Estaciones de transferencia de reciclaje de residuos sólidos, como estrategia de mitigado del cambio climático

Juan David Martínez Quiñonez

Diplomado en Ingeniería Ambiental y Herramientas Aplicadas en Recursos Hídricos

Universidad de Pamplona

Facultad de Ingenierías y Arquitectura

Departamento de Ingeniería Civil

Pamplona Norte de Santander

Estaciones de transferencia de reciclaje de residuos sólidos, como estrategia de mitigado del cambio climático

Juan David Martínez Quiñonez

Monografía de Grado para Optar al Título de Ingeniero Civil

Director

Rojas Vargas Juan Carlos

Ingeniero Civil

Universidad de Pamplona

Facultad de ingenierías y Arquitectura

Departamento de Ingeniería Civil

Pamplona Norte de Santander

Agradecimientos

Agradezco primeramente a Dios por permitir realizar una de los sueños más determinantes de mi vida, así mismo también dar gracias a mis padres y familiares, ya que sin el apoyo que me han brindado sería más difícil llegar donde estoy, agradezco a mis amigos que de alguna u otra forma han sido parte importante en el camino a esta meta y también dar gracias a los docentes, mi alma mater que es la Universidad de Pamplona por permitirme ser parte de ella. Por último, pero no menos importante a mi novia, ya que su apoyo y ayuda me permitió culminar mi formación académica, siendo un pilar fundamental en decisiones importantes y esa voz de aliento para poder llegar hasta acá. A todos ellos gracias.

Martínez Quiñonez Juan David.

Glosario

Residuos sólidos: son cualquier material, objeto o elemento que queda después de usar un producto cuando ya ha sido usado.

Gases efecto invernadero (GEI): estos gases retienen parte del calor que recibe el planeta del sol y ayudan a mantener la temperatura como la conocemos, pero debido al aumento de estos gases provoca que concentre demasiado calor, provocando un aumento anormal de las temperaturas en el planeta.

Vertederos: son lugares donde se depositan los residuos, generalmente están ubicados a las afuera de la ciudad; son zanjas que se permeabilizan con plásticos y allí se vierten los desechos para luego cubrirse con tierra.

Cambio climático: se relaciona a los eventos como inundaciones, sequias, heladas, etc. Esto a causa de la concentración de gases efecto invernadero que provocan el calentamiento global, siendo este último el causante del cambio climático.

Consumismo: es la tendencia que tienen los seres humanos al consumo excesivo de productos y bienes, siendo estos consumos generadores de los residuos sólidos.

Proliferación: es el incremento de forma rápida o excesivo de gran variedad de cosas tales como enfermedades, animales, gases, residuos, etc.

Impacto ambiental: es la modificación o alteración que causa el ser humano al medio ambiente, esta alteración puede ser tanto positiva como negativa, dependiendo de la actividad humana que se esté ejecutando.

Silvicultura: son las actividades relacionadas a la gestión de los bosques, dentro de las actividades tenemos el cultivo, cuidado y explotación, lo que quiere decir que es un método en el cual se saca beneficio de bosques, pero implementando la sostenibilidad de los mismos.

Biodegradables: es el proceso por el cual los residuos o elementos tiene la capacidad de degradarse o descomponerse naturalmente, esto ya sea por acciones del sol, agua, aire y demás agentes biológicos.

Tabla de Contenido

Agradecimientos		III
Glosario		IV
Lista d	le ilustraciones	10
Resum	ien	11
Abstrac	ct	12
Introdu	ıcción	13
1. Ge	eneralidades	14
1.1.	Justificación	14
2. Ot	bjetivos	15
2.1.	Objetivo general	15
2.2.	Objetivos específicos	15
CAPIT	TULO 1. RESIDUOS SÓLIDOS	16
3. Re	esiduos sólidos y el cambio climático	16
4. Ev	volución Histórica en la Generación de los Residuos Sólidos	17
4.1.	Paleolítico	17
4.2.	Neolítico	18
4.3.	Época de los Metales	19
4.4.	Edad Media	19
4.5.	Revolución industrial	20
4.6.	Época contemporánea	21
5. Ge	eneración de los residuos sólidos	22
6. Pr	revención de la generación de residuos sólidos	24
7. Co	omposición de los residuos sólidos	25
8. Ma	anejo de los residuos sólidos	26

9. Separación en el origen de los residuos solidos	27
10. Recolección y transporte de los residuos solidos	28
11. Tratamiento de los residuos solidos	30
11.1. Tratamiento de los residuos orgánicos	31
11.1.1. Elaboración de bioetanol	32
11.1.2. Elaboración del biodiesel	33
11.1.3. Elaboración de gas	33
11.1.4. Elaboración de compostaje industrial	33
11.2. Tratamiento de residuos inorgánicos	34
11.2.1. Tratamiento de plásticos	35
11.2.2. Tratamiento del vidrio	36
11.2.3. Tratamiento del papel y cartón	37
11.2.4. Tratamiento de los metales	38
11.2.5. Tratamiento de los tetrabriks	39
12. Disposición final de los residuos solidos	40
13. Planes de gestión integral de los residuos solidos	41
CAPITULO 2. ESTACIONES DE TRANSFERENCIA Y DISPOSICIÓN FINAL	43
14. Definición Estaciones de Transferencia de Residuos Sólidos	43
15. Origen y Funcionamiento de las Estaciones de Transferencia de Residuos Sólidos	44
16. Clasificación de Estaciones de Transferencia	45
16.1. Estaciones de Transferencia de Descarga Directa	45
16.1.1. Ventajas	46
16.1.2. Desventajas	47
16.2. Estaciones de descarga indirecta	47
16.3. Estaciones de descarga combinada (directa e indirecta)	49

17.	Tipos o	de Procesamiento de Residuos Sólidos en las Estaciones de Transferencia	50
17.	.1. Sin	Procesamiento	50
17.	.2. Con	Procesamiento	51
1	17.2.1.	Trituración	51
1	17.2.2.	Compactación	52
1	17.2.3.	Enfardamiento	53
1	17.2.4.	Selección de Materiales	54
18.	Tipos o	de Vehículos de Transferencia	55
18.	.1. Equ	ipos Rodoviarios	55
1	18.1.1.	Camiones con Carrocería Abierta	55
1	18.1.2.	Camiones con Carrocería Cerrada	55
1	18.1.3.	Camiones de tipo "roll-on, roll-off"	55
18.	.2. Equ	ipos Acuáticos	56
18.	.3. Equ	ipos Ferroviarios	56
19.	Dispos	ición Final	56
19.	.1. Prod	lucción de Compostaje	56
19.	.2. Inci	neración	57
1	19.2.1.	Tipos de Incineración e Incineradores	57
20.	Rellen	os Sanitario	58
20.	.1. Tipo	os de Rellenos Sanitarios	58
20.	.2. Prin	cipios a tener en Cuenta en la Operación Rellenos Sanitarios	60
CAP	ITULO 3	. CAMBIO CLIMÁTICO	60
21.	El cam	bio climático	60
22.	Impact	to ambiental asociado a los residuos sólidos	62
23.	Los res	siduos sólidos y su implicación en el cambio climático	68

	CAPITULO 4. ESTACIONES DE TRANSFERENCIA PARA EL MITIGADO DEL	
CAME	BIO CLIMÁTICO MEDIANTE EL RECICLAJE DE RESIDUOS SÓLIDOS	. 71
Conclu	isiones	. 76
25.	Referencias	. 78

Lista de ilustraciones

Ilustración 1 Época Paleolítica	17
Ilustración 2 Época Neolítica	18
Ilustración 3 Edad de los Metales	19
Ilustración 4 Edad Media	20
Ilustración 5 Revolución Industrial	21
Ilustración 6 Generación de residuos sólidos	23
Ilustración 7 Prevención de los residuos sólidos	25
Ilustración 8 Composición de los residuos sólidos en Colombia	26
Ilustración 9 clasificación de los residuos por colores	28
Ilustración 10 recolección y transporte de residuos sólidos	30
Ilustración 11 Compostaje como tratamiento de residuos sólidos	32
Ilustración 12 Residuos Inorgánicos	35
Ilustración 13 proceso de tratamiento de residuos	40
Ilustración 14 relleno sanitario	41
Ilustración 15 Transbordo de residuos sólidos en estaciones de descarga directa	46
Ilustración 16 Transbordo de residuos sólidos en estaciones de descarga indirecta	48
Ilustración 17 Proceso de Trituración de Residuos	52
Ilustración 18 Proceso de Compactación	53
Ilustración 19 Proceso de Enfardamiento	54
Ilustración 20 Relleno sanitario tipo área	58
Ilustración 21 Relleno sanitario tipo zanja	59
Ilustración 22 Relleno sanitario tipo combinado	60
Ilustración 23 causas del cambio climático	62

11

Resumen

Las estaciones de transferencia de residuos sólidos, son un factor clave en el manejo de los

residuos, si bien estos residuos dependen de muchos factores, en el siguiente documento se

hablarán de las distintas características de los de los residuos sólidos, como a su vez será un poco

acerca de la historia de los ellos y las implicaciones en el cambio climático.

Los residuos sólidos son generadores de gases de efecto invernadero (GEI), sin embargo se

observaran las distintas formas de mitigado en el cambio climático, esto dado a partir del buen

manejo de los residuos y así mismo los procedimientos para su tratamiento; es necesario incurrir

en que las estaciones de transferencia hacen parte de un proceso en cuanto a la circulación de los

residuos sólidos, por lo tanto se evidenciara, los distintos tipos de estaciones y la disposición

final que depara las estaciones de transferencia para los residuos sólidos.

Por último, habrá un enfoque en la manera en que las estaciones de transferencia de residuos

sólidos impactan al cambio climático de manera positiva, como también son los beneficios que

han generado en otros países y de qué manera se ha implementado en algunas partes de

Colombia, teniendo en cuenta los distintos tipos de residuos y la manera en que se lleva a cabo

los procedimientos hasta su disposición final, teniendo en cuenta la calidad de vertederos o

rellenos sanitarios.

Palabras clave: GEI, cambio climático, residuos sólidos, rellenos sanitarios.

12

Abstract

The solid waste transfer stations are a key factor in the management of waste, although this

waste depends on many factors, the following document will discuss the different characteristics

of solid waste, as well as a little about the history of them and the implications on climate

change.

Solid wastes are generators of greenhouse gases (GHG); however, the different ways of

mitigating climate change will be observed, this given from the good management of waste and

also the procedures for its treatment; it is necessary to incur that the transfer stations are part of a

process in terms of the circulation of solid waste, therefore it will be evidenced, the different

types of stations and the final disposal of the transfer stations for solid waste.

Finally, there will be a focus on how solid waste transfer stations impact climate change in a

positive way, as well as the benefits they have generated in other countries and how they have

been implemented in some parts of Colombia, taking into account the different types of waste

and how the procedures are carried out until their final disposal, taking into account the quality

of landfills or sanitary landfills.

Key words: GHG, climate change, solid waste, landfills.

Introducción

A través del tiempo los residuos sólidos han sido un problema en cuanto a su disposición y el impacto ambiental; la proporción de residuos sólidos que se producen a diario es muy alta, así que de allí parte la necesidad de establecer y crear estaciones de transferencia de residuos sólidos que son definidas como instalaciones que se ocupan de la recolección, gestión y transporte de los residuos sólidos desde un vehículo o camión recolector hacia uno con capacidad superior de carga, que se encarga de transportar los residuos hasta los lugares de colocación final. (Decreto 1713 De 2002, 2002)

Dichos residuos tanto orgánicos como inorgánicos son principalmente provenientes de actividades domésticas, publicas, constructivas, comerciales y de las industrias. Esto produce un desperfecto en la estética de zonas rurales y a la vez urbanas, aparte de esto y más importante es la contaminación que generan los residuos por su mala disposición.

Según lo anterior las estaciones de transferencia son indispensables, aunque de por si no hay algo que me establezca cuando es necesaria implementarlas, lo que sí es seguro y de manera acertada es que una población de gran magnitud debe tener una estación de transferencia, incluso hay poblaciones de una menor densidad que la poseen; por tal motivo abordaremos las consecuencias que los residuos producen, también el cambio climático, sus problemáticas y de qué forma las estaciones de transferencia ayudan a la mitigación. Así mismo se hará una hablará de las generalidades de las estaciones de transferencia, buscando información del funcionamiento las ventajas y desventajas, teniendo en cuenta ejemplos de implementación de estaciones en distintos países y a nivel nacional

1. Generalidades

1.1. Justificación

En el mundo la producción de residuos sólidos ha aumentado de manera sorprendente, esto debido a que cada vez la población aumenta a gran escala, así mismo se ha incrementado el consumismo alrededor del mundo, lo cual ha ocasionado una problemática a nivel mundial, que no solo la vida de los seres humanos se ve afectada, si no del todo planeta entero; si bien se sabe la contaminación a partir de residuos es una de los mayores afectaciones que tiene el medio ambiente, por eso es necesario el manejo de los residuos y estrategias que mitiguen el impacto ambiental.

La gran cantidad de residuos sólidos que son generados cada día a nivel mundial, ocasiona daños irreparables al cambio climático, lo cual también da pie al daño de agua, suelo y aire, no obstante también es un gran influyente en la proliferación de enfermedades, como también de algunos animales que contribuyen a la propagación de las mismas; dichas enfermedades son causantes de muerte en muchas partes del mundo debido a carencia de cubrimiento médico y afectando sobre todo a las zonas más vulnerables o más pobres del mundo .

El cambio climático a partir de residuos sólidos también es importante en cuando a la contaminación en los océanos, es tanta la proporción de residuos sólidos que se producen día a día, que muchos de estos son fáciles verlos en mares, ríos, lagos, lagunas, etc. Debido a que la mayoría de personas hacen caso omiso a la contaminación, por eso es necesario hablar de las estaciones de transferencia y el beneficio que generan al impacto ambiental para uso de los residuos sólidos.

2. Objetivos

2.1.Objetivo general

Realizar una investigación documental de las estaciones de transferencia residuos sólidos, mediante el reciclado para el mitigado del cambio climático.

2.2.Objetivos específicos

- Consultar el origen, evolución y aspectos de los residuos sólidos.
- Establecer el impacto que ocasiona la producción y gestión de residuos sólidos en relación al cambio climático.
- Documentar la información de las estaciones de transferencia y su importancia con los residuos sólidos.
- Reconocer el impacto de las estaciones de transferencia de reciclaje de residuos sólidos internacional y nacionalmente.

CAPITULO 1. RESIDUOS SÓLIDOS

3. Residuos sólidos y el cambio climático

Según CEPAL (2005) (como se citó en Samaniego et al., 2017) "tanto en Latinoamérica como también en la zona Caribe se ha estudiado que aproximadamente de un 10% de las emisiones de gases de efecto invernadero un 3% se le atribuye principalmente a los residuos sólidos u otro tipo de desechos.

Como bien se sabe los residuos sólidos generan una gran proporción de gases de efecto invernadero, así que implica en la afectación en el cambio climático, en especial por la producción de GEI como el metano, dióxido de carbono y en pocas cantidades del óxido nitroso, esto principalmente puede ser evidenciado durante los desarrollos anaeróbicos, los procesos para descomponer respectivamente los desechos y residuos sólidos, además como los tratamientos biológicos como en el caso de la quema moderada de desechos a cielo abierto (Cabeza Díaz M, 2020).

De acuerdo con la metodología para valorar las emisiones de gases de efecto invernadero proporcionada por el IPCC en sus directrices de 2006, las mismas se organizan en 5 grandes secciones tal como la energía, las fases industriales, la utilización de productos, agricultura, u otros empleos que se le puedan dar a la tierra (Cabeza Díaz M, 2020).

4. Evolución Histórica en la Generación de los Residuos Sólidos

4.1. Paleolítico

En la época paleolítica hace aproximadamente 2.500.000 años, el hombre prehistórico usaba nutrientes que los suelos brindaban, y los residuos que se generaban de estos eran depositados sobre la superficie teniendo en cuenta que las principales actividades para que estos hombres sobrevivieran eran la caza y la pesca. Además, estos individuos convivían en reducidos grupos nómadas que acostumbraban a ubicar sus campamentos a orillas de los ríos ya que esto significaba tener una fuente segura de agua y comida un buen lapso tiempo. Y a pesar de que eran tribus conformadas por una reducida cifra de individuos, todos residuos eran dejados en los sitios de campamento, incluso después de que se cambiaran de lugar. (Lezcano, 2001, como se citó en Hernández, 2009)

Ilustración 1 Época Paleolítica

Fuente: tomada de; (Castro, 2017)

4.2. Neolítico

En época neolítica finalmente se halla la ganadería y agricultura como nuevo método de economía, y sin dejar a un lado las actividades de la época paleolítica, esto facilito que los hombres de esta época construyeran las primeras poblaciones ya que disponían de más tiempo. Además, en esta época los individuos usaban herramientas más mejoradas haciendo uso de huesos rocas pulidas y finalmente, empezaron a desarrollar tanto tejidos como cerámica. Todos los residuos generados en base a estas actividades empezaron a ser depositados en sus entornos, sin embargo, como todos estos productos eran orgánicos, biodegradables y eran generados en escasas cantidades, no representaba un problema, pues se integraban adecuadamente con el ciclo de la naturaleza. (Bermúdez, 2003, como se citó en Agapito, 2021)

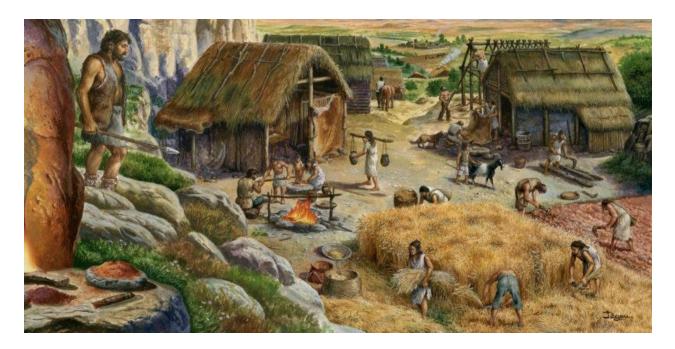
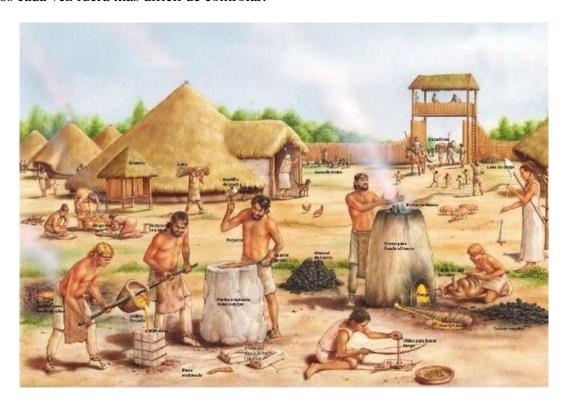



Ilustración 2 Época Neolítica Fuente: tomada de; (Fermar, n.d.)

4.3. Época de los Metales

Es en esta época donde el hombre descubre los metales y las poblaciones empezaron a realizar actividades de alfarería, metalurgias. Si bien estos productos no son realmente biodegradables, al ser reutilizados y reciclados, el problema no parecía ser tan agravante. No obstante, la gran demanda por las extensas poblaciones provocó que el volumen de estos residuos cada vez fuera más difícil de controlar.

Ilustración 3 Edad de los Metales Fuente: tomada de; (Fermar, n.d.)

4.4. Edad Media

Aproximadamente en el siglo XIV, las extensión demográfica se encontraba en auge y proporción considerable, sin embargo, en todas estas poblaciones no habían infraestructuras o estrategias idóneas de saneamiento, ya que todos sus habitantes eran individuos sin cultura o

estudios, conciencia de protección social o sanitaria, además, había una mínima proporción de vida para un gran porcentaje en la humanidad la cual sobrevivía por cuenta de los antojos del feudalismo, puesto que las sobras de los alimentos y demás residuos eran arrojados a las calles a través de los ventanales descontroladamente (Guerrero & Murillo, 2012).

Ilustración 4 Edad Media

Fuente: tomada de; (Phillips, 2021)

4.5. Revolución industrial

En el siglo XIX la administración de los residuos sólidos aun no era lo suficientemente eficiente, así que los problemas sanitarios no cesaban en fuentes hídricas y calles se podía observar la acumulación de residuos. Por lo tanto, empezaron a aparecer afecciones tales como el cólera o tifus y a la problemática se le sumó la llegada de más clases de residuos como resultados la ampliación demográfica y los desarrollos tecnológicos.

Lo cual empezó a aumentar la explotación de recursos naturales importantes, afectaciones a las fuentes hídricas, desertificación, minimización de la diversidad biológica, contaminación de la atmosfera (cambio climático) y degeneración tanto de suelos como de fuentes hídricas subterráneas. No obstante, ya las afectaciones eran tan agravantes que a finales de este siglo en Inglaterra fue aprobada un memorándum de salubridad en el área urbana donde se desautorizaba arrojar desechos sólidos en fuentes hídricas.

Ilustración 5 Revolución Industrial

Fuente: tomada de; (Consecuencias de La Revolución Industrial, 2012)

4.6. Época contemporánea

La expansión demográfica que se desarrolló en esta época incrementó las dificultades que eran producidas por los residuos, complicando aún más su eliminación y creando la necesidad de investigar nuevas estrategias para erradicarlos. Además, en esta época acostumbraban al uso de vertederos clandestinos, pero infortunadamente estos aportaban a la proliferación de

enfermedades al encontrarse a cielo abierto. Además, aquí se aceleró la generación y producción de residuos a base de componentes no biodegradables, tal como en el caso de los plásticos, que cada vez causan más inconvenientes en suelos a causa de las sociedades cada vez más desarrolladas por la industrialización. El apogeo del hábito de utilizar y arrojar suscitó a que, durante la mitad del siglo XX, se incitara considerablemente en cada uno de los países desarrollados una idónea ordenación y conducción de los desechos y los desechos sólidos (Benavides, 2016).

5. Generación de los residuos sólidos

Según PNUMA (como se citó en Cabeza Díaz M, 2020) en lugares como el Caribe o América Latina la producción de residuos sólidos municipales representa alrededor del 12% de la generación mundial (160 millones de toneladas), la tasa de producción total de residuos sólidos ha aumentado progresivamente a causa de la extensión de las urbanizaciones, el crecimiento de los gastos y la variabilidad en los modos de vida de los individuos.

Adicionalmente, los niveles de pobreza marcadamente en los recientes veinte años, con el incremento de las tasas de consumo de bienes. Se espera que las cantidades de volumen de residuos generados de se dupliquen en el año 2025, en el momento en que la suma general de los desechos sólidos producidos en la región se encuentre aproximadamente entre los 398.000.000 de toneladas al año. Esta problemática está asociada con el crecimiento de la extensión demográfica (681 millones de habitantes hacia 2025), y de la misma manera con el acrecentamiento de la generación de desechos sólidos.

La producción de desechos se acoge de diversos componentes, entre ellos el más importante, la economía de las personas, que muy bien se sabe que entre mejor económicamente estén tienden a consumir más y por lo tanto generan más residuos; un claro ejemplo de cómo depende

de las situaciones de las personas en la producción de residuos, es en la pandemia ocasionada por el coronavirus, dado a esta emergencia sanitaria, el estar en casa y sin poder salir fue de manera obligatoria, como también lo fue el uso de tapabocas, guantes e implementos en general para combatir el virus, por esto también se vio afecto la generación de residuos, ya que debido a la gran demanda de estos implementos también hubo una gran cantidad de los mismos y aunque mucha gente en el caso de los tapabocas quiso usar reutilizables, las normas imponían que los tapabocas debían ser desechables.

Por otro lado también dado esta emergencia sanitaria hubo espacios que donde normalmente se generaban y de manera excesiva los residuos sólidos, tuvieron una gran baja a la generación de dichos residuos, ya que al disminuir la cantidad de población que allí asistían no fueron consumidores de los diferentes tipos de eventos o comercios.

Ilustración 6 Generación de residuos sólidos

Fuente: tomado de;(Banco Mundial, 2018)

6. Prevención de la generación de residuos sólidos

Según WBG (como se citó en Rosas Baños & Gámez Anaya, 2019) en la actualidad, se producen como porcentaje anual aproximadamente 2 billones de toneladas de desechos sólidos. Y de manera infortunada, los resultados que se esperan a futuro es que dicha proporción aumente el triple hasta el año 2050.

Según lo anterior en Colombia la reutilización de los desechos sólidos muestra considerables dificultades; la deficiencia de conocimiento de las personas hace que se desperdicie dichos residuos, si la población tuviera más conocimiento en cuanto a compostajes y abonos que se pueden producir con residuos, la tasa de contaminación no solo reduciría si no también sería positivo a la economía, ya que los tratamientos de los residuos y basuras ocupan un gran porcentaje en gastos del país, sin embargo en Colombia y muchos países sobre todo de Latinoamérica, que aún carecen de conocimiento, un ejemplo muy claro es en la construcción ya que aquí se ve muy poco manejo de estrategias para prevención de residuos y por ende la reutilización de los mismos.

Entonces la manera más efectiva de disminuir la cantidad de residuos es evitando la generación de desechos, para así reducir el origen de la basura y por consecuencia prevención de contaminación; hay que empezar desde lo más mínimo como el empaque de un producto, hasta la reutilización y la buena disposición de aparatos grandes o envolturas.

Ilustración 7 Prevención de los residuos sólidos **Fuente:** tomado de;(Raee Andalucía, 2018)

7. Composición de los residuos sólidos

Los desechos sólidos están compuestos por dos grupos que son los inorgánicos y orgánicos, la mayor parte de los desechos sólidos se constituyen por desechos de carácter inorgánico, los cuales su mayor parte son embalajes o envases; casi la mayoría de residuos que pertenecen al grupo de los inorgánicos se pueden reciclar ya que dentro del grupo está el papel, plásticos, textiles, cartón, vidrios, etc. (productos tóxicos y peligrosos provenientes de productos destinados para el aseo o limpieza). En el caso de los residuos orgánicos también hay forma de reutilizarse que es por medio de abonos, ya que estos al ser por lo general restos de comida, poseen gran cantidad de nutrientes y descomposición, que se pueden fermentar y lograr compostaje para plantas y de esta forma cumplir un aspecto positivo al medio ambiente; según el siguiente grafico podremos observar de forma más detallada los porcentajes y la manera en que están compuestos los desechos sólidos.

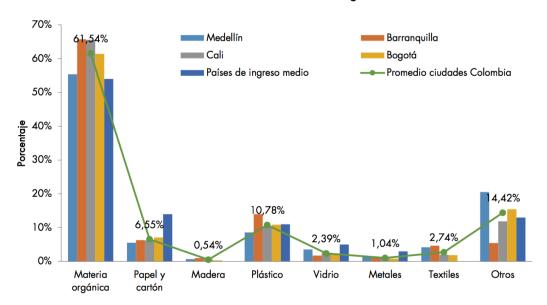


Gráfico 4. Caracterización de residuos sólidos en algunas ciudades de Colombia

Fuente: BID, 2015.

Ilustración 8 Composición de los residuos sólidos en Colombia **Fuente:** tomado de; (Banco Interamericano de Desarrollo, 2015)

8. Manejo de los residuos sólidos

Según Ochoa (como se citó en Sáez & Urdaneta, 2014) la gestión de los desechos sólidos se comprende o puede ser definida como las acciones o diligencias que se relacionan con el procedimiento de los residuos sólidos desde los sitios donde son producidos hasta los lugares disposición final.

La gran cantidad que se generan de residuos sólidos es una problemática que se presenta en todos los países, a nivel mundial esta cantidad de residuos daña no solo el medio ambiente si no también es una gran problemática en la salud de las personas, debido a los grandes volúmenes de desecho que se producen, ante esto surge una gran necesidad de dar soluciones y en busca de ellas plantear estrategias y acciones que ayuden a mejorar; para poder dar solución o empezar

con el cambio es necesario que los entes gubernamentales, decretos y asuntos políticos intervengan y ayuden a estrategias de mitigado, no obstante es de vital importancia la educación ambiental desde colegios a temprana edad y de esta forma generar conciencia ambiental.

9. Separación en el origen de los residuos solidos

Es muy importante separar los residuos sólidos desde casa, ya que como lo mencionaba anterior mente los desechos sólidos pueden ser clasificados tanto en orgánicos como inorgánicos, esta separación debe ser tarea de todos, ya que esto ayuda a potenciar el valor del reciclaje, es vital importancia que en las ciudades haya estrategias y acciones que impulsen a la separación de residuos, para que de esta forma crezcan ciudades mucho más sostenibles.

El plástico es proveniente del petróleo, un hidrocarburo que no es renovable y que además tarda cientos de años en biodegradarse y en el case de papel el cual proviene de los árboles como materia prima, provoca el agotamiento de los recursos naturales, y así mismo el cambio climático; una forma de la población contribuir antes de la separación seria tratar consumir productos con la menor cantidad de envoltorio.

Un 80% de los residuos pueden ser recuperados o reutilizados, para esto hay que hacer una correcta separación, es muy importante aclarar que los residuos que se separan para reciclar deben estar limpios y secos, dichos residuos separados para reciclaje son llevados a sitios donde se les hará el debido proceso para su recirculación; en cambio a los residuos que no se usan como reciclaje, son llevados a vertederos donde son enterrados, por lo tanto entre más se reciclaje menos de estos residuos llegaron a los vertederos que a través del tiempo se van llenando hasta llegar a un punto que no soporten, de igual forma estos vertederos son un gran contaminante y productor de gases de efecto invernadero.

Ilustración 9 clasificación de los residuos por colores

Fuente: tomado de; (Boris Tito, 2021)

10. Recolección y transporte de los residuos solidos

Según Jaramillo (1999) (como se citó en Sáez & Urdaneta, 2014) la recopilación de desechos sólidos puede ser definida como las acciones que comprenden tanto la recolección como el transporte de los desechos desde los lugares que son diseñados para su acaparamiento hasta el sitio donde deben ser descargados, dicho sitio podría ser una estación de transferencia donde se procesan los desechos materiales, un sitio de disposición final o un centro de acopio.

Podemos decir que la recolección de los residuos es la conexión entre la distribución en donde se inicia, el cual seria los domicilios o casas hasta su disposición final, teniendo en cuenta los lugares intermedios a los que se puedan llevar antes de ir a vertederos o sitios finales de los residuos, como puede ser un depósito temporal. Dicha recolección deberá estar diseñada de tal forma que sea muy organizada y en la medida de lo posible evitar malos olores, ruido y desorden; de esta manera garantizar un servicio eficiente y que sea equitativo en toda la ciudad.

En base a lo anterior la recolección es un papel fundamental en la cual agrupa en un conjunto de actividades los demás servicios para una buena gestión de residuos, en algunas partes es evidente la mala organización de los sistemas de recolección de residuos, el cual se ha convertido en una problemática en las ciudades, tanto por el cambio climático como también la contaminación visual que produce los malos servicios de recolección.

La eficiencia y el buen servicio de recolección, dependen de múltiples factores, uno de esos factores y de los más importantes es contar con vehículos y fuerza laboral que acompañen la recopilación de residuos, como también son la cantidad de veces que pasa los vehículos en los distintos sectores para la recolección y la zona que abarcan en la misma.

Según Bautista (1998) (como se citó en Cabeza Díaz M, 2020) mediante las estaciones de transferencia se busca ahorrar costos de transporte y prevenir vertederos clandestinos. En las estaciones de transferencia se reciben los residuos sólidos recolectados, se pesan y seguidamente se descargan a través de tolvas a vehículos de mayor capacidad; con los cuales son transportados a plantas de procesamiento o a los lugares de disposición final. Los residuos sólidos pudieran ser compactados con dispositivos mecánicos, para disminuir el volumen. En algunos casos los residuos sólidos recolectados son descargados sobre una plataforma y la carga a los vehículos de mayor capacidad se realiza con palas cargadoras.

Ilustración 10 recolección y transporte de residuos sólidos

Fuente: tomado de; (E-Consulting proyectos ambientales y servicios generales, 2020)

11. Tratamiento de los residuos solidos

Gran preocupación se genera en los gestores privados y públicos de los residuos sólidos pero no es la contaminación, ni la perdida de recursos naturales, si no las dificultades económicas, ecológicas y colectivos para hallar un sitio de disposición final para los mismos, una gestión sostenible obliga a actuar de una forma global y coordinada en todo el proceso del tratamiento de residuos, extracción, variación, colocación y gasto; incorporando las finalidades de precaución y beneficio de los residuos con el objeto de minimizar las acciones explotadoras y los daños ambientales.

Los sistemas de recuperación y beneficio de los residuos sólidos, basados en la participación ciudadana, a través de la recolecta selectiva de los residuos son los más efectivos para el

tratamiento y la industria recicladora, para una gestión sostenible el primer objetivo es la prevención, por eso se dice que el mejor residuo es el que no se genera o el que no existe, es preciso tener en cuenta además la más ecologistas de las tres R (reducir, reciclar y reutilizar) en definitiva hay que implementar un PGI, que consideren estos fines para la reducción, reutilización, reciclaje y destino final de los residuos sólidos.

11.1. Tratamiento de los residuos orgánicos

Los residuos orgánicos son uno de los principales desechos que se generan cuando no se desechan correctamente pueden producir metano que es liberado a la atmosfera el cual es un gas de alto efecto invernadero, existen formas de tratar estos desechos que generan beneficios sin contaminar, uno de estos son las cascadas, que son acciones que permiten seguir utilizando los materiales orgánicos sin tener que degradarlos, para aprovecharlos se deben separar los residuos orgánicos aprovechables por tipo o función que se le dará, por ejemplo las lanas y el algodón para materiales de relleno, cascara de coco como sustrato plantas, entre otros; se deben remover las impurezas que pueden acelerar su degradación, como lo son la humedad o restos de alimentos.

Según lo anterior se someten los residuos a un proceso de acondicionamiento para utilizarlos en la nueva función, entre más encilla sea, más benéfica será para la población y para el medio ambiente, unos ejemplos de esto podría ser la generación de carbón activado a partir del coco, utilizar las fibras naturales de prendas de ropa como material de relleno para muebles o utilizar el caucho como aislante de sonido, de temperatura o agua, material de relleno o para elaboración de otros artículos.

Ilustración 11 Compostaje como tratamiento de residuos sólidos

Fuente: tomado de; (Amigos de la tierra, 2017)

Las biomasas son otra manera de aprovechar los residuos orgánicos, se requieren diferentes instalaciones según el tipo de recurso que se desea obtener.

11.1.1. Elaboración de bioetanol

consiste en extraer la mayor cantidad de almidón y la celulosa de los residuos para fermentarlos, estos se hacen con ciertos tipos de residuos como lo son el maíz, trigo, cebada, sorgo, caña de azúcar y remolacha; para aprovecharlos no se deben contaminar con otros.

11.1.2. Elaboración del biodiesel

Consiste en producir combustible a partir de aceite vegetal de origen animal e industrial, la producción de bioetanol y biodiesel se utiliza principalmente cuando se producen grandes cantidades de dichos residuos, de lo contrario se opta por otro proceso.

11.1.3. Elaboración de gas

Es la forma más versátil para obtener biomasa de los residuos orgánicos ya que no es necesario separarlos, cuando el material orgánico se encuentra en el biodigestor se produce metano, biogás y calor, el metano es capturado para usarlo posteriormente como combustible y el calor que se genera en el biodigestor se puede aprovechar para diversos fine como por ejemplo en industrias, invernaderos, edificios de viviendas y de esta forma reduciendo la cantidad de combustibles que se utilizan para producir calor.

11.1.4. Elaboración de compostaje industrial

Es uno de los tratamientos más simple y financieramente ahorrativo para degradar los residuos orgánicos y reincorporarlos de manera natural en forma de nutrientes, las compostas industriales admiten una mayor variedad de residuos que las de casa, ya que alcanzan temperaturas superiores sin embargo debe separarse de aquellos residuos que perjudican o tardan mucho en degradarse, como lo son las cenizas en grandes cantidades, maderas en grandes trozos o con sustancias inorgánicas; al utilizar las compostas obtienes los siguientes beneficios:

Se reducen las emisiones de metano.

- Se reduce la cantidad de agroquímicos o fertilizantes artificiales que se aplican en los cultivos al usar abono natural.
- Aumenta la productividad de los cultivos locales desde 15% hasta 25% al aplicar el abono.

Dichas estrategias pueden ser usadas para grandes beneficios más allá de lo ecológico, ya que pueden ser implementadas bien sea por empresas privadas o públicas, generando de esta forma empleos, ingresos económicos y una reincorporación acelerada de los nutrientes al ciclo.

11.2. Tratamiento de residuos inorgánicos

Los residuos inorgánicos tienen la capacidad de generar daños inminentes en el medio ambiente y esto debe ser de preocupación para todo el mundo, pues además de la perspectiva medioambiental también puede haber una repercusión durante el desarrollo económico. Cameron (1998) explica que, al cambiar la economía de permanencia de comercio y mercados, el aumento en la generación de recursos de industria es relativo en cuanto a los procesos de agricultura. Lo cual es una problemática real que se ha podido evidenciar en países de tercer mundo a causa de las reformas o políticas económicas que se han implementado durante los últimos años, así como la explotación de recursos fundamentales como lo son los naturales (como se citó en Rolando & Carranza, 2015).

Ilustración 12 Residuos Inorgánicos **Fuente:** tomado de; (Green Drinks, 2017)

11.2.1. Tratamiento de plásticos

El plástico es un producto fabricado a base de derivados de hidrocarburos, con características que los convierten en materiales competentes para una gran variedad de aplicaciones, en general, la carga del plástico es mínima en comparación al de otro tipo de productos (Paz M, 2016).

El tratamiento o reutilización de plásticos da respuesta al problema de los residuos plásticos, de forma que convierte el despilfarro en patrimonio ya que rescata y revalúa los residuos sólidos, pero a su vez realiza lo mismo con los residuos plásticos de empresas y los producidos por la agricultura clasificándolos por su punto de partida. Algunas investigaciones afirman que:

Reutilizar directamente materiales plásticos se limita en la actualidad al 1-2%, ya que cada vez más la demanda de la calidad de los productos es más alta. Por ejemplo, algunos envases plásticos pueden reciclados porque poseen una excelente calidad, como en el caso de algunos

plásticos de embalajes o productos comestibles, sin embargo, estos no siempre pueden ser reusados para fabricar envases nuevos destinados también para envases de alimentos debidos a las políticas sanitarias. Por lo tanto, estos podrían ser usados en otro tipo de destinos (Arandes et al., 2004).

El proceso de tratamiento del plástico cuenta con distintas etapas como son:

- Recepción: Aquí se controla el peso, la calidad de la materia prima o residuos plásticos.
- Inspección: Aquí se controla la calidad de los materiales, usando una observación mucho más detallada.
- Clasificación: se separan los residuos que se tienen como prioridad dependiendo del destino final al cual se va a dar uso.
- Lavado: Se retira todo el material que de impurezas e interfieran en los procesos siguientes.
- Extrusión: El material por lo general ingresa en tolvas en donde se derrite y después se comprime y así pasar entre un disco con diminutos orificios el cual conforman al salir unos filamentos el cual luego son enfriados para que de esta forma se solidifiquen, luego de esto es cortado en trozos formando lo que es la materia prima plástica o pellets.
- Control de calidad: Allí se estudian sus propiedades para corroborar que sean llevados al embalaje y de allí volverlos a poner en circulación a industrias que lo soliciten.

11.2.2. Tratamiento del vidrio

La secuencia del reciclado del es una circunferencia perfecta ya que los residuos de vidrio vuelven al uso miles veces el tratamiento del vidrio empieza con llevar los residuos de vidrio a las plantas de tratamiento, el cual es revisada para determinar su calidad, clasificación y grado de

limpieza, de esta forma obteniendo estas revisiones se procede a pesar los residuos para saber su valor; estos desechos de vidrio se llevan a un lugar de almacenaje el cual son separados según su color, para allí continuar con su limpieza; este proceso empieza con una inspección con personal para que luego sea separado manualmente de los desechos no deseables, luego por medio de imanes o rodillos magnéticos se eliminan contaminantes metálicos, para así los residuos de vidrio sean pasados por una trituradora el cual se encarga de darle uniformidad en los tamaño.

De acuerdo a lo anterior el vidrio triturado es sometido a un cuidadoso lavado, con el objetivo de eliminar los contaminantes flotantes, como metales no ferrosos o magnéticos, papel, plástico, entre otros; no obstante aun con el lavado debe hacerse de nuevo un control manual para así eliminar cualquier material que no haya sido descartado, para luego si depositar los residuos en los distintos lugares determinados y de esta forma llevar los residuos de vidrio a fundirse en hornos a temperaturas que oscilan entre los 1400°C a 1500°C.

De esta manera estando los residuos de vidrio en estado líquido es transportado a maquinas transformadoras que por medio ya sea de prensado o soplado son convertidos en envases o productos definitivos, para que de esta forma vuelvan a un nuevo ciclo de vida.

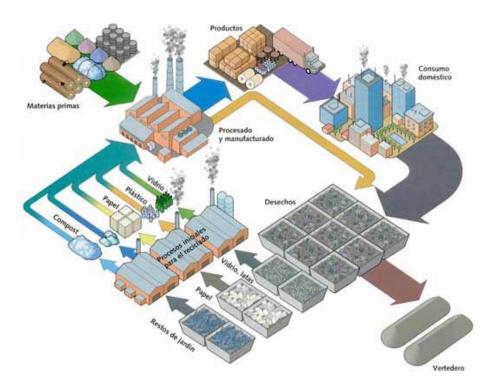
11.2.3. Tratamiento del papel y cartón

El papel es un producto natural elaborado a partir de pulpa de celulosa, el cual se puede producir con papel usado o talando millones de árboles; la tala de árboles es bastante contribuyente al cambio climático por eso es importante saber que el papel reciclado ayuda a conservar los bosques y evitar la deforestación, puesto que el papel reciclado de una tonelada, se conservan aproximadamente 17 árboles al no ser cortados, por lo cual se recogen miles de toneladas de papel usado cada año.

La elaboración de papel reciclado se inicia con la recolección de los residuos, cuya mayor procedencia es de revistas, periódicos, envases, cajas de cartón y de papel impresión; estos han sido separados de otros residuos para que así un vehículo trasporte toneladas de papel usado de las estaciones de transferencia, hasta las fábricas donde se hará su debido tratamiento.

En las fábricas es depositado el papel usado en puntos de almacenaje, en una fábrica de gran envergadura entran aproximadamente cada 10 minutos un vehículo con unas 18 toneladas de papel, para luego realizar una inspección y clasificar los residuos de papel y de allí pasar el papel a depósitos o maquinas que están llenos de agua, la maquina transforma el papel en pulpa y se luego es triturado, una vez el papel este triturado se comprueba la consistencia de la pulpa de papel, luego se añade dicha pulpa en un recipiente que a través de marcos de maderas con filtros se sumergen en la pulpa, para obtener láminas de papel que por medio de prensas y secado se logra la obtenciones de las nuevas hojas, para así cumplir con el circulo de reciclaje y vuelvan a ser útiles.

11.2.4. Tratamiento de los metales


España es el líder de tratamiento de residuos metálicos en el continente europeo, con 12.000.000 de toneladas y media anuales, lo cual corresponde a un 80% del total que se produce frente a un 40% del resto de Europa; por cada tonelada de acero fabricada por el método de reciclado de metales, se evita una tonelada y media de consumo de mineral de hierro ya que es un recurso que a través del tiempo se ha vuelto mucho más escaso, como también evitamos un 40% de consumo de agua y aproximadamente un 80% de consumo energético, además de esto también se está dejando de emitir tonelada y medio de CO₂.

El acero no tiene pérdidas significativas ya que este se recicla al 100%, lo cual permite que se genere un ciclo permanente en donde este es recirculado, hay residuos metálicos que se llevan reutilizando hace aproximadamente un siglo y medio; el acero es de los productos con más demanda a nivel mundial, ya que se ve presente en elementos de consumo diario, como también es utilizados en vehículos o proyectos de gran importancia, lo cual contribuye de manera significativa en la economía de los países.

11.2.5. Tratamiento de los tetrabriks

Los tetrabriks están formados por 6 capas las cuales están compuestas por plástico, aluminio y cartón, cuando se recicla un tetrabrik se piensa que se recicla todo de ellos puesto que todo ello proviene del reciclaje, pero no es así ya que nunca se recicla el 100% del material, solo es reciclado el cartón el cual genera una problemática para el medio ambiente; si bien hay algunas industrias que se ocupan de reciclar la mayoría de estos desechos, pues esto se debe a que no hay mecanismos del reciclaje total; si bien hace falta más campo de investigación en cuanto al total del reciclado de los tetrabriks, por lo tanto si no se realiza un método que me recicle el 100% la generación de residuo aumentara. Según John et al., (2007) se reciclan de dos formas:

- Reciclado conjunto. El cual da lugar a un material acumulado que se denomina Tectán.
- Reciclado por separado. Donde todos los componentes son aprovechados de manera autosuficiente.

Ilustración 13 proceso de tratamiento de residuos **Fuente:** tomado de; (Recytrans, 2014)

12. Disposición final de los residuos solidos

Los desechos que no se pueden re insertar en un proceso nuevo de producción, se consideran como desechos no valorizables, así que estos deben ser llevados a sitios de disposición final como rellenos sanitarios o vertederos, es muy importante evitar el basural o vertederos, ya que esta intensifica la polución de los suelos, el agua y el aire, dado que facilita la emisión de gases y proliferación de roedores e insectos, y a su vez da como consecuencia afectaciones en la salud, daña la flora y fauna de las zonas; en cambio los rellenos sanitarios, garantizan una disposición segura de los desechos sólidos, ya que posee una geomembrana la cual protege el suelo de los lixiviados y de esta forma también protege la contaminación del aire.

Los rellenos sanitarios también evitan la proliferación de enfermedades, y bien diseñado puede recuperar los gases para convertirlos en energía; sin duda alguna el relleno sanitario es una excelente opción para los residuos que no podrán ser recirculados, sin embargo, se deben tener rellenos en buen estado y en constante actualización para que pueden cumplir con su trabajo y de esta forma contribuir mejor al medio ambiente. Es fundamental reconocer que gran parte de desechos sólidos que se pueden reciclar, llegan a vertederos o rellenos sanitarios, donde no todos estos lugares de disposición final son los más óptimos para manejo de los residuos.

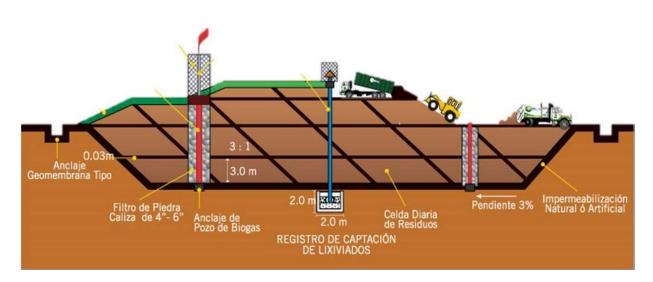


Ilustración 14 relleno sanitario

Fuente: tomado de; (Vílchez & Rodríguez, 2007)

13. Planes de gestión integral de los residuos solidos

A causa de las grandes demandas que ha causado las nuevas tecnología y las soluciones que estas se ha logrado contribuir a minimizar en el planeta las emisiones de GEI, brindando grandes beneficios para el medio ambiente, desarrollo sostenible y salud mundial, por lo tanto, es de

suma importancia que los países en el mundo desarrollen y evalúen planes o proyectos que gestionen integralmente los residuos sólidos, los cuales desplieguen acciones que provean una simplificación efectiva de las emisiones de gases de efecto invernadero en esta área y por otro parte, medidas que se adapten e inspeccionen probables efectos en el cambio climático sobre los servicios e infraestructura respectivos, "en concordancia con los escenarios de cambio climático que se propongan, en Latinoamérica o en zonas del Caribe, la proporción de los municipios que refieren con proyectos de gestión de desechos sólidos es de diecinueve coma ocho por ciento, lo cual demuestra que el nivel de organización en los municipios de este sector es muy bajo (según BID, 2015, como se citó en Cabeza Díaz M, 2020).

El objetivo de los PGIRS es reducir la producción de basura que actualmente se genera y aumentar el porcentaje de reciclaje, para esto es indispensable el mejoramiento de los hábitos de la población, reduciendo y rehusando lo que consume para generar menos basura en las zonas públicas; es necesario que la población ubique los contenedores y respete el código de color usado en cada ciudad para así disponer de los residuos correctamente, dichos contenedores son objetos esenciales, ya que conservan la calidad de los residuos desde la recolección hasta su tratamiento, como bien se sabe los materiales altamente reciclables son recolectados para su transporte a las zonas donde realizan los tratamiento, en estas se inician el proceso de valorización y lo recolectado ingresa a la línea de producción para transformarse en materias primar aptas para ser convertidas en nuevos productos.

CAPITULO 2. ESTACIONES DE TRANSFERENCIA Y DISPOSICIÓN FINAL

14. Definición Estaciones de Transferencia de Residuos Sólidos

Para Varón et al. (2015) las estaciones de transferencia pueden ser definidas como las instalaciones donde se realizan los debidos manejos y el traslado de los desechos o residuos sólidos tanto municipales como urbanos, además, dichos procesos se realizan desde un vehículo o camión de poca capacidad hacia uno con capacidad superior de carga que transporta los desechos los sitios de disposición final

De manera que en términos generales las estaciones de transferencia pueden ser definidas como instalaciones o puntos de recepción de residuos sólidos, quienes en su mayoría se encuentran localizados en las inmediaciones de las poblaciones, que tienen como principal función permitir la descarga de los residuos urbanos que reúnen los camiones recolectores, evitando que estos se dirijan hasta los respectivos centros de tratamiento de residuos.

Con esta estrategia, se busca optimizar sistemáticamente los costos y tiempo en cuanto al servicio de recolección, sobre todo cuando se trata de poblaciones que se encuentran a una distancia considerable de los centros de tratamiento de desechos sólidos, y además de disminuir el costo general de manejo, permite reducir el intensificado uso de equipos y recursos humanos, ya que esta metodología usa equipos más idóneos que compactan residuos permitiendo aumentar las cantidades que se transportan. Por último y como ventaja más importante, el uso de estaciones de transferencia de residuos sólidos promueve a minimizar la contaminación ambiental a través de la clasificación, reciclaje y reutilización de los residuos recolectados y a su vez, permite reducir agravantes a la salud de la población y en el cambio climático ya que, aunque algunos cambios suelan ser de origen natural, la contaminación humana que como

consecuencia causa el "efecto invernadero" creando una contención del calor de los rayos del sol en el ambiente, originando calentamiento global, elevaciones en el nivel del mar, disminución de la superficie en glaciares y alteraciones en temporadas de lluvia o sequías.

15. Origen y Funcionamiento de las Estaciones de Transferencia de Residuos Sólidos

Si bien el origen de las estaciones de transferencia es incierto, Caviedes (2011) considera que las estaciones de transferencia en sus inicios fueron desarrolladas y analizadas y construidas técnicamente en la ingeniería, además, estas eran transporte que se realizaban en el mar y que surgieron en grandes ciudades como lo son Nueva York y Lisboa; de las maneras, estas dieron pie para que llegaran las estaciones terrestres ferroviarias de Sao Paulo y Paris.

Y desde entonces, de manera progresiva las estaciones de transferencia fueron surgiendo con la intención de mitigar la problemática relacionada con la recolección de los desechos sólidos a nivel mundial que amenazaban el medio ambiente y pese a que aún no todos los países han decidido implementar tal estrategia, quienes si le apostaron han observado significativamente que los grandes valores de recolección y el tiempo que se requería hasta los lugares de disposición final redujeron considerablemente mientras a la vez se cumple con las necesidades y requerimientos de los habitantes.

En el área se debe informar la procedencia de los residuos y los datos del conductor, colocar el vehículo sobre el área asignada de pesaje, dirigir a la rampa el vehículo y colocarlo según lo indicado, ya sea en la línea de servicio o elevador, realizar las maniobras para efectuar la descarga. Por otro lado, los encargados de la estación deben registrar los datos del vehículo, indicar el área de pesaje y registrar el resultado. Posteriormente dirigir el vehículo a las rampas de acceso, señalar la línea de servicio los residuos. Finalmente, se clasificarán los residuos entre

aprovechables y no aprovechables, los que se clasifican en aprovechables serán enviados a plantas de tratamiento de acopio o industria, mientras que los residuos no aprovechables serán enviados para su disposición final.

16. Clasificación de Estaciones de Transferencia

A medida que el tiempo ha avanzado, se han desarrollado distintos tipos de descarga en estas estaciones facilitando el trabajo de los camiones recolectores. Cada tipo ha sido analizado y perfeccionado en función a las necesidades que puede tener cada país, ciudad o región. Entre los tipos de descarga en las estaciones de transferencia de residuos sólidos que existen actualmente podemos encontrar:

16.1. Estaciones de Transferencia de Descarga Directa

Núñez & Castillo (2013) explican que "en estas estaciones los residuos sólidos que acumulan los camiones recolectores se descargan de manera directa a las estaciones de transferencia mediante vaciado por gravedad".

Durante el ingreso de los camiones de recolección a esta estación, se realiza el respectivo registro y peso para luego dirigirlo a las rampas de acceso donde se encuentra cierta cantidad de tolvas industriales que se encargan de descargar los residuos sólidos hacia el vehículo de transferencia. Posteriormente, las cargas llenas en los vehículos de transferencia son nivelados ya sea por brazos hidráulicos o manualmente y finalmente, después de compactar los residuos, estos se cubren para evitar que se esparzan durante el transporte al lugar de disposición final.

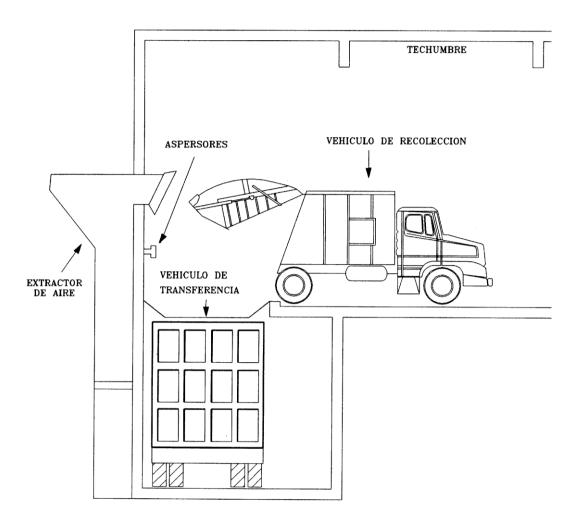


Ilustración 15 Transbordo de residuos sólidos en estaciones de descarga directa

Fuente: tomado de; (Gestión de Residuos Sólidos, 2007)

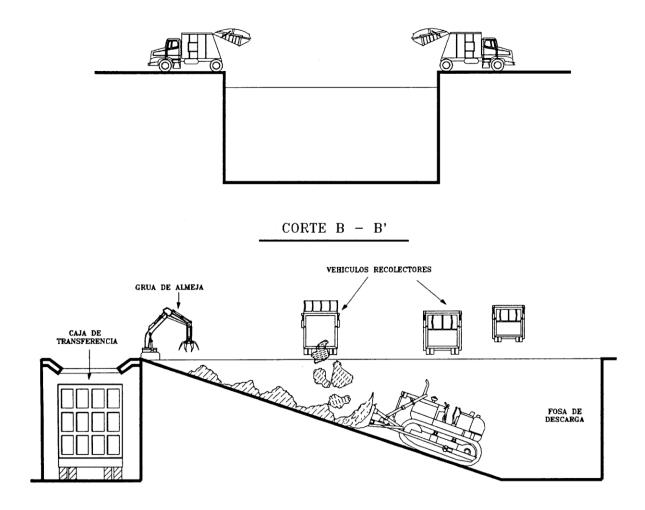
Por otra parte, es fundamental considerar qué repercusiones pueden representar las estaciones de transferencia directa tanto para las empresas como para la comunidad, de manera que estas estaciones pueden representar a su vez ventajas como desventajas.

16.1.1. Ventajas

 Estas estaciones a menudo son construidas teniendo en cuenta su simplicidad en cuanto a instalaciones, equipo y costos de inversión.

- Representa una higiene en el traslado de los residuos sólidos
- Representa una fácil carga y descarga de los residuos sólidos

16.1.2. Desventajas


- En las estaciones de descarga directa no es posible almacenar la basura por lo cual se requiere que todo el tiempo haya un vehículo o camión de transferencia disponible para acoger a los camiones recolectores de residuos sólidos. De manera que, si no se gestiona una correcta organización para recibir los residuos, los camiones de recolección tendrían que esperar largas jornadas para que los vehículos de transferencia estén vacíos y reciban los residuos.
- Los rellenos sanitarios deben contar con instalaciones amplias y adecuadas que permitan el ingreso de los vehículos de transferencia que contienen amplias dimensiones.

16.2. Estaciones de descarga indirecta

"Las estaciones de descarga directa tienen como característica principal que los camiones recolectores desembocan los desechos en una fosa de acaparamiento o plataforma, para posteriormente ser empujados por tractores o recogidos por excavadoras y ser cargados en los camiones de transferencia" (Núñez & Castillo, 2013).

Al igual que con las estaciones de descarga directa los camiones o vehículos recolectores deben ser registrados y pesados por medio de básculas computarizadas. Después los camiones deben dirigirse a una plataforma donde deben verter todos los residuos sólidos a una fosa, y

posteriormente, deberán regresar a las básculas computarizadas donde son pesados nuevamente con el fin de hacer un promedio con el peso inicial y obtener la cantidad de desechos sólidos que fueron transferidos. Por último, por medio de equipos capacitados como grúas pórtico o tractores se remueven los residuos sólidos de la fosa a cajones de transferencia, que después son trasladadas por un montacargas hacia los vehículos de transferencia que transportaran los residuos al lugar de disposición final.

Ilustración 16 Transbordo de residuos sólidos en estaciones de descarga indirecta **Fuente:** tomado de; (*Gestión de Residuos Sólidos*, 2007)

Ventajas

 En las estaciones de descarga indirecta los camiones de recolección no tendrán que aguardar por la disposición de vehículos de transferencia como en las instalaciones de transferencia directa.

Desventajas

- En este tipo de estaciones se presenta almacenamiento de residuos es temporal con tiempo máximo 24 horas, con el fin de evitar daños ambientales.
- Los rellenos sanitarios deben contar con instalaciones amplias y adecuadas que permitan el ingreso de los vehículos de transferencia que contienen amplias dimensiones.

16.3. Estaciones de descarga combinada (directa e indirecta)

"Dichas estaciones presentan las mismas características de las estaciones de descarga directa e indirecta, además de estar equipadas con un método de separación de los desechos sólidos aprovechables" (Núñez & Castillo, 2013).

En este tipo de estaciones también se realiza el registro y pesado correspondiente para cada uno de los camiones recolectores que ingresan. Posteriormente, estos se dirigen a las zonas de descarga de la fosa donde se deben verter y almacenar los residuos sólidos con plazo máximo de 24 horas. Después, los tractores o excavadoras se encargan de impulsar los residuos sólidos que han sido acumulados hacia una banda transportadora que realiza la respectiva separación entre residuos sólidos que son tanto aprovechables como no aprovechables.

Durante el trayecto de la banda transportadora se encuentra un equipo de trabajadores que se encarga de seleccionar y separar manualmente los residuos más grandes. En seguida, los residuos que continúan en la banda ingresan a un tambor rotativo donde finalmente se separan los residuos orgánicos y los residuos tanto reutilizables como no aprovechables. En el caso de los residuos orgánicos seleccionados, estos se envían a una zona de compostaje, en cuanto a los residuos aprovechables, estos saldrán por otra banda transportadora donde otro equipo de trabajadores se encarga de seleccionar y categorizar cada residuo según su tipo de material aprovechable, ya sea papel, cartón, vidrio o plástico. Finalmente, por lo que concierne a los residuos sólidos considerados no aprovechables, estos se almacenan temporalmente para después ser enviados en los vehículos o camiones de transferencias hasta los lugares de disposición final.

17. Tipos de Procesamiento de Residuos Sólidos en las Estaciones de Transferencia

El procesamiento en las estaciones de transferencia depende de las características que posean los residuos, no obstante, en estas instalaciones algunas deciden si procesar o no y qué tipo de procesamiento realizar.

17.1. Sin Procesamiento

En algunas estaciones deciden no realizarle algún tipo de procesamiento a los residuos a excepción de la compactación. Las instalaciones que no hacen compactación son muy demandadas por las empresas en relación a la simplicidad, bajo precio de su elaboración y vehículos de transferencia e intervención. "En gran parte de las ciudades en Latinoamérica se puede observar este tipo de procesos, después de que los desechos son compactados estos no reciben algún otro tipo de procesamiento. Además, en el caso de estas estaciones que no realizan

procesamiento a menudo se usan vehículos de transferencia sencillos como los son el de tipo volquete (Hernández, 2009)

Por lo tanto, las estaciones de transferencia que no procesan los residuos sólidos son las que mayor demanda han generado en los países y ciudades que le han apostado a esta estrategia, pues la simplicidad de equipos que requiere hace que su financiamiento no sea costoso para las empresas recolectoras.

17.2. Con Procesamiento

Existen dos objetivos principales para procesar los desechos en las estaciones de transferencia, el número uno se basa principalmente en disminuir la densidad de los mismos, y de esta manera usar con más vehemencia la posibilidad de traslado de los vehículos de transferencia. El segundo se basa el aprovechamiento de la acción de transporte para poder realizar la elección y clasificación de los desechos y así poder reutilizar los materiales que lo permiten. "Entre los métodos de procesamiento más utilizados se puede encontrar el proceso de compactado, el de triturado y el proceso selección de los materiales (Hernández, 2009).

Entre los procedimientos de procesamiento de residuos más comunes podemos encontrar la trituración, compactación, enfardamiento y selección de materiales.

17.2.1. Trituración

El objetivo de la trituración es minimizar el volumen de los residuos y de esta manera favorecer su transporte. Este procedimiento se realiza con la ayuda de molinos adecuados para residuos, los cuales pueden ser de diferentes modelos y con diferentes capacidades de acuerdo a las necesidades de cada estación de transferencia. La ventaja de este procedimiento, además de la

minimizar del volumen de los residuos es que cuando estos son triturados sus características ya no son tan agresivas o peligrosas y permite que el proceso de disposición final sea más sencillo, sin embargo, el valor del proceso de trituración es elevado en correspondencia con el valor que puede demandar el mantenimiento de los molinos.

Ilustración 17 Proceso de Trituración de Residuos **Fuente:** tomado de; (Red, 2014)

17.2.2. Compactación

Este procedimiento se realiza con la ayuda de compactadores especiales o equipos montados en los vehículos de transferencia. Sin duda alguna, compactar los residuos permite un mayor beneficio del aforo de carga de los vehículos de transferencia y se logra una operación más higiénica al momento de cargar los camiones o vehículos de transferencia y durante el desplazamiento hasta la disposición final. Además, descargar en los residuos ya compactados en los rellenos sanitarios es mucho más rápido y sencillo. No obstante, al igual que la trituración,

tener unas instalaciones que procesen los residuos con compactación implica elevados valores para operar, además que exige el trabajo de técnicos capacitados en tanto en su operación como en su mantenimiento.

Ilustración 18 Proceso de Compactación **Fuente:** tomado de; (Pereyra, 2022)

17.2.3. Enfardamiento

El enfardamiento es otro procedimiento de compactación, sin embargo, esta consiste en compactar los residuos en bloques pues estos hacen más sencilla la descarga en rellenos sanitarios ya que no ocupa grandes volúmenes y no requiere de mucho equipo. Sin embargo, un punto desfavorable del enfardamiento es el elevado valor de inversión de operación que representa, por lo que generalmente la mayoría de empresas recolectoras no optan por este tipo de procesamiento.

Ilustración 19 Proceso de Enfardamiento

Fuente: tomado de; ("Proyecto Piloto de Planta de Enfardado de Residuos Sólidos Empieza a Andar," 2016)

17.2.4. Selección de Materiales

Este tipo de procesamiento es el más amigable con el medio ambiente, ya que consiste en la selección y distinción de los desechos que pueden ser aprovechados o no, ya que con la separación de residuos es posible disminuir la cantidad de residuos que serán transportados hasta la disposición final. Además, le puede permitir adquirir ganancias gracias a la venta de residuos aprovechables como vidrio, papel, plástico, etc. No obstante, la limitante de este procedimiento es necesario que en las ciudades donde se lleve a cabo haya mercado para los residuos aprovechables seleccionados, además, requiere de amplias instalaciones y equipos de trabajo que se encarguen de seleccionar, clasificar y almacenar los residuos.

18. Tipos de Vehículos de Transferencia

18.1. Equipos Rodoviarios

Este tipo de vehículos son camiones que tienen carrocerías de gran capacidad que también se clasifican en dos tipos:

18.1.1. Camiones con Carrocería Abierta

Este tipo de camiones recibe los residuos en la parte superior y estos se descargan haciendo uso de diferentes métodos, entre estos podemos encontrar el volquete por equipo hidráulico.

18.1.2. Camiones con Carrocería Cerrada

Este tipo de vehículos de transferencia en general son usados en estaciones que usan equipos de compactación permitiendo situar los residuos por la parte trasera del vehículo. Estos vehículos a menudo pueden tener una cabida tope de cincuenta m3, llevando casi treinta toneladas de residuos sólidos compactados.

En general, para hacer la descarga de los residuos se usa una placa de expulsión que es empujada por un tubo hidráulico muy diminuto, el funcionamiento de este se puede dar gracias a el motor del camión tractor o algún motor adjunto.

18.1.3. Camiones de tipo "roll-on, roll-off"

Estos tipos de camiones llevan contenedores que son tirados por camiones que tienen carcasas tumbadas y un garfio que tiene como función cargar el container. Sin embargo, estos camiones son pocos usados ya que su capacidad no es grande.

18.2. Equipos Acuáticos

A menudo estos son barcos que se encargan de recibir los desechos de los vehículos recolectores y estos se encargan de trasportarlos hasta los sitios de disposición final, los cuales pueden ser rellenos sanitarios o plantas de tratamientos. Además, algunos remolcadores impulsan estos barcos en razón a su peso pues poseen una capacidad de hasta 1,500 m3 (Hernández, 2009).

18.3. Equipos Ferroviarios

Este modelo de transporte se usa en ciudades donde existen ferrocarriles en funcionamiento y optimizados para trayectos de transporte extensos, una de sus principales ventajas es que este medio de transporte suele ser mucho más económico que los equipos rodoviarios. Además, su capacidad es extenuante ya que los vagones tienen un diseño especial, así como los dispositivos especiales para descargar los residuos.

19. Disposición Final

Se puede definir como la acción del servicio de aseo público, que consiste en la colocación de los desechos sólidos a través de rellenos sanitarios (Decreto Número 1784, 2017). Entre los métodos más comunes de disposición final podemos encontrar la producción de compostaje, incineración y los rellenos sanitarios.

19.1. Producción de Compostaje

Una de los métodos realizados para el aprovechamiento de los desechos biodegradables se encuentra el del compostaje, que es un método en el que a través de acciones que controlan tanto la temperatura como la humedad y aireación, termina convirtiendo los desechos orgánicos que se degradan en un producto estable, de esta manera, se puede producir un material un material apropiado y poco dañino con el medio ambiente (Rodríguez et al., 2010).

19.2. Incineración

Incinerar los residuos es hasta ahora de los métodos de disposición final más antiguo y el más usado en el mundo, ya que en la mayoría de las zonas no hay suficiente espacio, sin embargo, este no deja de ser el método que más contamina el ecosistema y agrava el cambio climático. La principal finalidad de este método de disposición final es minimizar la densidad y peso de los residuos.

19.2.1. Tipos de Incineración e Incineradores

La quema de residuos sólidos se puede realizar en un lugar apartado o en un espacio del sitio o terreno y allí, el fuego es avivado con el apoyo de combustibles. Mediante el proceso de quema es necesario remover la materia y en caso de ser requerido, proveer fuentes de aire adicional. Pese a que este método de disposición final reduce el volumen de los residuos, controlar el proceso de combustión es complejo, y en lugar de reducir las emisiones de productos que polucionen en la atmósfera las multiplica. "Este procedimiento es utilizado fundamentalmente en los rellenos sanitarias a cielo abierto los cuales represe tan un nivel de peligrosidad alto, en especial para los trabajadores que generalmente se encuentra en estos lugares (Gonzáles & Ventura, 2010).

20. Rellenos Sanitario

Hernández (2009) define los rellenos sanitarios como los sitios donde se desarrollan actividades con el objeto de erradicar los residuos sólidos en huecos profundos realizados en el suelo, además, estos poco generan inconformidades o representan un riesgo a la salud, seguridad de las comunidades o el ecosistema. De manera que este sistema usa bases de la ingeniería para contener los residuos en una zona lo más estrecha posible, donde son cubiertos por capas de tierra y son compactados hasta reducir considerablemente su volumen.

Los rellenos sanitarios es el sistema de colocación final más usado en el mundo, el costo de construcción de uno es elevado, sin embargo, si se consideran las afectaciones de la salud, seguridad pública y al ecosistema este tendría menos repercusiones a diferencia de los tiraderos a cielo abierto.

20.1. Tipos de Rellenos Sanitarios

a) Relleno Sanitario Tipo Área: Este tipo de relleno sanitario lo emplean empresas que predisponen de espacios con terreno hondo ya sean naturales o realizadas por ellos mismos u otras empresas anteriormente, como el caso de las que realizan pozos para la extracción de algunos materiales (Vazquéz, 1994).

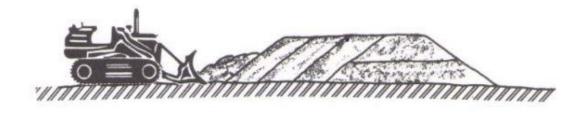


Ilustración 20 Relleno sanitario tipo área

Fuente: tomado de; (Vazquéz, 1994)

b) Relleno Sanitario Tipo Zanja o Trinchera: Es considerado uno de los rellenos sanitarios más prácticos e idóneos, principalmente porque su modo de operación es simple y si no se cuenta con material para cubrir los desechos esto no causa inconvenientes siempre y cuando el sitio para este método de disposición final se elija de manera conveniente (Vazquéz, 1994).

Ilustración 21 Relleno sanitario tipo zanja **Fuente:** tomado de: (Vazquéz, 1994)

c) Relleno Sanitario Tipo Combinado o Rampa: La operación de los rellenos sanitarios de tipo combinado se realiza de manera parecida a la de los rellenos de área y zanja, sin embargo, en este caso los desechos que se descargan deben ser esparcidos en una rampa, se compactan y cubren todos los días capas de diversos materiales. Dicha rampa debe tener una pendiente de aproximadamente unos 30°. Después de que se termine esta acción y se alcance el límite del nivel, los desechos deben ser cubiertos con una base de suelo, o algún material parecido (Vazquéz, 1994).

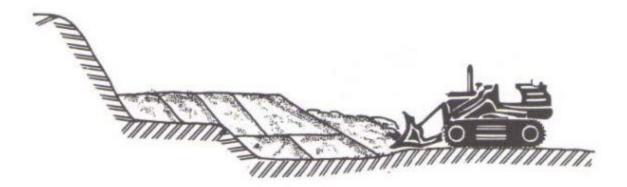


Ilustración 22 Relleno sanitario tipo combinado

Fuente: tomado de; (Vazquéz, 1994)

20.2. Principios a tener en Cuenta en la Operación Rellenos Sanitarios

- Los rellenos sanitarios den ser frecuentemente supervisados, sobre todo cuando se están descargando los residuos y mientras están siendo recubiertos.
- 2) Los residuos deben ser compactados en revestimientos de aproximadamente 15 o 30 centímetros.
- 3) La profundidad del hueco no debe ser mayor de 2.50 metros.
- 4) Los residuos que se reciban cada día deben ser cubiertos con un revestimiento provisional de tierra o elementos parecidos de aproximadamente 0.60 metros de espesor.
- 5) Cada relleno sanitario debe tener en cuenta las acciones idóneas para eludir el esparcimiento de los residuos fuera del área de relleno.

CAPITULO 3. CAMBIO CLIMÁTICO

21. El cambio climático

La Convención Marco sobre el Cambio Climático (Unidas, 1992) en el primer artículo establece que el cambio climático hace referencia a un cambio abrupto del clima que se atribuye

de manera directa o indirecta a las acciones del ser humano que se encargan de perturbar la composición de la atmósfera en el mundo, lo cual, en efecto puede ser corroborado gracias a las variaciones que se han observado durante los últimos años. Por otra parte, Miller (2007) sostiene que el cambio en el clima de carácter global hace referencia a las variaciones en cualquier vertiente que se relacione con el clima del mundo, principalmente en cuanto a la temperatura, precipitación, potencia y direcciones de las tempestades (como se citó en Díaz Cordero, 2012).

Dicho esto es notable ver como el cambio climático hace parte de los principales inconvenientes con los que cuenta hoy en día la tierra y de dicha forma los seres vivos, es inminente ver como los polos se derriten debido a las variaciones del clima y el calentamiento global; muchas de las razones por la cual se genera este cambio, se debe a la proporción de desechos sólidos que día a día se generan, afectando al todo el planeta entero; la humanidad es el mayor y único culpable del cambio climático, ya que directa o indirectamente es partidario de la contaminación tan excesiva que se vive.

Así mismo la mayoría de personas somos conscientes de esta contaminación, no es mucho el cambio que como personas estamos realizando para reducir ese impacto ambiental, si muy bien lo saben, el hecho de que ya sea por dinero, por poder y la industrialización, no quieren dejar de lado las practicas que hemos tenido a través de los años que siguen contaminando; dicho esto muy pocas personas y empresas han optado por nuevas tecnologías que ayuden a mitigar el cambio climático. Se sabe que las nuevas tecnologías y el uso de energías renovables no son nada económicas y es una de las cuantas razones por la cual no se ha abarcado el uso total de estas.

Ilustración 23 causas del cambio climático

Fuente: tomada de;(Acción ecológica, 2020)

22. Impacto ambiental asociado a los residuos sólidos

Los inconvenientes referentes a la gestión inadecuada de los desechos sólidos alteran tanto la salud humana como el ambiente, el suelo y las fuentes hídricas tanto superficiales como subterráneas. Además, una deficiente administración y gestión está provocando una deterioración visual en los cascos urbanos en las ciudades y los paisajes naturales rurales. Además, esta situación se complica cuando se comprueba y evidencia que en un gran porcentaje de las ciudades y municipios la disposición final de los desechos, sobre todo en el caso de los peligrosos se realizan de manera indiscriminada (Acurio et al., 1997).

De manera que una mala administración de los residuos podría afectar directamente a:

a) Recursos hídricos superficiales: Cuando se maneja inadecuadamente los residuos sólidos estos pueden contaminar las aguas superficiales que en su gran mayoría son fuentes de suministro de agua potable para las comunidades. Primeramente, porque la materia orgánica de los desechos sólidos tiene la cabida de reducir el oxígeno y generar eutrofización pues aumentan los nutrientes de nitrógeno y fosforo que suscitan la producción de algas. Por otra parte, un gran porcentaje de las poblaciones no realiza la selección y separación de los residuos sólidos así que estos fácilmente podrían estar mezclados entres aprovechables y no aprovechables, así como con residuos peligrosos industriales, que tienen la capacidad de contaminar químicamente en las fuentes hídricas y generar la pérdida de este importante recurso natural para el ser humano, destruyendo la fauna acuática y deteriorando sus paisajes.

Recuperar y preservar este recurso requiere de grandes inversiones, sin embargo, muchos países o ciudades hacen caso omiso a esta problemática y continúan contaminando los afluentes. Por ejemplo (Acurio et al., 1997) ilustran que, en el caso de Colombia, el tres por ciento de los residuos sólidos de Cali y de un gran porcentaje de los municipios del Cauca se vierten al río de este lugar; y el río "Tunjuelito" de la ciudad de Bogotá es contaminado por los lixiviados sin tratamiento que son provenientes del relleno sanitario conocido como "Doña Juana" que se ubica en la localidad de ciudad Bolívar. Por otro lado, en Uruguay, el 14% de las fuentes hídricas superficiales son empleados para el consumo humano y cumplen con la demanda total de agua potable en Montevideo, pero el 80% internamente en el país, en sus redes hidrográfica se vierten los residuos sólidos lo cual tare consigo consecuencias graves. En general, se puede deducir

- que en todos los países se contaminan las aguas superficiales por vertimiento de desechos sólidos en estas, no es un problema de ayer, pero los gobiernos no se hacen conscientes de la magnitud del problema o las consecuencias a largo plazo que esto podría acarrear.
- b) Recursos hídricos subterráneos: Por ejemplo, los acuíferos podrían verse afectados por realizar inadecuadamente la colocación final de los desechos sólidos, pues sustancias químicas como por ejemplo nitritos en recurso hídricos subterráneos que están destinados para el consumo humano es altamente nocivo para la salud. Por ejemplo, en Bogotá, los lixiviados generados por los residuos sólidos de los vertederos del Cortijo y Gibraltar perjudicaron inminentemente las fuentes hídricas subterráneas con sustancia como plomo, cromo y mercurio.
- c) Costas marinas: Las playas y el mar también se han visto directamente afectadas por la colocación final de los desechos sólidos en las riberas de las costas, deteriorando el paisaje natural y la fauna marina.
- d) Aire: Cuando las áreas de colocación final de desechos sólidos se encuentran a la intemperie sin ningún control o adecuación de los equipos e instalaciones que minimicen las afectaciones ambientales y sanitarias es indudable que se provoca una contaminación atmosférica a causa de la generación de gases, malos olores, lixiviados y partículas en suspensión que se generan por la quema provocada a los residuos en algunos rellenos sanitarios.

En particular, la gran cantidad de países latinoamericanos tienen problemas de contaminación atmosférica a causa de los factores anteriormente mencionados pues la quema de residuos en rellenos sanitarios no tiene control y las quemas sin técnicas de control para evitar la contaminación representan un peligro o alto daño a causa de la

existencia de plásticos, compuestos de hidrocarburo clorados y otras sustancias químicas nocivas. Además, en muchos de estos países no se manejan adecuadamente los contenedores, no se almacenan correctamente los residuos sólidos, no se reciclan, recolectan o transportan eficientemente, lo cual se asocia aire a malos olores en la atmosfera.

e) Impacto sobre los paisajes: La gestión inadecuada y una incorrecta colocación final de los desechos sólidos puede alterar notablemente los paisajes. Sin embargo, según Acurio et al. (1997) se debe especificar que, si un relleno sanitario de construye de manera adecuada, en cuanto se inaugure el impacto tanto visual como ambiental será positivo, esto principalmente a causa de la recuperación y aprovechamiento de terrenos y, así como el perfeccionamiento de los paisajes.

Las urbanizaciones se van desarrollando progresivamente y esto genera un continuo deterioro del paisaje, y las comunicades a menudo no son conscientes y desechan los residuos en cualquier zona y esta inconsciente administración no solamente pone en riesgo la salud y el medio ambiente, sino que además reduce el nivel de la vida en relación a el área ocupada.

Pero esta afectación a los paisajes no sólo pude serle responsabilizada a la población, puesto que algunas industrias que se ocupan del desarrollo de la recogida de los residuos no planifican adecuadamente la localización de las zonas para los rellenos sanitarios, puesto que deben decidir entre disminuir los costos de transporte y localizarse en un área cerca de las ciudades o invertir un poco más financieramente y hallar el sitio adecuado para crear una estación de transferencia que a largo plazo beneficie tanto a los habitantes como las empresas recolectoras de residuos, y sobre todo el medio ambiente.

Por ende, es posible deducir que hace parte de una conciencia colectiva, y disponer de los residuos tanto en calles, parques, áreas verdes, ríos u otros espacios públicos, limitaría y agravaría la economía en cuanto a la atracción turística.

f) Impacto sobre el suelo: La contaminación de los desechos sólidos también tanto causa la pérdida de tierras productivas. Si se gestionan inapropiadamente los residuos y se vierten en terrenos inadecuados se puede derivar erosiones.

Teniendo en cuenta las anteriores afectaciones cada vez más se analizan y evalúan diferentes mecanismos que amparen el cuidado del medio ambiente, y medidas que reduzcan la contaminación generada, tal cual como las estaciones de transferencia que puede permitir que en estas instalaciones se haga una selección meticulosa de los residuos sólidos según su clasificación, reduciendo sus afectaciones tanto para el ecosistema como para el cambio climático. De modo que es fundamental hacer un estudio del manejo ambiental en cuanto al manejo de los desechos sólidos de la siguiente manera:

a) Institucionalización: Es fundamental que cada cree políticas que reglamenten, modelen y susciten acciones relacionadas al ambiente, ya que todo lo relacionado a la conducción de los desechos sólidos en cuanto al ambiente no se tiene verdaderamente en cuenta por estos organismos. Sin embargo, la principal limitación es que las poblaciones no participan en el establecimiento e instauración de estas políticas ambientales, por lo tanto, pocos gobiernos efectúan valoraciones de impacto ambiental en los planes de relleno sanitario, y, sobre todo, no existen suficientes proyectos que protejan las áreas costeras.

Dado el caso que se apruebe cualquier política ambiente también es fundamental que se realice el debido seguimiento, vigilancia y control para establecer que se está cumpliendo con las normativas ambientales referentes a la gestión idónea de los desechos

sólidos. Sin embargo, según Acurio et al. (1997) se puede evidenciar que las acciones de los entes encargados del control e inspección son defectuosos en relación con los limitados y que además, no siempre se sancionan debidamente las infracciones que se constatan ya que se ha distinguido una inconsistencia en los entes competentes, ya que no son capaces de definir una acción idónea sobre las maliciosas prácticas para colocación final, tratamiento, recolección, almacenamiento y gestión tanto por deficiencias de las normas como por los inconvenientes de carácter financiero.

b) Reducción de la generación: No se puede considerar suficiente con la "concientización" de las poblaciones para reducir la generación de residuos, pues esta responsabilidad también recae en las gobernaciones quienes deben minimizarlo también a través de sus políticas, aunque muy pocas veces estas den resultados. Haciendo una comparación entre países latinoamericanos y desarrollados, estos primeros generan cantidades menores de residuos sólidos a causa del bajo ingreso per cápita y, por ende, el menor consumismo.

Si bien algunos países con alto desarrollo industrial han promovido políticas para minimizar las afectaciones causadas por los residuos a través de procesos productivos más limpios, los resultados aún son deficientes, aunque cada vez son más respaldados por grupos ambientalistas y medios de comunicación. Entre los países que han adoptado políticas y planes de adopción de procedimientos que no sean tan contaminantes de producción industrial, se puede encontrar a Brasil. En un gran porcentaje de los países no ha sido posible identificar que existan programas que motiven a la minimización de la producción de desechos o que desarrollen técnicas tecnológicas higiénicas de producción, tampoco se han observado planes para rehabilitar lugares ya polucionados (Acurio et al., 1997).

c) Recuperación y reciclaje: Para lograr un proceso sostenible, aparte de disminuir la magnitud de residuos sólidos que se generan diariamente, se precisa acrecentar y promover las otras dos "r" reusar y reciclar. Para lograr esto, en algunos países, la asistencia tanto técnica como monetaria, de la ONG y de los propios municipios ha sido eficiente.

Uno de las estrategias que se les atribuye a algunos países y que han representado logros ha sido la ejecución de estaciones de transferencia de desechos sólidos que aparte de reducir costos para las empresas, permite clasificar y reciclar los desechos sólidos. Puesto que a diferencia de algunas empresas que desechan los residuos directamente en rellenos sanitarios, en las estaciones de transferencia, los equipos pueden trabajar en la clasificación de los residuos según su tipo antes de que los vehículos de transferencia lleven los residuos a su disposición final, beneficiándose de quienes son aprovechables, impulsando a su vez la industrias recicladoras, la comercialización de desechos sólidos reutilizables y la sensibilidad y colaboración de las comunidades para la selección y clasificación de los residuos en las residencias.

23. Los residuos sólidos y su implicación en el cambio climático

A nivel global, la mala gestión que se le brinda a los residuos sólidos subvenciona a la producción de GEI y como problema más agravante hacia el cambio climático, en especial por la producción de gases como el metano, dióxido de carbono y en menor cantidad óxido nitroso que se relacionan a la disgregación de los desechos sólidos en los vertederos sanitarios o sitios de disposición final, así como la incineración a cielo abierto de manera controlada (Díaz, 2020).

De tal forma que un principal motivo para la emisión de GEI son los desechos sólidos desarrollados por el ser humano, y más allá de consecuencias medioambientales, también

representa consecuencias para la salud de las poblaciones con la propagación de enfermedades y para la biodiversidad, pues tanto animales como vegetales se encuentran influenciados por la estabilidad del sistema climático, de manera que la mala gestión de los desechos sólidos pone en peligro la viabilidad e igualdad del medio ambiente y la naturaleza.

En consecuencia, es posible determinar que el problema que puede originar una inadecuada gestión y manipulación de los desechos sólidos es de carácter global. Sobre todo, porque la generación de residuos sólidos aumenta considerablemente y no se están ejecutando los protocolos requeridos para evitar o disminuir su producción o se están llevando a cabo procesos de gestión importantes como lo son el reducir, reciclar y reutilizar.

Por lo tanto, es primordial incentivar un cambio en relación a la administración que se le da a los residuos sólidos no sólo en función de consolidar una adecuada disposición final, si no también procesos en los que dichos residuos logren ser reintegrados como materia prima, y de esta manera mitigar la magnitud de residuos sólidos. Dicha mitigación es viable gracias a estrategias mejoradas como la de estaciones de disposición final y el reciclaje y otros procesos que estas instalaciones permiten realizar y reducen significativamente la producción de gases de efecto invernadero debido a los desechos sólidos.

Las acciones que se orientan en la gestión de los residuos van a partir de su producción hasta su disposición final. Al hablar del manejo de residuos, la disposición final es una etapa primordial que hace referencia a los equipos, medios o instalaciones que son usados para realizar el transporte de los desechos sólidos desde un punto a otro. Esta acción o etapa también es fundamental para los sistemas modernos de gestión, en especial porque en grandes poblaciones

las estaciones de transferencia se ejecutan como un término medio entre el tratamiento y la recolección de estos.

Las afectaciones que generan los residuos sólidos al medio ambiente no son de nivel, regional o nacional, estas afectan a todo el mundo, así que le compete a la sociedad y empresas públicas y privadas reducir la generación de residuos y gestionar la administración de estos. El principal reto para cada país fue hallar estrategias que pudieran aprovechar los recursos disponibles, aunque estos fueran limitados o por lo menos, hallar una estrategia que no demandara altos costos. De manera que fue necesario diseñar proyectos ambientales que estuvieran orientados a usa recursos ya disponibles, pero es que estos fueran mejorados para optimizar la gestión de los residuos y, por ende, optimizar el cuidado del medio ambiente. Por esta razón, se diseñó la idea de estaciones de transferencia de desechos sólidos que se encargó de aumentar la eficacia global de los servicios de gestión de los desechos sólidos, por medio de la economía que se consigue con la reducción de los valores y el periodo de transporte, mientras a su vez se reducían los impactos ambientales. Así que después de realizar una evaluación acerca de su financiación y una reflexión acerca de su impacto ambiental se pudo garantizar el éxito del mismos.

Una amplia expansión urbano se ha registrado desde décadas pasadas lo cual hace cada vez más difícil para las empresas que son las encargadas de gestionar la recolección, gestión y traslado de desechos sólidos poder localizar zonas idóneas para la disposición final, tanto por la hostilidad de los habitantes de las poblaciones como por el valor de las propiedades. De manera que, por evitar posibles complicaciones con los habitantes, los vehículos recolectores de residuos cada vez deben recorrer largas distancias hasta rellenos sanitarios, por lo tanto, esto según obligó también a muchas empresas en diferente países o comunidades considerar uso y gestión de

estaciones de transferencia que les permitiera el transporte de residuos en unidades de cuarenta a sesenta m3 con valores unitarios más reducidos. Se sabe de la existencia de estaciones de transferencia en algunas regiones de Brasil, Ecuador, Chile, Argentina, Perú, México, Colombia y Venezuela, como por ejemplo Monterrey, Río de Janeiro, Caracas, Buenos Aires y Guadalajara donde más de 50% de los residuos sólidos que son recolectados pasan por estaciones. Como en todos los países nombrados anteriormente sus ciudades cuentan con un gran porcentaje de población, esto generó la demanda y gestión inmediata de estaciones de transferencia de residuos sólidos.

24. CAPITULO 4. ESTACIONES DE TRANSFERENCIA PARA EL MITIGADO DEL CAMBIO CLIMÁTICO MEDIANTE EL RECICLAJE DE RESIDUOS SÓLIDOS

En Colombia y el resto del mundo, se han realizado pocas investigaciones o artículos que exploren los beneficios que tienen las estaciones de transferencia sobre la mitigación del cambio climático gracias al reciclaje de residuos sólidos. Como bien se sabe, las estaciones de transferencia son las instalaciones donde se ejecuta la descarga de desechos sólidos de los camiones recolectores hacia los vehículos de carga de gran tonelaje también llamado vehículos de transferencia, todo con el fin de transportarlos para su aprovechamiento o para su disposición final. Sin embargo, hay una acción o etapa importante a destacar gracias a estas estaciones de transferencia, sobre todo cuando estas son de tipo indirecto, ya que, al no ser llevados los residuos sólidos directamente a los rellenos sanitarios, estos pueden ser seleccionados y clasificados, pudiendo reciclar y reutilizar residuos no renovables y enviar finalmente a disposición final los residuos no aprovechables.

Esto sin lugar a dudas ayuda a reducir la transmisión de gases efecto invernadero, ya que durante la descomposición de los desechos sólidos se producen olores negativos y gases tóxico tales como el metano y dióxido de carbono, de manera que una maligna gestión de los desechos sólidos y su sobre generación puede contribuir a cambios agravantes en el cambio climático, además, los extensos recorridos y cifra de viajes que realizan los vehículos o camiones recolectores ya no tendrían que ser llevados a cabo con mayor frecuencia, y esto de la misma manera representaría una ventaja para el medio ambiente porque los camiones usan carburantes o combustibles a partir del petróleo que son uno de las esenciales fuentes de daño al aire ya que generan óxidos de nitrógeno, monóxido de carbono, dióxido de azufre y gases de efecto invernadero que contienen calor en la atmósfera y por tanto aportan al calentamiento global.

En Colombia, a partir del año 2005 y 2009 comenzaron a operar estaciones de transferencia en Antioquia y Valle del Cauca llegando a ser las dos únicas estaciones de transferencia en el país, de acuerdo con lo establecido en las regulaciones que establece el gobierno.

Adicionalmente, posteriormente en Bogotá se implementó esta estrategia, aunque una de estas fue clausurada y pese a que han funcionado con normalidad aún se debate acerca de la viabilidad de estos proyectos en diferentes zonas del país (Perdomo & Ramírez, 2011).

De manera que, durante el año 2010 la generación diaria de los desechos sólidos en Colombia fue de más o menos 20 mil toneladas al día las cuales equivalen a 8,06 Mt de dióxido de carbono. Por lo tanto, el porcentaje de emisiones de gases de efecto invernadero causadas por el dióxido de fue de 223,95 Mt; esto quiere decir que el impacto que tuvo llevar los residuos a lugares de colocación final en la generación de gases de efecto invernadero en el país fue cerca del tres por ciento (INERCO, 2018).

De cierto modo, en relación a los resultados positivos, las políticas en la nación para el procesamiento de los desechos sólidos se actualizó por medio del Consejo Nacional de Política Económica y Social CONPES (2016) quien con el objeto de hacer más sencilla la transición desde una economía lineal a una circular por medio de la administración integral de desechos sólidos; con lo cual se aguarda que se optimicen los recursos y de esta manera los materiales o productos perduren durante un largo lapso de tiempo entre ciclo económico y se aproveche idóneamente su materia prima. Esta política nacional principalmente se enfoca en 4 ejes de estrategia que se basan en reusar, aprovechar y tratar los desechos sólidos y prevenir la producción de gases de efecto invernadero, todos estos tienen como principal objetivo evitar o disminuir la sobre producción de residuos; pues las cifras de residuos que se dirigen directamente a sitios de disposición final de diferentes ciudades disminuirían considerablemente.

Por otro lado, en otros países como en México ha sido mayor la acogida de proyectos de estaciones de transferencia de residuos sólidos lo cual podría representar una reducción considerable en la generación de gases de efecto invernadero en relación con Colombia, "en la actualidad existen más de trece estaciones de transferencia de desechos sólidos que se hallan en regiones como Obregón, Azcapotzalco, Iztapalapa, Coyoacán, Madero, Hidalgo, Tlalpan, Cuauhtémoc, Juárez y Xochimilco (Aburto, 2015).

Todas debieron ser diseñadas y ejecutadas teniendo en cuenta los criterios ecológicos establecidos por el gobierno para control el ruido, levantamiento de polvos, etc. Además, todas las instalaciones deben ser cerradas y ajustadas con materiales que aíslen el ruido y con sistemas hidroneumáticos para los procesos de lavado y riego, y en general, equipos que permitan controlar la calidad ambiental. Por lo tanto, es posible deducir lo imprescindible que es fortalecer y hacer eficientes los servicios para la gestión y administración de los desechos sólidos, además,

si la infraestructura es la adecuada, en un lapso de tiempo es posible mejorar y uniformemente el servicio de las estaciones de transferencia, así como lo ha hecho México en todo el Distrito Federal.

Pese a los pocos referentes conceptuales e investigados en base a el aporte de las estaciones de transferencia en la mitigación del cambio climático, sin duda algunas las estaciones de transferencia gracias a por su infraestructura y funcionamiento funcionan como un punto de encuentro para la administración municipal, la ciudadanía, el sector privado y de forma especial la población de recicladores de oficio. Este sistema permite la oportunidad de ser inclusivo, sostenible y sobre todo amigable con el medio ambiente gracias a la capacidad que brinda de recuperar, reutilizar y reincorporar los residuos sólidos como materias primas al ciclo productivo. Además, a muchas empresas más allá de los aspectos positivos para el medio ambiente les interesa beneficiar su economía, y hablando financieramente las zonas de reciclaje son económicamente viables y puede ser representadas como una forma de emprendimiento tanto para la comunidad como para las empresas, brindándole oportunidades de empleo a trabajadores en el sector de reciclaje.

De tal forma que sin importar el país, ciudad o región, las estaciones de transferencia pueden ser percibidas como un remedios costo-eficiente para al manejo, tratamiento, recolección y transporte de desechos sólidos cuando son generados en altas cifras tanto en grandes como pequeñas áreas urbanas, el tramo para transporte entre el sito origen y destino se reduce también considerablemente puesto que reduce el tiempos equivalente de los viajes, prolongando la vida útil de los vehículos de recolección, y reduciendo los contaminantes que afectan la atmósfera tanto por los residuos sólidos como los gases que expulsan los vehículos. La suficiencia de esta estrategia y lo pertinente que es para suplir las necesidades del medio ambiente y comunidades,

hace que valga la pena el tiempo y presupuesto invertido para hacer de estos proyectos una realidad en ciudades que lo demandan. Esta quizás entre muchas, es una de las estrategias globales que más se ajustan a la realidad moderna de un mundo disparejo, extensamente poblado y con una exigencia de salvaguardar el medio ambiente.

Conclusiones

La gran densidad de residuos sólidos que tienen como disposición final los rellenos sanitarios, generan contaminación y estos dependen del aumento poblacional y la evolución de la economía; esto se vio evidenciado como a través de la historia y el desarrollo los residuos aumentan, ya que a través el uso de nuevas tecnologías e industria provocan a la excesiva producción de diferentes elementos que generan residuos desde la recolección de la materia prima como hasta su etapa final.

La contaminación que generan los residuos sólidos, va primordialmente ligada a los gases de efecto invernadero, no obstante, no es la única forma ya que estos también tienden a contaminar a través de lixiviados, pero si se habla de los rellenos sanitarios como sistemas de calidad, es contaminación que se puede evitar, sin embargo, el suelo donde terminan los residuos sin son suelos con alta contaminación.

Se evidencio la importancia de las estaciones de transferencia de reciclaje de desechos sólidos como beneficiosas para el impacto ambiental, dado que estas contribuyen a un mejor manejo y tratado de los residuos y cumple un factor clave que son el traslado de forma óptima y adecuada, que da paso a un tratado más eficiente en cuanto hablamos al reciclaje de los residuos sólidos, siendo este factor importante a la hora de disminuir la contaminación, por ende recircular los residuos para que tengan un nuevo ciclo de vida.

Se determinó que las estaciones de transferencia, aunque no evitan el 100% de la contaminación, debido al uso de vehículos de transporte los cuales son generadores de CO₂, pero si se compara con la contaminación que se generan a falta de estas, el impacto generado por las estaciones de transferencia es mínimo.

Por último se comprobó que la estaciones de transferencia mitigan el cambio climático; en los distintos países a traído más ventajes que desventajas; es cierto que el uso de estaciones pueden generar más costos, ya que el transporte de residuos son de las actividades que más gasto genera, pero al comparar los gastos que se ahorran en un buen manejo y tratado de residuos, en vez de solo depositarlos y contaminar, es evidente que se ve positivo en la parte económica, dado que es más rentable el uso de estaciones de transferencia de desechos sólidos para su debido reciclaje, que solo distribuir dichos residuos en vertederos o en su disposición final.

25. Referencias

- Aburto, M. (2015). Estudio de tiempos y movimientos en estaciones de transferencia de residuos sólidos.
- Acción ecológica. (2020, October 17). *Infografías sobre Cambio Climático*. https://www.accionecologica.org/infografías-sobre-el-cambio-climatico/
- Acurio, G., Rossin, A., Teixeira, P., & Cepeda, F. (1997). Diagnóstico de la situación del manejo de residuos sólidos municipales en América Latina y el Caribe.
- Agapito, S. A. P. (2021). Caracterización de los Residuos Sólidos Domiciliarios para su Aprovechamiento Eficiente en el Centro Poblado Agropensa, Barranca. Universidad Nacional José Faustino Sanchez Carrión.
- Amigos de la tierra. (2017, February 28). ¿Cómo reducir a la mitad nuestros residuos? https://www.tierra.org/reducir-la-mitad-residuos/
- Arandes, J. M., Bilbao, J., & Valerio, D. L. (2004). Reciclado de residuos plásticos los residuos plásticos.
- Banco Interamericano de Desarrollo. (2015). *Caracterización de residuos sólidos en algunas ciudades de Colombia*. https://www.maat.com.co/servicio-ingenieria-ambiental/
- Banco Mundial. (2018). Los desechos 2.0: Un panorama mundial de la gestión de desechos sólidos hasta 2050. https://www.bancomundial.org/es/news/infographic/2018/09/20/what-a-waste-20-a-global-snapshot-of-solid-waste-management-to-2050
- Benavides, L. (2016). Residuos sólidos, un enfoque multidisciplinario Volumen 1. LibrosEnRed.
- Boris Tito. (2021, August 21). *Clasificación de la basura por colores: para niños*. https://ingenieriaambiental.net/clasificacion-de-la-basura-por-colores/

- Cabeza Díaz M. (2020). Riesgo climatico y definicion de estrategias financieras para su mitigacion en el sector agua y saneamiento en ALC. https://publications.iadb.org/es/riesgo-climatico-y-definicion-de-estrategias-financieras-para-su-mitigacion-en-el-sector-agua-y Castro, S. (2017). Gestión Integral de Residuos Sólidos.
- Caviedes, G. (2011). Estación de transferencias, fórmula de disminución de gastos para el municipio de Cajicá. Universidad Militar Nueva Granada.
- Consecuencias de la Revolución Industrial. (2012).

 http://revoluin.blogspot.com/2012/11/consecuencias-de-la-revolucion.html
- Díaz Cordero, G. (2012). El cambio climático. Ciencia y Sociedad, XXXVII(2), 227–240.
- Díaz, M. (2020). Riesgo climatico y definicion de estrategias financieras para su mitigacion en el sector agua y saneamiento en ALC.
- E-Consulting proyectos ambientales y servicios generales. (2020). *Recolección Y Transporte De Residuos Sólidos*. https://e-consultingeo-rs.com/recoleccion-y-transporte-de-residuos-solidos/
- Fermar, L. (n.d.). *Historia de la Ingenieria*. https://www.timetoast.com/timelines/historia-de-la-ingenieria-a19c10b8-7cd8-46b6-b1ec-8edbf0499776
- Gestión de Residuos Sólidos. (2007). Instituto Nacional de Ecología y Cambio Climático. http://www2.inecc.gob.mx/publicaciones2/libros/105/I.html
- Gonzáles, M., & Ventura, D. (2010). Sistema de gestión para el tratamiento de desechos sólidos especiales. Universidad de El Salvador.
- Green Drinks. (2017, June 17). *Residuos Inorgánicos*. http://greendrinkscba.org/residuos-inorganicos/

- Guerrero, L., & Murillo, W. (2012). Factores que inciden en el comportamiento de los estudiantes como generadores de residuos sólidos: caso Universidad de Cartagena sede piedra de bolívar. Universidad de Cartagena.
- Hernández, A. R. (2009). *Gestión Integral de los Residuos Sólidos Urbanos*. Escuela Superior de Ingenieria y Arquitectura Unidad Zacatenco.
- INERCO. (2018). Valoración energética de residuos: proyecto WTE colombia.
- John, A., Mora, M., Rodrigo, I., & Salgado, R. (2007). Diseño preliminar de una dependencia de aprovechamiento de residuos sólidos orgánicos del relleno sanitario de Cartagena, para la generación de energía eléctrica producida por la combustión de biogás, y la obtención de compost por descomposición de materia orgánica.
- Decreto 1713 De 2002, 44893 41 (2002).

 https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=5542%0Ahttp://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=5542b
- Núñez, J., & Castillo, J. (2013). Modelación del ciclo de operaciones en estaciones de transferencia multipropósito de residuos sólidos urbanos basada en cross docking. Universidad del Valle.
- Paz M. (2016). Reciclado de PET a partir de botellas post consumo.

 https://rdu.unc.edu.ar/bitstream/handle/11086/5567/PAZ%2C%20MARIA%20%20PI%20Reciclado%20de%20PET%20a%20partir%20de%20botellas%20post%20consu
 mo.pdf?sequence=1&isAllowed=y
- Perdomo, J., & Ramírez, J. (2011). Análisis económico sobre el tamaño óptimo del mercado y ubicación de estaciones de transferencia para el manejo de residuos sólidos en Colombia.

- Pereyra, O. (2022). Cochabamba: Se inicia compactación de residuos sólidos en el botadero de K'ara K'ara.
- Phillips, A. (2021, February 24). La historia de la humanidad contada a través de la basura. *La Vanguardia*.
- Proyecto piloto de planta de enfardado de residuos sólidos empieza a andar. (2016, February 11).

 La Vanguardia.
- Raee Andalucía. (2018, March 3). ¿conoces cuál es la jerarquía de los residuos?

 https://www.raeeandalucia.es/actualidad/raeepedia-conoces-cual-es-jerarquia-residuos
- Recytrans. (2014, May 13). *Tratamiento de residuos*. https://www.recytrans.com/blog/tratamiento-de-residuos/
- Red, V. en. (2014, February 3). Opera una segunda trituradora de llantas en el relleno sanitario.
- Rodríguez, M., Venegas, J., Angoa, M., & Montañez, J. (2010). Extracción secuencial y caracterización fisicoquímica de ácidos húmicos en diferentes compost y el efecto sobre trigo.
- Rolando, L. E., & Carranza, L. (2015). "Manejo adecuado de los residuos sólidos inorgánicos, como medida de protección y mejoramiento del Medio Ambiente."
- Rosas Baños, M., & Gámez Anaya, A. L. (2019). Prevención de la generación de residuos en el marco de una economía ecológica y solidaria: un análisis del manejo de residuos en los municipios de México. *Sociedad y Ambiente*, *21*, 7–31. https://doi.org/10.31840/sya.v0i21.2036
- Sáez, A., & Urdaneta, J. A. (2014). Manejo de residuos sólidos en América Latina y el Caribe.

 Omnia Año, 20(3), 1315–8856.

Samaniego, J. L., Galindo, L. M., Mostacelo, S. J., Ferrer, J., Alatorre, J. E., & Reyes, O. (2017).

La gestión y manejo de residuos sólidos y sus propuestas regulatorias e impositivas.

https://repositorio.cepal.org/bitstream/handle/11362/45252/1/S1700148_es.pdf

Consejo Nacional de Política Económica y Social CONPES, (2016).

Unidas, N. (1992). Convención marco de las naciones unidas sobre el cambio climático. 62301.

Varón, K., Orejuela, J., & Manyoma, P. (2015). Modelo matemático para la ubicación de estaciones de transferencia de residuos sólidos urbanos.

Vazquéz. (1994). Relleno Sanitario.

Vílchez, H. J., & Rodríguez, A. E. (2007). Determinación de la efectividad del relleno sanitario la Chureca en la estabilización de Desechos Sólidos municipales de la ciudad de Managua.

AIDIS. https://docplayer.es/65758282-Determinacion-de-la-efectividad-del-relleno-sanitario-la-chureca-en-la-estabilizacion-de-desechos-solidos-municipales-de-la-ciudad-demanagua.html

Decreto número 1784, (2017).