• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10409
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorRestrepo Vasquez, Juan Camilo.-
    dc.date.accessioned2025-10-15T21:05:37Z-
    dc.date.available2023-
    dc.date.available2025-10-15T21:05:37Z-
    dc.date.issued2023-
    dc.identifier.citationRestrepo Vasquez, J. C. (2023). Identificación de inhibidores selectivos de la CICLOOXIGENASA 2 mediante técnicas in silico. [Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10409es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10409-
    dc.descriptionProcesos inflamatorios llevados a cabo durante la progresión de patologías como la artritis, osteoartritis, hiperplasia prostática, cáncer, entre otras, se han vinculado con la sobreexpresión de enzimas como la ciclooxigenasa 2 (COX-2), la cual coexiste como una de las isoformas de la ciclooxigenasa (COX), siendo la COX-1 y COX-2 las principales isoformas de la COX. La inhibición de la isoforma COX-1 debida al uso de antiinflamatorios no esteroideos (AINS) conlleva a daños gastrointestinales y renales, por lo que se hace necesario el uso de AINS selectivos hacia la COX-2. En la actualidad, el único inhibidor selectivo (celecoxib) de la COX-2 aprobado por la FDA incrementa el riesgo de sufrir accidentes cerebrovasculares y cardiovasculares. Debido a esto, en este trabajo se buscó identificar posibles inhibidores selectivos de la COX-2 que pudieran llegar a presentar efectos antiinflamatorios con menos efectos secundarios. Para esto, se evaluaron 5000 metabolitos de plantas mediante virtual screening a través de un modelo farmacofórico, docking molecular, energía libre de enlace (EL) y dinámica molecular empleando el software Maestro de Schrödinger, LLC. Como resultado se logró identificar los metabolitos crisina (DS:-9,017; EL:-45,68 kcal/mol), apigenina (DS:-10,483; EL:-45,17 kcal/mol), galangina (DS:-9,943; EL:-53,52 kcal/mol) y 5,7- dihidroxi-3-isoprenil flavona (DS:-10,466; EL:- 75,03 kcal/mol) como posibles inhibidores, los cuales presentaron interacciones hidrofóbicas, π-π y puentes de hidrógeno con los residuos aminoacídicos Val523, Ser530, y Tyr385, fundamentales en la inhibición selectiva de la COX-2 ya que permiten la diferenciación de la COX-2 y metabolización del sustrato natural. Posteriormente, se evaluó la estabilidad de las poses predichas por los ensayos de docking para cada flavona mediante dinámica molecular, y los resultados obtenidos permitieron plantear como hipótesis que los sustituyentes alifáticos y no polares ubicados en el carbono 3 (C-3) de las flavonas juegan un rol fundamental en la selectividad hacia la COX-2, debido a que mejoran la estabilidad de las flavonas en complejo con la COX-2. Los resultados mostraron que el metabolito 5,7- dihidroxi-3-isoprenil flavona presentó una frecuencia de interacción tipo hidrofóbica con la Val523 del 54%, interacción similar a la observada en los compuestos de referencia (celecoxib=62%; rofecoxib=80%), lo cual nos permite validar la hipótesis planteada dado que el único metabolito capaz de establecer interacciones similares a los compuestos de referencia tiene un sustituyente alifático no polar en el C-3. Finalmente, se puedo concluir que las flavonas crisina, apigenina, galangina, y en especial la 5,7-dihidroxi-3-isoprenil flavona representa una nueva alternativa en el diseño y desarrollo de nuevos inhibidores selectivos de la COX-2, con menos efectos secundarios que los demostrados por los fármacos aprobados por la FDA.es_CO
    dc.description.abstractEl autor no proporciona la información sobre este ítem.es_CO
    dc.format.extent80es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectEl autor no proporciona la información sobre este ítem.es_CO
    dc.titleIdentificación de inhibidores selectivos de la CICLOOXIGENASA 2 mediante técnicas in silico.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2023-
    dc.relation.referencesAbdel-Aziz, A. A. M., El-Azab, A. S., AlSaif, N. A., Alanazi, M. M., El-Gendy, M. A., Obaidullah, A. J., Alkahtani, H. M., Almehizia, A. A., & Al-Suwaidan, I. A. (2020). Synthesis, anti-inflammatory, cytotoxic, and COX-1/2 inhibitory activities of cyclic imides bearing 3-benzenesulfonamide, oxime, and β-phenylalanine scaffolds: a molecular docking study. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 610–621. https://doi.org/10.1080/14756366.2020.1722120es_CO
    dc.relation.referencesAbdellatif, K. R. A., Abdelall, E. K. A., Elshemy, H. A. H., Philoppes, J. N., Hassanein, E. H. M., & Kahk, N. M. (2021). Optimization of pyrazole-based compounds with 1,2,4- triazole-3-thiol moiety as selective COX-2 inhibitors cardioprotective drug candidates: Design, synthesis, cyclooxygenase inhibition, anti-inflammatory, ulcerogenicity, cardiovascular evaluation, and mol. Bioorganic Chemistry, 114(June), 105122. https://doi.org/10.1016/j.bioorg.2021.105122es_CO
    dc.relation.referencesAdministración de los fármacos - Fármacos o sustancias - Manuale Merck versión para el público general. (n.d.). Retrieved October 24, 2022, from https://www.merckmanuals.com/es-us/hogar/f%C3%A1rmacos-osustancias/administraci%C3%B3n-y-cin%C3%A9tica-de-losf%C3%A1rmacos/administraci%C3%B3n-de-los-f%C3%A1rmacoses_CO
    dc.relation.referencesAhmadi, M., Bekeschus, S., Weltmann, K. D., von Woedtke, T., & Wende, K. (2022). Nonsteroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Medicinal Chemistry, 13(5). https://doi.org/10.1039/d1md00280ees_CO
    dc.relation.referencesAhmed, S., Rahman, A., Hasnain, A., Lalonde, M., Goldberg, V. M., & Haqqi, T. M. (2002). Original Contribution GREEN TEA POLYPHENOL EPIGALLOCATECHIN-3- GALLATE INHIBITS THE IL-1-INDUCED ACTIVITY AND EXPRESSION OF CYCLOOXYGENASE-2 AND NITRIC OXIDE SYNTHASE-2 IN HUMAN CHONDROCYTES.es_CO
    dc.relation.referencesAmano, H., Iwaki, F., Oki, M., Aoki, K., & Ohba, S. (2019). An osteogenic helioxanthin derivative suppresses the formation of bone-resorbing osteoclasts. Regenerative Therapy, 11, 290–296. https://doi.org/10.1016/j.reth.2019.08.007es_CO
    dc.relation.referencesBenet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. In Advanced Drug Delivery Reviews (Vol. 101, pp. 89–98). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.05.007es_CO
    dc.relation.referencesBeswick, P., Bingham, S., Bountra, C., Brown, T., Browning, K., Campbell, I., Chessell, I., Clayton, N., Collins, S., Corfield, J., Guntrip, S., Haslam, C., Lambeth, P., Lucas, F., Mathews, N., Murkit, G., Naylor, A., Pegg, N., Pickup, E., … Wiseman, J. (2004). Identification of 2,3-diaryl-pyrazolo[1,5-b]pyridazines as potent and selective cyclooxygenase-2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 14(21), 5445–5448. https://doi.org/10.1016/j.bmcl.2004.07.089es_CO
    dc.relation.referencesBlobaum, A. L., & Marnett, L. J. (2007). Structural and functional basis of cyclooxygenase inhibition. In Journal of Medicinal Chemistry (Vol. 50, Issue 7, pp. 1425–1441). https://doi.org/10.1021/jm0613166es_CO
    dc.relation.referencesBorges, A., Casoti, R., e Silva, M. L. A., da Cunha, N. L., da Rocha Pissurno, A. P., Kawano, D. F., & da Silva de Laurentiz, R. (2018). COX Inhibition Profiles and Molecular Docking Studies of the Lignan Hinokinin and Some Synthetic Derivatives. Molecular Informatics, 37(12). https://doi.org/10.1002/minf.201800037es_CO
    dc.relation.referencesBrune, K., & Patrignani, P. (2015). New insights into the use of currently available nonsteroidal anti-inflammatory drugs. In Journal of Pain Research (Vol. 8, pp. 105–118). Dove Medical Press Ltd. https://doi.org/10.2147/JPR.S75160es_CO
    dc.relation.referencesTermer, M., Carola, C., Salazar, A., Keck, C. M., Hemberger, J., & von Hagen, J. (2021). Identification of plant metabolite classes from Waltheria Indica L. extracts regulating inflammatory immune responses via COX-2 inhibition. Journal of Ethnopharmacology, 270. https://doi.org/10.1016/j.jep.2020.113741es_CO
    dc.relation.referencesVan Breemen, R. B., & Li, Y. (2005). Caco-2 cell permeability assays to measure drug absorption. In Expert Opinion on Drug Metabolism and Toxicology (Vol. 1, Issue 2, pp. 175–185). https://doi.org/10.1517/17425255.1.2.175es_CO
    dc.relation.referencesVandenberg, J. I., Perry, M. D., Perrin, M. J., Mann, S. A., Ke, Y., Hill, A. P., & hERG K, H. A. (2012). hERG K CHANNELS: STRUCTURE, FUNCTION, AND CLINICAL SIGNIFICANCE. Physiol Rev, 92, 1393–1478. https://doi.org/10.1152/physrev.00036.2011.-Thees_CO
    dc.relation.referencesVega de Leon, A. (2018, September 20). El proceso de desarrollo de medicamentos - Sruk. Society of Spanish Researches in the United Kingdom. https://sruk.org.uk/es/elproceso-de-desarrollo-de-medicamentos/es_CO
    dc.relation.referencesWang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. In Chemical Reviews (Vol. 119, Issue 16, pp. 9478–9508). American Chemical Society. https://doi.org/10.1021/acs.chemrev.9b00055es_CO
    dc.relation.referencesWang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. In Quarterly Reviews of Biophysics (Vol. 48, Issue 4, pp. 488–515). Cambridge University Press. https://doi.org/10.1017/S0033583515000190es_CO
    dc.relation.referencesWhat are the main differences between HTVS, SP, and XP docking? | Schrödinger. (n.d.). Retrieved April 9, 2023, from https://www.schrodinger.com/kb/1013es_CO
    dc.relation.referencesWhat are the ranges for fitness, vector, volume, and site scores in Phase? | Schrödinger. (n.d.). Retrieved October 24, 2022, from https://www.schrodinger.com/kb/1646es_CO
    dc.relation.referencesWiegand, T. J., & Shlamovitz. (2021). Nonsteroidal Anti-inflammatory Drug (NSAID) Toxicity Overview Practice Essentials. https://emedicine.medscape.com/article/816117- printhttps://emedicine.medscape.com/article/816117-printes_CO
    dc.relation.referencesZarghi, A., & Arfaei, S. (2011). Selective COX-2 Inhibitors : A Review of Their StructureActivity Relationships. 10(October), 655–683.es_CO
    dc.relation.referencesChan, F. K. L., Ching, J. Y. L., Tse, Y. K., Lam, K., Wong, G. L. H., Ng, S. C., Lee, V., Au, K. W. L., Cheong, P. K., Suen, B. Y., Chan, H., Kee, K. M., Lo, A., Wong, V. W. S., Wu, J. C. Y., & Kyaw, M. H. (2017). Gastrointestinal safety of celecoxib versus naproxen in patients with cardiothrombotic diseases and arthritis after upper gastrointestinal bleeding (CONCERN): an industry-independent, double-blind, doubledummy, randomised trial. The Lancet, 389(10087), 2375–2382. https://doi.org/10.1016/S0140-6736(17)30981-9es_CO
    dc.relation.referencesZarghi, A., Ghodsi, R., Azizi, E., Daraie, B., Hedayati, M., & Dadrass, O. G. (2009). Synthesis and biological evaluation of new 4-carboxyl quinoline derivatives as cyclooxygenase-2 inhibitors. Bioorganic and Medicinal Chemistry, 17(14), 5312–5317. https://doi.org/10.1016/j.bmc.2009.05.084es_CO
    dc.relation.referencesZhang, B., Hu, X. T., Gu, J., Yang, Y. S., Duan, Y. T., & Zhu, H. L. (2020). Discovery of novel sulfonamide-containing aminophosphonate derivatives as selective COX-2 inhibitors and anti-tumor candidates. Bioorganic Chemistry, 105(July), 104390. https://doi.org/10.1016/j.bioorg.2020.104390es_CO
    dc.relation.referencesZhou, Z., Felts, A. K., Friesner, R. A., & Levy, R. M. (2007). Comparative performance of several flexible docking programs and scoring functions: Enrichment studies for a diverse set of pharmaceutically relevant targets. Journal of Chemical Information and Modeling, 47(4), 1599–1608. https://doi.org/10.1021/ci7000346es_CO
    dc.relation.referencesChavatte, P., & Farce, A. (2006). A Computational View of COX-2 Inhibition (Vol. 6). http://www.rcsb.org/pdb/index.es_CO
    dc.relation.referencesChen, C., Wang, C., Zhou, X., Xu, L., Chen, H., Qian, K., Jia, B., Su, G., & Fu, J. (2021). Nonsteroidal anti-inflammatory drugs for retinal neurodegenerative diseases. Prostaglandins and Other Lipid Mediators, 156(November 2020), 106578. https://doi.org/10.1016/j.prostaglandins.2021.106578es_CO
    dc.relation.referencesCho, H., Yun, C. W., Park, W. K., Kong, J. Y., Kim, K. S., Park, Y., Lee, S., & Kim, B. K. (2004). Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacological Research, 49(1), 37–43. https://doi.org/10.1016/S1043-6618(03)00248-2es_CO
    dc.relation.referencesCole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D., & Taylor, R. (2005). Comparing protein-ligand docking programs is difficult. In Proteins: Structure, Function and Genetics (Vol. 60, Issue 3, pp. 325–332). https://doi.org/10.1002/prot.20497es_CO
    dc.relation.referencesCournia, Z., Allen, B., & Sherman, W. (2017). Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. In Journal of Chemical Information and Modeling (Vol. 57, Issue 12, pp. 2911–2937). American Chemical Society. https://doi.org/10.1021/acs.jcim.7b00564es_CO
    dc.relation.referencesDao, T. T., Chi, Y. S., Kim, J., Kim, H. P., Kim, S., & Park, H. (2004). Synthesis and inhibitory activity against COX-2 catalyzed prostaglandin production of chrysin derivatives. Bioorganic and Medicinal Chemistry Letters, 14(5), 1165–1167. https://doi.org/10.1016/j.bmcl.2003.12.087es_CO
    dc.relation.referencesDe Vivo, M., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of Molecular Dynamics and Related Methods in Drug Discovery. In Journal of Medicinal Chemistry (Vol. 59, Issue 9, pp. 4035–4061). American Chemical Society. https://doi.org/10.1021/acs.jmedchem.5b01684es_CO
    dc.relation.referencesde Zorzi, V. N., Haupenthal, F., Cardoso, A. S., Cassol, G., Facundo, V. A., Bálico, L. J., Lima, D. K. S., Santos, A. R. S., Furian, A. F., Oliveira, M. S., Royes, L. F. F., & Fighera, M. R. (2019). Galangin Prevents Increased Susceptibility to PentylenetetrazolStimulated Seizures by Prostaglandin E2. Neuroscience, 413, 154–168. https://doi.org/10.1016/j.neuroscience.2019.06.002es_CO
    dc.relation.referencesDivins, M.-J. (2014). Antiinflamatorios. Farmacia Profesional, 28(5), 19–22. https://www.elsevier.es/es-revista-farmacia-profesional-3-articulo-antiinflamatoriosX0213932414516582es_CO
    dc.relation.referencesDixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. https://doi.org/10.1007/s10822-006-9087-6es_CO
    dc.relation.referencesDixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: A novel approach to pharmacophore modeling and 3D database searching. In Chemical Biology and Drug Design (Vol. 67, Issue 5, pp. 370–372). https://doi.org/10.1111/j.1747- 0285.2006.00384.xes_CO
    dc.relation.referencesDuchowicz, P. R., Talevi, A., Bellera, C., Bruno-Blanch, L. E., & Castro, E. A. (2007). Application of descriptors based on Lipinski’s rules in the QSPR study of aqueous solubilities. Bioorganic and Medicinal Chemistry, 15(11), 3711–3719. https://doi.org/10.1016/j.bmc.2007.03.044es_CO
    dc.relation.referencesEl-Azab, A. S., Abdel-Aziz, A. A. M., Abou-Zeid, L. A., El-Husseiny, W. M., ElMorsy, A. M., El-Gendy, M. A., & El-Sayed, M. A. A. (2018). Synthesis, antitumour activities and molecular docking of thiocarboxylic acid ester-based NSAID scaffolds: COX-2 inhibition and mechanistic studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 989–998. https://doi.org/10.1080/14756366.2018.1474878es_CO
    dc.relation.referencesEl-Husseiny, W. M., El-Sayed, M. A. A., Abdel-Aziz, N. I., El-Azab, A. S., Asiri, Y. A., & Abdel-Aziz, A. A. M. (2018). Structural alterations based on naproxen scaffold: Synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking. European Journal of Medicinal Chemistry, 158, 134–143. https://doi.org/10.1016/j.ejmech.2018.09.007es_CO
    dc.relation.referencesEl-Husseiny, W. M., El-Sayed, M. A. A., El-Azab, A. S., AlSaif, N. A., Alanazi, M. M., & Abdel-Aziz, A. A. M. (2020). Synthesis, antitumor activity, and molecular docking study of 2-cyclopentyloxyanisole derivatives: mechanistic study of enzyme inhibition. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 744–758. https://doi.org/10.1080/14756366.2020.1740695es_CO
    dc.relation.referencesEl-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A., & Eltahir, K. E. H. (2011). Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorganic and Medicinal Chemistry, 19(11), 3416–3424. https://doi.org/10.1016/j.bmc.2011.04.027es_CO
    dc.relation.referencesFerreira, C. A., Campos, M. L., Irioda, A. C., Stremel, D. P., Trindade, A. C. L. B., & Pontarolo, R. (2017). Anti-Inflammatory Effect of Malva sylvestris, Sida cordifolia, and Pelargonium graveolens Is Related to Inhibition of Prostanoid Production. Molecules (Basel, Switzerland), 22(11). https://doi.org/10.3390/molecules22111883es_CO
    dc.relation.referencesForouzesh, N., & Mishra, N. (2021). An effective MM/GBSA protocol for absolute binding free energy calculations: A case study on SARS-CoV-2 spike protein and the human ACE2 receptor. Molecules, 26(8). https://doi.org/10.3390/molecules26082383es_CO
    dc.relation.referencesFriesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430es_CO
    dc.relation.referencesFriesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256oes_CO
    dc.relation.referencesGarcía Meijide, J. A., & Gómez-Reino Carnota, J. J. (2000). Fisiopatología de la ciclooxigenasa-1 y ciclooxigenasa-2. Revista Española de Reumatología, 27(1), 33–35. http://www.elsevier.es/es-revista-revista-espanola-reumatologia-29-articulofisiopatologia-ciclooxigenasa-1-ciclooxigenasa-2-8546es_CO
    dc.relation.referencesGhodsi, R., Zarghi, A., Daraei, B., & Hedayati, M. (2010). Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorganic and Medicinal Chemistry, 18(3), 1029–1033. https://doi.org/10.1016/j.bmc.2009.12.060es_CO
    dc.relation.referencesGhosh, R., Garcia, G. E., Crosbyy, K., Inouez, H., Thompson, I. M., Troyer, D. A., & Kumar, A. P. (2007). Regulation of Cox-2 by cyclic AMP response element binding protein in prostate cancer: Potential role for nexrutine. Neoplasia, 9(11), 893–899. https://doi.org/10.1593/neo.07502es_CO
    dc.relation.referencesGong, L., Thorn, C. F., Bertagnolli, M. M., Grosser, T., Altman, R. B., & Klein, T. E. (2012). Celecoxib pathways: Pharmacokinetics and pharmacodynamics. In Pharmacogenetics and Genomics (Vol. 22, Issue 4, pp. 310–318). Lippincott Williams and Wilkins. https://doi.org/10.1097/FPC.0b013e32834f94cbes_CO
    dc.relation.referencesGowayed, M. A., El Achy, S., Kamel, M. A., & El-Tahan, R. A. (2020). Polymyxin B prevents the development of adjuvant arthritis via modulation of TLR/Cox-2 signaling pathway. Life Sciences, 259. https://doi.org/10.1016/j.lfs.2020.118250es_CO
    dc.relation.referencesGuedes, I. A., Magalhães, C. S., & Dardene, L. E. (2014). Bioinformática : da biologia à flexibilidade molecular. Bioinformática - Da Biologia à Flexibilidade Molecular, 189– 208. https://lume.ufrgs.br/handle/10183/166105es_CO
    dc.relation.referencesGüngör, T., Ozleyen, A., Yılmaz, Y. B., Siyah, P., Ay, M., Durdağı, S., & Tumer, T. B. (2021). New nimesulide derivatives with amide/sulfonamide moieties: Selective COX2 inhibition and antitumor effects. European Journal of Medicinal Chemistry, 221. https://doi.org/10.1016/j.ejmech.2021.113566es_CO
    dc.relation.referencesHage-Melim, L. I. da S., Federico, L. B., de Oliveira, N. K. S., Francisco, V. C. C., Correia, L. C., de Lima, H. B., Gomes, S. Q., Barcelos, M. P., Francischini, I. A. G., & da Silva, C. H. T. de P. (2020). Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. Life Sciences, 256. https://doi.org/10.1016/j.lfs.2020.117963es_CO
    dc.relation.referencesHalgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644ses_CO
    dc.relation.referencesHevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling, 49(2), 444– 460. https://doi.org/10.1021/ci800293nes_CO
    dc.relation.referencesHonmore, V. S., Kandhare, A. D., Kadam, P. P., Khedkar, V. M., Sarkar, D., Bodhankar, S. L., Zanwar, A. A., Rojatkar, S. R., & Natu, A. D. (2016). Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies. International Immunopharmacology, 33, 8–17. https://doi.org/10.1016/j.intimp.2016.01.024es_CO
    dc.relation.referencesHootman, J. M., Helmick, C. G., Barbour, K. E., Theis, K. A., & Boring, M. A. (2016). Updated Projected Prevalence of Self-Reported Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015–2040. Arthritis and Rheumatology, 68(7), 1582–1587. https://doi.org/10.1002/art.39692es_CO
    dc.relation.referencesHou, D. X., Yanagita, T., Uto, T., Masuzaki, S., & Fujii, M. (2005). Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure-activity relationship and molecular mechanisms involved. Biochemical Pharmacology, 70(3), 417–425. https://doi.org/10.1016/j.bcp.2005.05.003es_CO
    dc.relation.referencesHuai, J., Zhao, X., Wang, S., Xie, L., Li, Y., Zhang, T., Cheng, C., & Dai, R. (2019). Characterization and screening of cyclooxygenase-2 inhibitors from Zi-shen pill by affinity ultrafiltration-ultra performance liquid chromatography mass spectrometry. Journal of Ethnopharmacology, 241(January), 111900. https://doi.org/10.1016/j.jep.2019.111900es_CO
    dc.relation.referencesHuang, C. Y., Han, Z., Li, X., Xie, H. H., & Zhu, S. S. (2017). Mechanism of egcg promoting apoptosis of MCF–7 cell line in human breast cancer. Oncology Letters, 14(3), 3623– 3627. https://doi.org/10.3892/ol.2017.6641es_CO
    dc.relation.referencesHwang, Y. P., Choi, J. H., Yun, H. J., Han, E. H., Kim, H. G., Kim, J. Y., Park, B. H., Khanal, T., Choi, J. M., Chung, Y. C., & Jeong, H. G. (2011). Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2- mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food and Chemical Toxicology, 49(1), 93–99. https://doi.org/10.1016/j.fct.2010.10.002es_CO
    dc.relation.referencesJanmanchi, D., Lin, C. H., Hsieh, J. Y., Tseng, Y. P., Chen, T. A., Jhuang, H. J., & Yeh, S. F. (2013). Synthesis and biological evaluation of helioxanthin analogues. Bioorganic and Medicinal Chemistry, 21(7), 2163–2176. https://doi.org/10.1016/j.bmc.2012.11.037es_CO
    dc.relation.referencesJia, P., Pei, J., Wang, G., Pan, X., Zhu, Y., Wu, Y., & Ouyang, L. (2022). The roles of computer-aided drug synthesis in drug development. In Green Synthesis and Catalysis (Vol. 3, Issue 1, pp. 11–24). KeAi Communications Co. https://doi.org/10.1016/j.gresc.2021.11.007es_CO
    dc.relation.referencesJorgensen, W. L., & Duffy, E. M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews, 54(3), 355–366. https://doi.org/10.1016/S0169- 409X(02)00008-Xes_CO
    dc.relation.referencesJorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids.es_CO
    dc.relation.referencesKalgutkar, A. S., Crews, B. C., Saleh, S., Prudhomme, D., & Marnett, L. J. (2005). Indolyl esters and amides related to indomethacin are selective COX-2 inhibitors. Bioorganic and Medicinal Chemistry, 13(24), 6810–6822. https://doi.org/10.1016/j.bmc.2005.07.073es_CO
    dc.relation.referencesKaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919des_CO
    dc.relation.referencesKarlsen, A., Retterstøl, L., Laake, P., Paur, I., Kjølsrud-Bøhn, S., Sandvik, L., & Blomhoff, R. (2007). The Journal of Nutrition Nutrition and Disease Anthocyanins Inhibit Nuclear Factor-kB Activation in Monocytes and Reduce Plasma Concentrations of ProInflammatory Mediators in Healthy Adults 1-3. In J. Nutr (Vol. 137). https://academic.oup.com/jn/article-abstract/137/8/1951/4664955es_CO
    dc.relation.referencesKchouk, S., & Hegazy, L. (2022). Pharmacophore modeling for biological targets with high flexibility: LXRβ case study. Medicine in Drug Discovery, 15. https://doi.org/10.1016/j.medidd.2022.100135es_CO
    dc.relation.referencesKhan, S. A., Imam, S. M., Ahmad, A., Basha, S. H., & Husain, A. (2018). Synthesis, molecular docking with COX 1& II enzyme, ADMET screening and in vivo antiinflammatory activity of oxadiazole, thiadiazole and triazole analogs of felbinac. Journal of Saudi Chemical Society, 22(4), 469–484. https://doi.org/10.1016/j.jscs.2017.05.006es_CO
    dc.relation.referencesKiraly, A. J., Soliman, E., Jenkins, A., & Van Dross, R. T. (2016). Apigenin inhibits COX2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukotrienes and Essential Fatty Acids, 104, 44–53. https://doi.org/10.1016/j.plefa.2015.11.006es_CO
    dc.relation.referencesKola, P., Manjula, S. N., Metowogo K., Madhunapantula, S. V., & EKlu-Gadegbeku, K. (2023). Four Togolese plant species exhibiting cytotoxicity and antitumor. Heliyon. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e13869es_CO
    dc.relation.referencesKulkarni, A. M., Parate, S., Lee, G., Kim, Y., Jung, T. S., Lee, K. W., & Ha, M. W. (2022). Computational Simulations Highlight the IL2Rα Binding Potential of Polyphenol Stilbenes from Fenugreek. Molecules, 27(4). https://doi.org/10.3390/molecules27041215es_CO
    dc.relation.referencesKurumbail Ravi G., Stevens Anna M., Gierse James K., McDonald Joseph J., Stegeman Roderick A., Pak Jina Y., Gildehaus Daniel, Miyashiro Julie M., Penning Thomas D., Seibert Karen, Isakson Peter C., & Stallings William C. (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. NATURE, 384, 644–648. https://doi.org/http://dx.doi.org/10.1038/384644a0es_CO
    dc.relation.referencesLebender, L. F., Prünte, L., Rumzhum, N. N., & Ammit, A. J. (2018). Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. In Pulmonary Pharmacology and Therapeutics (Vol. 49, pp. 75–87). Academic Press. https://doi.org/10.1016/j.pupt.2018.01.008es_CO
    dc.relation.referencesLi, X., Chen, L., Gao, Y., Zhang, Q., Chang, A. K., Yang, Z., & Bi, X. (2021). Black raspberry anthocyanins increased the antiproliferative effects of 5-Fluorouracil and Celecoxib in colorectal cancer cells and mouse model. Journal of Functional Foods, 87. https://doi.org/10.1016/J.JFF.2021.104801es_CO
    dc.relation.referencesLi, Y. J., Wu, J. Y., Liu, J., Qiu, X., Xu, W., Tang, T., & Xiang, D. X. (2021). From blood to brain: blood cell-based biomimetic drug delivery systems. Drug Delivery, 28(1), 1214–1225. https://doi.org/10.1080/10717544.2021.1937384es_CO
    dc.relation.referencesLópez Parra, Marta., Clària i Enrich, J., Rodés, J., & Universitat de Barcelona. Departament de Medicina. (2007). Efectos renales de los inhibidores selectivos de la ciclooxigenasa2 (COX-2) en la cirrosis. Estudios “in vivo” en ratas inducidas a cirrosis y estudios “in vitro” en células mesangiales. TDX (Tesis Doctorals En Xarxa). https://www.tdx.cat/handle/10803/2223es_CO
    dc.relation.referencesMadhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8es_CO
    dc.relation.referencesMartínez-Canabal, A., & Rivas-Arancibia, S. (2005). Funciones de las prostaglandinas en el sistema nervioso central. Revista de La Facultad de Medicina, 48(5), 210–216. https://www.medigraphic.com/pdfs/facmed/un-2005/un055i.pdfes_CO
    dc.relation.referencesMarzouk, A. A., Taher, E. S., Shaykoon, M. S. A., Lan, P., Abd-Allah, W. H., Aboregela, A. M., & El-Behairy, M. F. (2021). Design, synthesis, biological evaluation, and computational studies of novel thiazolo-pyrazole hybrids as promising selective COX2 inhibitors: Implementation of apoptotic genes expression for ulcerogenic liability assessment. Bioorganic Chemistry, 111(January), 104883. https://doi.org/10.1016/j.bioorg.2021.104883es_CO
    dc.relation.referencesModica, M., Vanhems, P., & Tebib, J. (2005). Comparison of conventional NSAIDs and cyclooxygenase-2 inhibitors in outpatients. Joint Bone Spine, 72(5), 397–402. https://doi.org/10.1016/j.jbspin.2005.05.002es_CO
    dc.relation.referencesMulabagal, V., Van Nocker, S., Dewitt, D. L., & Nair, M. G. (2007). Cultivars of apple fruits that are not marketed with potential for anthocyanin production. Journal of Agricultural and Food Chemistry, 55(20), 8165–8169. https://doi.org/10.1021/jf0718300es_CO
    dc.relation.referencesMulakala, C., & Viswanadhan, V. N. (2013). Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies? Journal of Molecular Graphics and Modelling, 46, 41–51. https://doi.org/10.1016/j.jmgm.2013.09.005es_CO
    dc.relation.referencesNakata, K., Hanai, T., Take, Y., Osada, T., Tsuchiya, T., Shima, D., & Fujimoto, Y. (2018). Disease-modifying effects of COX-2 selective inhibitors and non-selective NSAIDs in osteoarthritis_ a systematic review. Osteoarthritis AND Cartilage . https://doi.org/https://doi.org/10.1016/j.joca.2018.05.021es_CO
    dc.relation.referencesNamba, A. M., Da Silva, V. B., & Da Silva, C. H. T. P. (2008). Dinâmica molecular: teoria e aplicações em planejamento de fármacos. Eclética Química, 33(4), 13–24. https://doi.org/10.1590/S0100-46702008000400002es_CO
    dc.relation.referencesNarumiya, S., Sugimoto, Y., & Ushikubi, F. (1999). Prostanoid receptors: Structures, properties, and functions. Physiological Reviews, 79(4), 1193–1226. https://doi.org/10.1152/physrev.1999.79.4.1193es_CO
    dc.relation.referencesOgbe, A. A., Finnie, J. F., & Van Staden, J. (2020). The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. South African Journal of Botany, 134, 126–134. https://doi.org/10.1016/j.sajb.2020.06.023es_CO
    dc.relation.referencesOnawole, A. T., Sulaiman, K. O., Kolapo, T. U., Akinde, F. O., & Adegoke, R. O. (2020). COVID-19: CADD to the rescue. Virus Research, 285(February), 198022. https://doi.org/10.1016/j.virusres.2020.198022es_CO
    dc.relation.referencesOniga, S. D., Pacureanu, L., Stoica, C. I., Palage, M. D., Crăciun, A., Rusu, L. R., Crisan, E. L., & Araniciu, C. (2017). COX inhibition profile and molecular docking studies of some 2-(Trimethoxyphenyl)-Thiazoles. Molecules, 22(9), 1–15. https://doi.org/10.3390/molecules22091507es_CO
    dc.relation.referencesOriakhi, K., & Orumwensodia, K. O. (2021). Combinatorial effect of Gallic acid and Catechin on some biochemical and pro-inflammatory markers in CCl4-mediated hepatic damage in rats. Phytomedicine Plus, 1(1). https://doi.org/10.1016/j.phyplu.2020.100017es_CO
    dc.relation.referencesOsteoarthritis (OA) | Arthritis | CDC. (n.d.). Retrieved January 9, 2023, from https://www.cdc.gov/arthritis/basics/osteoarthritis.htmes_CO
    dc.relation.referencesPaixão, P., Gouveia, L. F., & Morais, J. A. G. (2010). Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. European Journal of Pharmaceutical Sciences, 41(1), 107–117. https://doi.org/10.1016/j.ejps.2010.05.014es_CO
    dc.relation.referencesParolini, M. (2020). Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Science of the Total Environment, 740, 140043. https://doi.org/10.1016/j.scitotenv.2020.140043es_CO
    dc.relation.referencesPettersson, S. H., & Teixidó i Closa, J. (2009). Diseño, selección y síntesis de nuevos inhibidores de entrada del VIH. https://www.tesisenred.net/handle/10803/9298;jsessionid=D057BF8535D813556141C 9FC68D9BDCD.tdx2#page=1es_CO
    dc.relation.referencesQikProp | Schrödinger. (n.d.). Retrieved October 24, 2022, from https://www.schrodinger.com/products/qikpropes_CO
    dc.relation.referencesQin, F. Y., Zhang, H. X., Di, Q. Q., Wang, Y., Yan, Y. M., Chen, W. L., & Cheng, Y. X. (2020). Ganoderma cochlear Metabolites as Probes to Identify a COX-2 Active Site and as in Vitro and in Vivo Anti-Inflammatory Agents. Organic Letters, 22(7), 2574–2578. https://doi.org/10.1021/acs.orglett.0c00452es_CO
    dc.relation.referencesRen, S. Z., Wang, Z. C., Zhu, X. H., Zhu, D., Li, Z., Shen, F. Q., Duan, Y. T., Cao, H., Zhao, J., & Zhu, H. L. (2018). Design and biological evaluation of novel hybrids of 1, 5- diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorganic and Medicinal Chemistry, 26(14), 4264–4275. https://doi.org/10.1016/j.bmc.2018.07.022es_CO
    dc.relation.referencesRepasky, M. P., Shelley, M., & Friesner, R. A. (2007). Flexible ligand docking with Glide. Current Protocols in Bioinformatics, Chapter 8(1). https://doi.org/10.1002/0471250953.BI0812S18es_CO
    dc.relation.referencesSabe, V. T., Ntombela, T., Jhamba, L. A., Maguire, G. E. M., Govender, T., Naicker, T., & Kruger, H. G. (2021). Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. European Journal of Medicinal Chemistry, 224, 113705. https://doi.org/10.1016/j.ejmech.2021.113705es_CO
    dc.relation.referencesSadeghi-Aliabadi, H., Aliasgharluo, M., Fattahi, A., Mirian, M., & Ghannadian, M. (2013). In vitro cytotoxic evaluation of some synthesized COX-2 inhibitor derivatives against a panel of human cancer cell lines. Research in Pharmaceutical Sciences, 8(4), 299–304.es_CO
    dc.relation.referencesSağlık, B. N., Osmaniye, D., Levent, S., Çevik, U. A., Çavuşoğlu, B. K., Özkay, Y., & Kaplancıklı, Z. A. (2021). Design, synthesis and biological assessment of new selective COX-2 inhibitors including methyl sulfonyl moiety. European Journal of Medicinal Chemistry, 209(xxxx). https://doi.org/10.1016/j.ejmech.2020.112918es_CO
    dc.relation.referencesSaldívar-González, F., Prieto-Martínez, F. D., Medina-Franco, J. L., Saldívar-González, F., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2017). Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educación Química, 28(1), 51–58. https://doi.org/10.1016/J.EQ.2016.06.002es_CO
    dc.relation.referencesSaxena, P., Sharma, P. K., & Purohit, P. (2020). A journey of celecoxib from pain to cancer. In Prostaglandins and Other Lipid Mediators (Vol. 147). Elsevier Inc. https://doi.org/10.1016/j.prostaglandins.2019.106379es_CO
    dc.relation.referencesSeeram, N. P., Momin, R. A., Nair, M. G., & Bourquin L. D. (2005). Cyclooxygenase inhibitory and antioxidant cyanidin. Phytomedicine, 8(5), 362–369. https://doi.org/https://doi.org/10.1078/0944-7113-00053es_CO
    dc.relation.referencesShelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681– 691. https://doi.org/10.1007/s10822-007-9133-zes_CO
    dc.relation.referencesSiegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654es_CO
    dc.relation.referencesSookvanichsilp, N., & Poemsantitham, K. (2011). Effects of catechin, diclofenac and celecoxib on the proliferation of MCF-7 and LTED MCF-7 cells. Biomedicine and Preventive Nutrition, 1(3), 202–206. https://doi.org/10.1016/j.bionut.2011.06.003es_CO
    dc.relation.referencesStanzione, F., Giangreco, I., & Cole, J. C. (2021). Use of molecular docking computational tools in drug discovery. In Progress in Medicinal Chemistry (Vol. 60, pp. 273–343). Elsevier B.V. https://doi.org/10.1016/bs.pmch.2021.01.004es_CO
    dc.relation.referencesSutradhar, R. K., Rahman, A. K. M. M., Ahmad, M. U., & Bachar, S. C. (2008). Bioactive flavones of Sida cordifolia. Phytochemistry Letters, 1(4), 179–182. https://doi.org/10.1016/j.phytol.2008.09.004es_CO
    dc.relation.referencesSweere, A. J. M., & Fraaije, J. G. E. M. (2017). Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC. Journal of Chemical Theory and Computation, 13(5), 1911–1923. https://doi.org/10.1021/acs.jctc.6b01106es_CO
    dc.relation.referencesTacconelli, S., Capone, M. L., Sciulli, M. G., Ricciotti, E., & Patrignani, P. (2002). CURRENT MEDICAL RESEARCH AND OPINION® V O L. 1 8 , N O. 8 , 2 0 0 2 , 5 0 3-5 1 1 The Biochemical Selectivity of Novel COX-2 Inhibitors in Whole Blood Assays of COX-isozyme Activity Keywords: Cyclo-oxygenase-1-Cyclo-oxygenase-2- Etoricoxib-Human whole blood-Rofecoxib-Valdecoxib.es_CO
    dc.relation.referencesTaidi, L., Maurady, A., & Britel, M. R. (2022). Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids. Journal of Biomolecular Structure and Dynamics, 40(3), 1189–1204. https://doi.org/10.1080/07391102.2020.1823884es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Restrepo_2023_TG.pdf3,67 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.