• Repositorio Institucional Universidad de Pamplona
  • Trabajos de pregrado y especialización
  • Facultad de Ciencias Básicas
  • Química
  • Por favor, use este identificador para citar o enlazar este ítem: http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10203
    Registro completo de metadatos
    Campo DC Valor Lengua/Idioma
    dc.contributor.authorVillamizar Torres, Daniel Antonio.-
    dc.date.accessioned2025-10-03T21:40:48Z-
    dc.date.available2023-
    dc.date.available2025-10-03T21:40:48Z-
    dc.date.issued2023-
    dc.identifier.citationVillamizar Torres, D. A. (2023). Diseño de un material adsorbente a partir del cuncho de café domestico para la remoción de carboxin.[Trabajo de Grado Pregrado, Universidad de Pamplona]. Repositorio Hulago Universidad de Pamplona. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10203es_CO
    dc.identifier.urihttp://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/10203-
    dc.descriptionCon el objetivo de buscar soluciones que sean favorables con el medio ambiente a la problemática de la generación de residuos, se tomó el cuncho de café y se realizó un proceso de activación con hidróxido de sodio, ácido clorhídrico, ácido sulfúrico y peróxido de hidrógeno, realizando seguimiento gravimétrico, por ATR-FTIR y capacidad de remoción de Carboxin por UV-Vis, lo anterior permitió demostrar que la pérdida de masa después de cada tratamiento es de alrededor del 10%, con cambios en los grupos funcionales en el sólido activado diferenciables por PCA y agrupamiento K-means. Adicionalmente, se encontró que la máxima capacidad de remoción fue de 125,3±0,2 mg retenidos por cada gramo de adsorbente, propiedad que no se ve afectada por el tipo la sustancia que se emplee para activar el cuncho ni por la temperatura. Se comprobó mediante el ajuste a la isoterma de Langmuir que el proceso corresponde a una fisisorción. Finalmente, se comprobó la formación de un sólido mesoporoso.es_CO
    dc.description.abstractIn order to find solutions that are favorable to the environment to the problem of waste generation, the coffee grounds were used to perform an activation process, carried out with sodium hydroxide, hydrochloric acid, sulfuric acid and hydrogen peroxide, carrying out gravimetric monitoring, by ATR-FTIR and Carboxin removal capacity by UV-Vis, which allowed to demonstrate that the loss of mass after each treatment is around 10%, with differentiable changes in the functional groups in the activated solid. by PCA and K-means clustering. Additionally, it was found that the maximum removal capacity was 125.3 ± 0.2 mg retained for each gram of adsorbent, this property is not affected by the type of substance used to activate the coffee grounds, nor by the temperature. It was verified by means of the adjustment to the Langmuir isotherm that the process corresponds to a physisorption. Finally, the formation of a mesoporous solid was verified.es_CO
    dc.format.extent62es_CO
    dc.format.mimetypeapplication/pdfes_CO
    dc.language.isoeses_CO
    dc.publisherUniversidad de Pamplona - Facultad de Ciencias Básicas.es_CO
    dc.subjectCuncho de cafe,es_CO
    dc.subjectremocion,es_CO
    dc.subjectCarboxin.es_CO
    dc.titleDiseño de un material adsorbente a partir del cuncho de café domestico para la remoción de CARBOXIN.es_CO
    dc.typehttp://purl.org/coar/resource_type/c_7a1fes_CO
    dc.date.accepted2023-
    dc.relation.referencesAlvarado, Á. E., Serrano, P. A., & Pérez, C. (2007). Caracterización de zonas sensibles a heladas en el cultivo de papa (solanum tunerosum) en Boyacá. Ciencia y Agricultura, 5(2), 29-38. ISSN: 0122- 8420es_CO
    dc.relation.referencesATSDR (2016) Peróxido de Hidrógeno (hydrogen peroxide), Centers for Disease Control and Prevention. Centers for Disease Control and Prevention. Available at:https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts174.html#:~:text-La%20exposici%C3%B3n%20al %20per%C3%B3xido%20de%20hidr%C3%B3 geno%20puede%20producir%20irritaci%C3%B3 n%20de,efectos%20gastrointestinales%20leves%20%20severos. (Accessed: December 1, 2022).es_CO
    dc.relation.referencesAyawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of chemistry, 2017. https://doi.org/10.1155/2017/3039817es_CO
    dc.relation.referencesBallesteros, L. F., Teixeira, J. A., & Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and bioprocess technology, 7(12), 3493-3503. https://doi.org/10.1007/s11947-014-1349-zes_CO
    dc.relation.referencesBanerjee, S., & Sharma, Y. C. (2013). Equilibrium and kinetic studies for removal of malachite green from aqueous solution by a low cost activated carbon. Journal of Industrial and Engineering Chemistry, 19(4), 1099-1105. https://doi.org/10.1016/j.jiec.2012.11.030es_CO
    dc.relation.referencesBerlett, B. S., Chock, P. B., Yim, M. B., & Stadtman, E. R. (1990). Manganese (II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid- facilitated dismutation of hydrogen peroxide. Proceedings of the National Academy of Sciences, 87(1), 389-393. https://doi.org/10.1073/pnas.87.1.389es_CO
    dc.relation.referencesBettini, S., Ottolini, M., Pagano, R., Pal, S., Licciulli, A., Valli, L., & Giancane, G. (2021). Coffee Grounds- Derived CNPS for Efficient Cr (VI) Water Remediation. Nanomaterials, 11(5), 1064. https://doi.org/10.3390/nano11051064es_CO
    dc.relation.referencesChang, S. S., Clair, B., Ruelle, J., Beauchêne, J., Di Renzo, F., Quignard, F., & Gril, J. (2009). Mesoporosity as a new parameter for understanding tension stress generation in trees. Journal of experimental botany, 60(11), 3023-3030. https://doi.org/10.1093/jxb/erp133es_CO
    dc.relation.referencesChoy, K. K., Porter, J. F., & McKay, G. (2000). Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. Journal of Chemical & Engineering Data, 45(4), 575-584. https://doi.org/10.1021/je9902894es_CO
    dc.relation.referencesCRC Industries. (2021) Safety Data Sheet - Carl Roth. Available at: https://www.carlroth.com/medias/SDB-6846-IE-EN. (Accessed: December 12, 2022).es_CO
    dc.relation.referencesCurrie, L. A. (1999). Detection and quantification limits: origins and historical overview. Analytica Chimica Acta, 391(2), 127-134. https://doi.org/10.1016/S0003-2670(99)00105-1es_CO
    dc.relation.referencesCurrie, L. (2004). Detection and quantification limits: basic concepts, international harmonization, and outstanding ("low-level") issues. Applied Radiation and Isotopes, 61(2-3), 145-149. https://doi.org/10.1016/j.apradiso.2004.03.036es_CO
    dc.relation.referencesDe Luca, S., De Filippis, M., Bucci, R., Magri, A. D., Magri, A. L., & Marini, F. (2016). Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchemical Journal, 129, 348-361. https://doi.org/10.1016/j.microe.2016.07.021es_CO
    dc.relation.referencesde Melo Percira, G. V., de Carvalho Neto, D. P., Júnior, A. 1. M., do Prado, F. G., Pagnoncelli, M. G. B., Karp, S. G., £ Soccol, C. R. (2020). Chemical composition and health properties of coffee and coflee — by=products. Advances — in food and mutrition research,9l, 65-96. https://doi.org/10.1016/bs.afhr-2019.10.002es_CO
    dc.relation.referencesDellaGreca, M,, lesce, M. R,, Cermola, F., Rubino, M., £ Isidori, M. (2004). Phototransformation of carboxin in water. Toxicity of the pesticide and its sulfoxide to aquatic organisms. Journal of agricultural — and food chemistry, — volume S2(20) pages 6228-6232, https://doi.org/10.1021410497370es_CO
    dc.relation.referencesFarah A. Coffee as a speciality and functional beverage. In: Paquin P, editor. Functional and speciality beverage technology. Ist ed. Cambridge (UK): Woodhead Publishing in Food Science, Technology and Nutrition; 2009. https://doi.org/10.1533/9781845695569.3.370es_CO
    dc.relation.referencesFarah, A. (2012). Coffee constituents. Coffee, 21-58. https://doi.ore/10.1002/9781119949893.ch2es_CO
    dc.relation.referencesFarah, A., 8e dos Santos, T. F. (2015). The coffee plant and beans: An introduction. In Coffee in health and disease prevention (pp. 5-10). Academic Press. https://doi.org/10.1016/B978-0-12-409517-5.00001-2es_CO
    dc.relation.referencesFlorez, E. C., & Marulanda, L. F. (2020). Uso de residuos de café como biosorbente para la remoción de metales pesados en aguas residuales. Ingenierías USBMed, 11(1), 44-55.es_CO
    dc.relation.referencesFranca, A. S., Oliveira, L. S., Mendonça, J. C. F., & Silva, X. A. (2005). Physical and chemical attributes of defective crude and roasted coffee beans. Food Chemistry, 90(1-2), 89–94. https://doi.org/10.1016/j.foodchem.2004.03.028es_CO
    dc.relation.referencesFry, W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Molecular plant pathology, 9(3), 385-402. https://doi.org/10.1111/j.1364-3703.2007.00465.xes_CO
    dc.relation.referencesGrünwald, N. J., & Flier, W. G. (2005). The biology of Phytophthora infestans at its center of orgin. ISSN: 0066-4286es_CO
    dc.relation.referencesGuo, X., & Wang, J. (2019). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850. https://doi.org/10.1016/j.molliq.2019.111850es_CO
    dc.relation.referencesHu, Y., Zhi, M., Chen, S. et al. Efficient removal of Cr(VI) by spent coffee grounds: Molecular adsorption and reduction mechanism. Korean J. Chem. Eng. (2022). https://doiorg.unipamplona.basesdedatosezproxy.com/10.1007/s11814-021-1045-4es_CO
    dc.relation.referencesHadebe, L., Cele, Z., & Gumbi, B. (2022). Properties of porous carbon electrode material derived from biomass of coffee waste grounds for capacitive deionization. Materials Today: Proceedings, Volume 56. https://doi.org/10.1016/j.matpr.2021.11.496es_CO
    dc.relation.referencesHenderson, J. (1995). The analysis of ancient glasses part I: Materials, properties, and early European glass. Jom, 47(11), 62–64. https://doi.org/10.1007/BF03221315es_CO
    dc.relation.referencesHuang, Y., Wang, Z., Peng, Y., Xu, R., Yan, J., Xiong, C., ... & Lu, H. (2022). Carboxin can induce cardiotoxicity in zebrafish embryos. Ecotoxicology and Environmental Safety, 233, 113318. https://doi.org/10.1016/j.ecoenv.2022.113318es_CO
    dc.relation.referencesHustert, K., Moza, P. N., & Kettrup, A. (1999). Photochemical degradation of carboxin and oxycarboxin in the presence of humic substances and soil. Chemosphere, 38(14), 3423-3429. https://doi.org/10.1016/S0045 6535(98)00555-4es_CO
    dc.relation.referencesIndexmundi. (2022) Green coffee production by country, Green Coffee Production by Country in 1000 60 KG BAGS Country Rankings. Available at: https://www.indexmundi.com/agriculture/?commodity-green-coffee&graph=production (Accessed: November 30, 2022).es_CO
    dc.relation.referencesIslam, S., Middya, R., & Mondal, B. (2018). Bioefficacy of Fungicides against Phytophthora infestans causing late blight of potato under laboratory condition. Curr J Appl Sci Technol, 26(1), 1-5. ISSN: 2231-0843 Jae-Hoon Shin, Deok-Hye Park, Woo-Jun Lee, Sang-Hyun Moon, Jin-Hyeok Choi, Ji-Hwan Kim, Jae-Sung Jang, Sung-Beom Kim, Kyung-Won Park. (2021) Coffee waste-derived one-step synthesis of a composite structure with Ge nanoparticles surrounded by amorphous carbon for Li-ion batteries Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2021.161685.es_CO
    dc.relation.referencesKinniburgh, D. G. (1986). General purpose adsorption isotherms. Environmental science & technology, volume 20 (9), pages 895-904. https://doi.org/10.1021/es00151a008es_CO
    dc.relation.referencesLester, E., Hilal, N., & Henderson, J. (2004). Porosity in ancient glass from Syria (c. 800 AD) using gas adsorption and atomic force microscopy. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 36(9), 1323-1329. https://doi.org/10.1002/sia.1911es_CO
    dc.relation.referencesLowell, S., & Shields, J. E. (1991). Adsorption isotherms. In Powder Surface Area and Porosity (pp. 11-13). Springer, Dordrecht.es_CO
    dc.relation.referencesMohammed, I., Afagwu, C. C., Adjei, S., Kadafur, I. B., Jamal, M. S., & Awotunde, A. A. (2020). A review on polymer, gas, surfactant and nanoparticle adsorption modeling in porous media. Oil & Gas Science and Technology-Revue d'IFP Energies nouvelles, 75, 77. https://doi.org/10.2516/ogst/2020063es_CO
    dc.relation.referencesMondal, B., Pauria, N. K., & Khatua, D. C. (2015). Rapid laboratory evaluation of fungicides against Phytophthora infestans causing late blight of potato. Journal of Scientific Research & Reports, 4(2), 168-173. https://doi.org/10.9734/JSRR/2015/13107es_CO
    dc.relation.referencesNational Center for Biotechnology Information (2022). PubChem Compound Summary for CID 539946.es_CO
    dc.relation.referencesNieva, A. D., Buenafe, R. J. Q., Guinto, D. R., & Leaño, J. C. F. (2019). Biosorption of Copper (II) from Simulated Wastewater Using Spent Coffee Grounds: A Column Study. International Journal of Environmental Science and Development, 10(9), 261-265. https://doi:10.18178/ijesd.2019.10.9.1184es_CO
    dc.relation.referencesOestreich-Janzen, S. (2010). Chemistry of coffee. Comprehensive natural products II, 3, 1085-1117. https://doi.org/10.1016/B978-008045382-8.00708-5es_CO
    dc.relation.referencesOsmari, T. A., Gallon, R., Schwaab, M., Barbosa-Coutinho, E., Severo Jr, J. B., & Pinto, J. C. (2013). Statistical analysis of linear and non-linear regression for the estimation of adsorption isotherm parameters. Adsorption Science & Technology, 31(5), 433–458. https://doi.org/10.1260/0263-6174.31.5.433es_CO
    dc.relation.referencesOsorio Pérez, V., Pabón Usaquén, J. P., Gallego Agudelo, C. P., & Echeverri-Giraldo, L. F. (2021). Efecto de las temperaturas y tiempos de tueste en la composición química del café. Revista Cenicafé, 72(1), p 72-103. https://doi.org/10.38141/10778/72103es_CO
    dc.relation.referencesPelegrín Ramírez, J. S., & Suárez Galíndez, J. R. (2021). Impactos ambientales de la industria química: análisis de un estudio de caso y propuesta de manejo frente a derrames ácidos y/o básicos. Tópicos de Gestión Ambiental: Enlazando ciencia, sociedad y educación. Universidad Santiago de Cali.es_CO
    dc.relation.referencesPessiki, P. J., & Dismukes, G. C. (1994). Structural and functional models of the dimanganese catalase enzymes. 3. Kinetics and mechanism of hydrogen peroxide dismutation. Journal of the American Chemical Society, 116(3), 898-903. https://doi.org/10.1021/ja00082a009es_CO
    dc.relation.referencesProducción Mundial de Papa Por País (2021). AtlasBig. Available at: https://www.atlasbig.com/es/paises-por-produccion-de-papa (Accessed: November 30, 2022).es_CO
    dc.relation.referencesProducción Mundial de Papa Por País (2021). AtlasBig. Available at: https://www.atlasbig.com/eses_CO
    dc.relation.referencesPuertas-Mejía, M. A., Villegas-Guzmán, P., & Alberto Rojano, B. (2013). Borra de café colombiano (Coffea arabica) como fuente potencial de sustancias con capacidad antirradicales libres in vitro. Revista Cubana de Plantas Medicinales, 18(3), 469-478. (Accessed: November 30, 2022). ISSN: 1028-4796es_CO
    dc.relation.referencesQiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., & Zhang, Q. X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A, 10(5), 716-724. https://doi.org/10.1631/jzus.A0820524es_CO
    dc.relation.referencesQuino, I., Ramos, O., & Guisbert, E. (2007). Determinación del límite de detección instrumental (LDI) y límite de cuantificación instrumental (LCI) en elementos traza de agua subterránea. Revista Boliviana de Química, 24(1), 53-57. ISSN 0250-5460es_CO
    dc.relation.referencesRodríguez-Pérez, L. (2010). Ecofisiología del cultivo de la papa (Solanum tuberosum L.). Revista Colombiana de Ciencias Hortícolas, 4(1), 97-108. https://doi.org/10.17584/rcch.2010v4i1.1229es_CO
    dc.relation.referencesSafarik, I., Horska, K., & Safarikova, M. (2011). Magnetically modified spent grain for dye removal. Journal of Cereal Science, 53(1), 78-80. https://doi.org/10.1016/j.jcs.2010.09.010es_CO
    dc.relation.referencesShahbandeh, M. (2022). Global Coffee Production, 2020/21, Statista. Available at: https://www.statista.com/statistics/263311/worldwide-production-of-coffee/ (Accessed: November 30, 2022).es_CO
    dc.relation.referencesSharma, H. (2020). A Detail Chemistry of Coffee and Its Analysis, in D. T. Castanheira (ed.), Coffee - Production and Research. IntechOpen, London.es_CO
    dc.relation.referencesSing, K. S., & Williams, R. T. (2004). Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology, 22(10), 773-782. https://doi.org/10.1260/0263617053499032es_CO
    dc.relation.referencesSIOC (2019). Sioc. Ministerio de Agricultura. Available at: https://sioc.minagricultura.gov.co/ (Accessed: November 30, 2022).es_CO
    dc.relation.referencesToci, A. T., Farah, A. (2008). Volatile compounds as potential defective coffee beans’ markers. Food Chemistry, 108, 1133–41. https://doi.org/10.1016/j.foodchem.2007.11.064es_CO
    dc.relation.referencesTrugo, L. C. (2003). Coffee Analysis. In: Encyclopedia of Food Science and Nutrition, 2nd edition, Caballero, B., Trugo, L. C., Finglas, P. M., eds. Oxford, UK: Oxford Academic Press; Vol. 2, p. 498.es_CO
    dc.relation.referencesTubert, I., & Talanquer, V. (1997). Sobre adsorción. Educación Química, 8(4), 186-190. https://doi.org/10.22201/fq.18708404e.1997.4.66595es_CO
    dc.relation.referencesUçar, A., Al-Hamdani, A. H. A., Alak, G., Atamanalp, M., Topal, A., Arslan, H., ... & Şensurat, T. (2012). Effects of carboxin on superoxide dismutase enzyme activitie in rainbow trout (Oncorhynus mykiss). BİBAD, Biyoloji Bilimleri Araştırma Dergisi, 5(2), 83-85. https://doi.org/10.1016/j.ecoenv.2022.113318es_CO
    dc.relation.referencesVajda, S., Valko, P., & Turanyi, T. (1985). Principal component analysis of kinetic models. International Journal of Chemical Kinetics, 17(1), 55-81. https://doi.org/10.1002/kin.550170107es_CO
    dc.relation.referencesVeiga, T. R. L. A., Lima, J. T., Dessimoni, A. L. D. A., Pego, M. F. F., Soares, J. R., & Trugilho, P. F. (2017). Different plant biomass characterizations for biochar production. Cerne, 23, 529-536. https://doi.org/10.1590/01047760201723042373es_CO
    dc.relation.referencesWei, D., Wu, X., Ji, M., Xu, J., Dong, F., Liu, X., & Zheng, Y. (2019). Carboxin and its major metabolites residues in peanuts: Levels, dietary intake and chronic intake risk assessment. Food Chemistry, 275, 169-175. https://doi.org/10.1016/j.foodchem.2018.09.087es_CO
    dc.relation.referencesWei-Lung, C., Chih-Ta, W., Kai-Yu, H., Ya-Chieh, C., & Chi-Min, S. (2012). Investigation of indium ions removal from aqueous solutions using spent coffee grounds. International Journal of Physical Sciences, 7(16), 2445-2454. DOI: 10.5897/IJPS12.192es_CO
    dc.relation.referencesYang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013es_CO
    dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2es_CO
    dc.type.coarversionhttp://purl.org/coar/resource_type/c_2df8fbb1es_CO
    Aparece en las colecciones: Química

    Ficheros en este ítem:
    Fichero Descripción Tamaño Formato  
    Villamizar_2023_TG.pdfVillamizar_2023_TG.pdf14,26 MBAdobe PDFVisualizar/Abrir


    Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.