.relation.references | Güngör, T., Ozleyen, A., Yılmaz, Y. B., Siyah, P., Ay, M., Durdağı, S., & Tumer, T. B. (2021). New nimesulide derivatives with amide/sulfonamide moieties: Selective COX2 inhibition and antitumor effects. European Journal of Medicinal Chemistry, 221. https://doi.org/10.1016/j.ejmech.2021.113566 | es_CO |
dc.relation.references | Hage-Melim, L. I. da S., Federico, L. B., de Oliveira, N. K. S., Francisco, V. C. C., Correia, L. C., de Lima, H. B., Gomes, S. Q., Barcelos, M. P., Francischini, I. A. G., & da Silva, C. H. T. de P. (2020). Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. Life Sciences, 256. https://doi.org/10.1016/j.lfs.2020.117963 | es_CO |
dc.relation.references | Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s | es_CO |
dc.relation.references | Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling, 49(2), 444– 460. https://doi.org/10.1021/ci800293n | es_CO |
dc.relation.references | Honmore, V. S., Kandhare, A. D., Kadam, P. P., Khedkar, V. M., Sarkar, D., Bodhankar, S. L., Zanwar, A. A., Rojatkar, S. R., & Natu, A. D. (2016). Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies. International Immunopharmacology, 33, 8–17. https://doi.org/10.1016/j.intimp.2016.01.024 | es_CO |
dc.relation.references | Hootman, J. M., Helmick, C. G., Barbour, K. E., Theis, K. A., & Boring, M. A. (2016). Updated Projected Prevalence of Self-Reported Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015–2040. Arthritis and Rheumatology, 68(7), 1582–1587. https://doi.org/10.1002/art.39692 | es_CO |
dc.relation.references | Hou, D. X., Yanagita, T., Uto, T., Masuzaki, S., & Fujii, M. (2005). Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure-activity relationship and molecular mechanisms involved. Biochemical Pharmacology, 70(3), 417–425. https://doi.org/10.1016/j.bcp.2005.05.003 | es_CO |
dc.relation.references | Huai, J., Zhao, X., Wang, S., Xie, L., Li, Y., Zhang, T., Cheng, C., & Dai, R. (2019). Characterization and screening of cyclooxygenase-2 inhibitors from Zi-shen pill by affinity ultrafiltration-ultra performance liquid chromatography mass spectrometry. Journal of Ethnopharmacology, 241(January), 111900. https://doi.org/10.1016/j.jep.2019.111900 | es_CO |
dc.relation.references | Huang, C. Y., Han, Z., Li, X., Xie, H. H., & Zhu, S. S. (2017). Mechanism of egcg promoting apoptosis of MCF–7 cell line in human breast cancer. Oncology Letters, 14(3), 3623– 3627. https://doi.org/10.3892/ol.2017.6641 | es_CO |
dc.relation.references | Hwang, Y. P., Choi, J. H., Yun, H. J., Han, E. H., Kim, H. G., Kim, J. Y., Park, B. H., Khanal, T., Choi, J. M., Chung, Y. C., & Jeong, H. G. (2011). Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2- mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food and Chemical Toxicology, 49(1), 93–99. https://doi.org/10.1016/j.fct.2010.10.002 | es_CO |
dc.relation.references | Janmanchi, D., Lin, C. H., Hsieh, J. Y., Tseng, Y. P., Chen, T. A., Jhuang, H. J., & Yeh, S. F. (2013). Synthesis and biological evaluation of helioxanthin analogues. Bioorganic and Medicinal Chemistry, 21(7), 2163–2176. https://doi.org/10.1016/j.bmc.2012.11.037 | es_CO |
dc.relation.references | Jia, P., Pei, J., Wang, G., Pan, X., Zhu, Y., Wu, Y., & Ouyang, L. (2022). The roles of computer-aided drug synthesis in drug development. In Green Synthesis and Catalysis (Vol. 3, Issue 1, pp. 11–24). KeAi Communications Co. https://doi.org/10.1016/j.gresc.2021.11.007 | es_CO |
dc.relation.references | Jorgensen, W. L., & Duffy, E. M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews, 54(3), 355–366. https://doi.org/10.1016/S0169- 409X(02)00008-X | es_CO |
dc.relation.references | Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. | es_CO |
dc.relation.references | Kalgutkar, A. S., Crews, B. C., Saleh, S., Prudhomme, D., & Marnett, L. J. (2005). Indolyl esters and amides related to indomethacin are selective COX-2 inhibitors. Bioorganic and Medicinal Chemistry, 13(24), 6810–6822. https://doi.org/10.1016/j.bmc.2005.07.073 | es_CO |
dc.relation.references | Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d | es_CO |
dc.relation.references | Karlsen, A., Retterstøl, L., Laake, P., Paur, I., Kjølsrud-Bøhn, S., Sandvik, L., & Blomhoff, R. (2007). The Journal of Nutrition Nutrition and Disease Anthocyanins Inhibit Nuclear Factor-kB Activation in Monocytes and Reduce Plasma Concentrations of ProInflammatory Mediators in Healthy Adults 1-3. In J. Nutr (Vol. 137). https://academic.oup.com/jn/article-abstract/137/8/1951/4664955 | es_CO |
dc.relation.references | Kchouk, S., & Hegazy, L. (2022). Pharmacophore modeling for biological targets with high flexibility: LXRβ case study. Medicine in Drug Discovery, 15. https://doi.org/10.1016/j.medidd.2022.100135 | es_CO |
dc.relation.references | Khan, S. A., Imam, S. M., Ahmad, A., Basha, S. H., & Husain, A. (2018). Synthesis, molecular docking with COX 1& II enzyme, ADMET screening and in vivo antiinflammatory activity of oxadiazole, thiadiazole and triazole analogs of felbinac. Journal of Saudi Chemical Society, 22(4), 469–484. https://doi.org/10.1016/j.jscs.2017.05.006 | es_CO |
dc.relation.references | Kiraly, A. J., Soliman, E., Jenkins, A., & Van Dross, R. T. (2016). Apigenin inhibits COX2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukotrienes and Essential Fatty Acids, 104, 44–53. https://doi.org/10.1016/j.plefa.2015.11.006 | es_CO |
dc.relation.references | Kola, P., Manjula, S. N., Metowogo K., Madhunapantula, S. V., & EKlu-Gadegbeku, K. (2023). Four Togolese plant species exhibiting cytotoxicity and antitumor. Heliyon. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e13869 | es_CO |
dc.relation.references | Kulkarni, A. M., Parate, S., Lee, G., Kim, Y., Jung, T. S., Lee, K. W., & Ha, M. W. (2022). Computational Simulations Highlight the IL2Rα Binding Potential of Polyphenol Stilbenes from Fenugreek. Molecules, 27(4). https://doi.org/10.3390/molecules27041215 | es_CO |
dc.relation.references | Kurumbail Ravi G., Stevens Anna M., Gierse James K., McDonald Joseph J., Stegeman Roderick A., Pak Jina Y., Gildehaus Daniel, Miyashiro Julie M., Penning Thomas D., Seibert Karen, Isakson Peter C., & Stallings William C. (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. NATURE, 384, 644–648. https://doi.org/http://dx.doi.org/10.1038/384644a0 | es_CO |
dc.relation.references | Lebender, L. F., Prünte, L., Rumzhum, N. N., & Ammit, A. J. (2018). Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. In Pulmonary Pharmacology and Therapeutics (Vol. 49, pp. 75–87). Academic Press. https://doi.org/10.1016/j.pupt.2018.01.008 | es_CO |
dc.relation.references | Li, X., Chen, L., Gao, Y., Zhang, Q., Chang, A. K., Yang, Z., & Bi, X. (2021). Black raspberry anthocyanins increased the antiproliferative effects of 5-Fluorouracil and Celecoxib in colorectal cancer cells and mouse model. Journal of Functional Foods, 87. https://doi.org/10.1016/J.JFF.2021.104801 | es_CO |
dc.relation.references | Li, Y. J., Wu, J. Y., Liu, J., Qiu, X., Xu, W., Tang, T., & Xiang, D. X. (2021). From blood to brain: blood cell-based biomimetic drug delivery systems. Drug Delivery, 28(1), 1214–1225. https://doi.org/10.1080/10717544.2021.1937384 | es_CO |
dc.relation.references | López Parra, Marta., Clària i Enrich, J., Rodés, J., & Universitat de Barcelona. Departament de Medicina. (2007). Efectos renales de los inhibidores selectivos de la ciclooxigenasa2 (COX-2) en la cirrosis. Estudios “in vivo” en ratas inducidas a cirrosis y estudios “in vitro” en células mesangiales. TDX (Tesis Doctorals En Xarxa). https://www.tdx.cat/handle/10803/2223 | es_CO |
dc.relation.references | Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8 | es_CO |
dc.relation.references | Martínez-Canabal, A., & Rivas-Arancibia, S. (2005). Funciones de las prostaglandinas en el sistema nervioso central. Revista de La Facultad de Medicina, 48(5), 210–216. https://www.medigraphic.com/pdfs/facmed/un-2005/un055i.pdf | es_CO |
dc.relation.references | Marzouk, A. A., Taher, E. S., Shaykoon, M. S. A., Lan, P., Abd-Allah, W. H., Aboregela, A. M., & El-Behairy, M. F. (2021). Design, synthesis, biological evaluation, and computational studies of novel thiazolo-pyrazole hybrids as promising selective COX2 inhibitors: Implementation of apoptotic genes expression for ulcerogenic liability assessment. Bioorganic Chemistry, 111(January), 104883. https://doi.org/10.1016/j.bioorg.2021.104883 | es_CO |
dc.relation.references | Modica, M., Vanhems, P., & Tebib, J. (2005). Comparison of conventional NSAIDs and cyclooxygenase-2 inhibitors in outpatients. Joint Bone Spine, 72(5), 397–402. https://doi.org/10.1016/j.jbspin.2005.05.002 | es_CO |
dc.relation.references | Mulabagal, V., Van Nocker, S., Dewitt, D. L., & Nair, M. G. (2007). Cultivars of apple fruits that are not marketed with potential for anthocyanin production. Journal of Agricultural and Food Chemistry, 55(20), 8165–8169. https://doi.org/10.1021/jf0718300 | es_CO |
dc.relation.references | Mulakala, C., & Viswanadhan, V. N. (2013). Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies? Journal of Molecular Graphics and Modelling, 46, 41–51. https://doi.org/10.1016/j.jmgm.2013.09.005 | es_CO |
dc.relation.references | Nakata, K., Hanai, T., Take, Y., Osada, T., Tsuchiya, T., Shima, D., & Fujimoto, Y. (2018). Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis_ a systematic review. Osteoarthritis AND Cartilage . https://doi.org/https://doi.org/10.1016/j.joca.2018.05.021 | es_CO |
dc.relation.references | Namba, A. M., Da Silva, V. B., & Da Silva, C. H. T. P. (2008). Dinâmica molecular: teoria e aplicações em planejamento de fármacos. Eclética Química, 33(4), 13–24. https://doi.org/10.1590/S0100-46702008000400002 | es_CO |
dc.relation.references | Narumiya, S., Sugimoto, Y., & Ushikubi, F. (1999). Prostanoid receptors: Structures, properties, and functions. Physiological Reviews, 79(4), 1193–1226. https://doi.org/10.1152/physrev.1999.79.4.1193 | es_CO |
dc.relation.references | Ogbe, A. A., Finnie, J. F., & Van Staden, J. (2020). The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. South African Journal of Botany, 134, 126–134. https://doi.org/10.1016/j.sajb.2020.06.023 | es_CO |
dc.relation.references | Onawole, A. T., Sulaiman, K. O., Kolapo, T. U., Akinde, F. O., & Adegoke, R. O. (2020). COVID-19: CADD to the rescue. Virus Research, 285(February), 198022. https://doi.org/10.1016/j.virusres.2020.198022 | es_CO |
dc.relation.references | Oniga, S. D., Pacureanu, L., Stoica, C. I., Palage, M. D., Crăciun, A., Rusu, L. R., Crisan, E. L., & Araniciu, C. (2017). COX inhibition profile and molecular docking studies of some 2-(Trimethoxyphenyl)-Thiazoles. Molecules, 22(9), 1–15. https://doi.org/10.3390/molecules22091507 | es_CO |
dc.relation.references | Oriakhi, K., & Orumwensodia, K. O. (2021). Combinatorial effect of Gallic acid and Catechin on some biochemical and pro-inflammatory markers in CCl4-mediated hepatic damage in rats. Phytomedicine Plus, 1(1). https://doi.org/10.1016/j.phyplu.2020.100017 | es_CO |
dc.relation.references | Osteoarthritis (OA) | Arthritis | CDC. (n.d.). Retrieved January 9, 2023, from https://www.cdc.gov/arthritis/basics/osteoarthritis.htm | es_CO |
dc.relation.references | Paixão, P., Gouveia, L. F., & Morais, J. A. G. (2010). Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. European Journal of Pharmaceutical Sciences, 41(1), 107–117. https://doi.org/10.1016/j.ejps.2010.05.014 | es_CO |
dc.relation.references | Parolini, M. (2020). Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Science of the Total Environment, 740, 140043. https://doi.org/10.1016/j.scitotenv.2020.140043 | es_CO |
dc.relation.references | Pettersson, S. H., & Teixidó i Closa, J. (2009). Diseño, selección y síntesis de nuevos inhibidores de entrada del VIH. https://www.tesisenred.net/handle/10803/9298;jsessionid=D057BF8535D813556141C 9FC68D9BDCD.tdx2#page=1 | es_CO |
dc.relation.references | QikProp | Schrödinger. (n.d.). Retrieved October 24, 2022, from https://www.schrodinger.com/products/qikprop | es_CO |
dc.relation.references | Qin, F. Y., Zhang, H. X., Di, Q. Q., Wang, Y., Yan, Y. M., Chen, W. L., & Cheng, Y. X. (2020). Ganoderma cochlear Metabolites as Probes to Identify a COX-2 Active Site and as in Vitro and in Vivo Anti-Inflammatory Agents. Organic Letters, 22(7), 2574–2578. https://doi.org/10.1021/acs.orglett.0c00452 | es_CO |
dc.relation.references | Ren, S. Z., Wang, Z. C., Zhu, X. H., Zhu, D., Li, Z., Shen, F. Q., Duan, Y. T., Cao, H., Zhao, J., & Zhu, H. L. (2018). Design and biological evaluation of novel hybrids of 1, 5- diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorganic and Medicinal Chemistry, 26(14), 4264–4275. https://doi.org/10.1016/j.bmc.2018.07.022 | es_CO |
dc.relation.references | Repasky, M. P., Shelley, M., & Friesner, R. A. (2007). Flexible ligand docking with Glide. Current Protocols in Bioinformatics, Chapter 8(1). https://doi.org/10.1002/0471250953.BI0812S18 | es_CO |
dc.relation.references | Sabe, V. T., Ntombela, T., Jhamba, L. A., Maguire, G. E. M., Govender, T., Naicker, T., & Kruger, H. G. (2021). Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. European Journal of Medicinal Chemistry, 224, 113705. https://doi.org/10.1016/j.ejmech.2021.113705 | es_CO |
dc.relation.references | Sadeghi-Aliabadi, H., Aliasgharluo, M., Fattahi, A., Mirian, M., & Ghannadian, M. (2013). In vitro cytotoxic evaluation of some synthesized COX-2 inhibitor derivatives against a panel of human cancer cell lines. Research in Pharmaceutical Sciences, 8(4), 299–304. | es_CO |
dc.relation.references | Sağlık, B. N., Osmaniye, D., Levent, S., Çevik, U. A., Çavuşoğlu, B. K., Özkay, Y., & Kaplancıklı, Z. A. (2021). Design, synthesis and biological assessment of new selective COX-2 inhibitors including methyl sulfonyl moiety. European Journal of Medicinal Chemistry, 209(xxxx). https://doi.org/10.1016/j.ejmech.2020.112918 | es_CO |
dc.relation.references | Saldívar-González, F., Prieto-Martínez, F. D., Medina-Franco, J. L., Saldívar-González, F., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2017). Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educación Química, 28(1), 51–58. https://doi.org/10.1016/J.EQ.2016.06.002 | es_CO |
dc.relation.references | Saxena, P., Sharma, P. K., & Purohit, P. (2020). A journey of celecoxib from pain to cancer. In Prostaglandins and Other Lipid Mediators (Vol. 147). Elsevier Inc. https://doi.org/10.1016/j.prostaglandins.2019.106379 | es_CO |
dc.relation.references | Seeram, N. P., Momin, R. A., Nair, M. G., & Bourquin L. D. (2005). Cyclooxygenase inhibitory and antioxidant cyanidin. Phytomedicine, 8(5), 362–369. https://doi.org/https://doi.org/10.1078/0944-7113-00053 | es_CO |
dc.relation.references | Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681– 691. https://doi.org/10.1007/s10822-007-9133-z | es_CO |
dc.relation.references | Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654 | es_CO |
dc.relation.references | Sookvanichsilp, N., & Poemsantitham, K. (2011). Effects of catechin, diclofenac and celecoxib on the proliferation of MCF-7 and LTED MCF-7 cells. Biomedicine and Preventive Nutrition, 1(3), 202–206. https://doi.org/10.1016/j.bionut.2011.06.003 | es_CO |
dc.relation.references | Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Use of molecular docking computational tools in drug discovery. In Progress in Medicinal Chemistry (Vol. 60, pp. 273–343). Elsevier B.V. https://doi.org/10.1016/bs.pmch.2021.01.004 | es_CO |
dc.relation.references | Sutradhar, R. K., Rahman, A. K. M. M., Ahmad, M. U., & Bachar, S. C. (2008). Bioactive flavones of Sida cordifolia. Phytochemistry Letters, 1(4), 179–182. https://doi.org/10.1016/j.phytol.2008.09.004 | es_CO |
dc.relation.references | Sweere, A. J. M., & Fraaije, J. G. E. M. (2017). Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC. Journal of Chemical Theory and Computation, 13(5), 1911–1923. https://doi.org/10.1021/acs.jctc.6b01106 | es_CO |
dc.relation.references | Tacconelli, S., Capone, M. L., Sciulli, M. G., Ricciotti, E., & Patrignani, P. (2002). CURRENT MEDICAL RESEARCH AND OPINION® V O L. 1 8 , N O. 8 , 2 0 0 2 , 5 0 3-5 1 1 The Biochemical Selectivity of Novel COX-2 Inhibitors in Whole Blood Assays of COX-isozyme Activity Keywords: Cyclo-oxygenase-1-Cyclo-oxygenase-2- Etoricoxib-Human whole blood-Rofecoxib-Valdecoxib. | es_CO |
dc.relation.references | Taidi, L., Maurady, A., & Britel, M. R. (2022). Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids. Journal of Biomolecular Structure and Dynamics, 40(3), 1189–1204. https://doi.org/10.1080/07391102.2020.1823884 | es_CO |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | es_CO |
dc.type.coarversion | http://purl.org/coar/resource_type/c_2df8fbb1 | es_CO |
Aparece en las colecciones: | Química |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Restrepo_2023_TG.pdf | 3,67 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.