Práctica empresarial

Conducción de fluidos redes y construcciones Ovidio cala S.A.S

Diseño y Presupuesto de Instalaciones Hidráulicas y Sanitarias Alternativas en vivienda prioritaria en el municipio de Leticia, Amazonas

Angela Isbelia Arias Balcucho Código 1094271582

Universidad de Pamplona

Facultad de Ingenierías y Arquitectura

Programa de Arquitectura

Pamplona, 2016

Práctica empresarial

Conducción de fluidos redes y construcciones Ovidio Cala S.A.S

Diseño y Presupuesto de Instalaciones Hidráulicas y Sanitarias Alternativas en vivienda prioritaria en el municipio de Leticia, Amazonas

Angela Isbelia Arias Balcucho Código 1094271582

Presentado a:

Comité de trabajo de grado

Universidad de Pamplona

Facultad de Ingenierías y Arquitectura

Programa de Arquitectura

Pamplona, 2016

Tabla de Contenido

	Pág.
Introducción	16
Capítulo I	17
1.1 Delimitación Temática Proyecto De Grado	17
1.2 Preguntas Problematizadoras	18
1.3 Planteamiento Del Problema	18
1.4 Justificación Del Problema	19
1.5 Marco Contextual	20
1.6 Marco Conceptual	21
1.7 Marco Normativo	28
1.8 Objetivos	29
1.8.1 Objetivo General	29
1.8.2 Objetivos Específicos	29
1.9 Estructura Metodológica	30
1.9.1 Fases Metodológicas	30
Capitulo II	32
2. Contextualización	32
2.1 Contextualización Leticia	32
2.1.1 ubicación	32
	iii

	iv
2.1.2 Contexto histórico	33
2.3 Contexto Físico	36
2.3.1 morfología urbana	36
2.3.2 Usos De Suelo	38
2.3.3 Zonas De Riesgo	38
2.4 Contexto funcional	39
2.4.1 Elementos estructurantes	39
2.4.2 Accesibilidad	40
2.4.3 Espacio Público	44
2.4.4 Servicios públicos	45
2.5 Contextos Ambiental	47
2.5.1 Condiciones ambientales	47
2.6 Contexto demográfico	52
2.6.1 Población por área	52
2.6.2 Población por sexo	53
2.6.3 Personas por hogar	53
2.6.4 Población Zona De Riesgo /Desplaza	54
2.6.5 distribución población	54
2.7 Contexto antropológico	55
2.7.1 Actividades realizadas población	55
2.7.2 Vivienda tradicional	56
2.8 Contextualización Urbanización manguare	58
2.8.1 Ubicación	58
2.9 Población beneficiada	59

2.9.1 Áreas A Reubicar	59
2.10 Contexto físico	61
2.10.1 Áreas de cesión urbanización	61
2.10.2 Usos Del Suelo	62
2.11 llenos / vacíos y altura	63
2.12 Contexto Funcional	64
2.12.1 Ejes Estructurantes	64
2.12.2 Servicios Públicos	65
2.13 Contexto Ambiental	66
2.14 Referente	68
2.14.1 Referente captación aguas lluvias	68
2.15 Referente tratamiento Aguas Grises	69
2.15.1 Cantidades de captación vivienda aguas grises	70
2.15.2 Captación Y Distribución Aguas Grises	70
2.15.3 Utilización De Aguas Grises.	71
2.16 Referente Aguas Servidas	71
CAPITULO III	73
3. Desarrollo proyecto	73
3.1 Sistemas Alternativos Sostenible Hidrosanitarios	73
3.2 APARATOS AHORRADORES DE AGUA	75
3.2.1 Perlizadores	75
3.2.2 Inodoros ahorradores	76
3.2.3 Regaderas Ahorradoras	77

	vi
3.2.4 Grifería Monomando	77
3.2.5 Monomando Convencional	78
3.3 Análisis	78
3.3.1 Análisis De Vivienda Convencional Consumo	78
3.3.2 Análisis De Vivienda Con Aparatos Ahorradores	79
3.4 Instalaciones De Aguas Lluvias	80
3.4.1 Proceso	80
3.5 Diseño	83
3.5.1 Análisis Precipitación Leticia Amazonas	83
3.6 Uso Que Se Le Pretende Dar Al Agua De Lluvia Captada	89
3.7 Tanque De Aguas Lluvias	91
3.7.1 Instalaciones Aguas Grises	92
3.7.2 Análisis de aguas grises en vivienda	93
3.8 La Reutilización De Aguas Grises	95
3.9 Análisis y adaptación de sistema de aguas grises a estrato 1	97
3.10 Captación y distribución vivienda prototipo urbanización manguare	103
3.11 Funcionamiento sistema integrado aguas lluvias y grises	105
3.12 Sustancias de aguas utilizadas en la vivienda	106
3.13 Estudios Previos Según Referentes En Cuanto A Tanques, Tubería Y Filtro Bomba	108
3.13.1 Tanques	108
3.13.2 Distribución Aguas Grises Tubería	108
3.13.3 Distribución Tubería Aguas Servidas	109
3.13.4 Filtro	109

	vii
3.13.5 Aparatos a utilizar	117
3.13.6 Depósito de almacenamiento aguas grises	120
3.13.7 Tapa protección de depósitos	121
3.13.8 Tanque elevado	121
3.13.9 Trampa De Grasas	124
3.13.10 Fichas de aparatos utilizados sistema intrgrado aguas lluvias yaguas gises	126
3.14 Aguas Servidas	129
3.14.1 Pozo 1 séptico integrado y campo de infiltración	129
3.14.2 Pozo 2 Séptico Con Pozo De Absorción	134
3.15 PANEL SOLAR	136
3.15.1 Panel solar vivienda	136
3.15.2 Propuesta Urbana Con Sistema Alternativo Solar	143
3.16 Descripción general proyecto	146
3.17 Análisis general de ahorro de agua	149
3.18 Presupuestos	150
3.18.1 Presupuesto Vivienda Convencional	150
3.18.2 Presupuesto vivienda con sistemas alternativos ahorradores	152
3.18.3 Comparación Costo De Vivienda	154
3.18.4 Análisis De Clasificación Programa De Vivienda Nacional	155
3.19 Análisis Económico	156
3.19.1 Instalación Hidrosanitario	156
3.19.2 Análisis instalaciones eléctricas y utilización panel solar	160
3.20 Análisis instalación pozo séptico integral y pozo de absorción	161
3.21 Conclusiones técnicas	162

	viii
Conclusiones	166
Anexos	169
Bibliografía	171

Lista de Figuras

	Pág.
Figura 1. Localización	20
Figura 2. Ubicación empresa	21
Figura 3. Sistema De Captación De Agua Pluvial	25
Figura 4. Diagrama De Agua Pluvial	26
Figura 5. Sistema De Reciclaje de Aguas Lluvias	27
Figura 6. Sistema De Tratamiento De Aguas Grises	28
Figura 7. Ubicación	32
Figura 8. Ubicación del departamento de amazona	32
Figura 9. Ubicación de proyectos de iteres social en el amazonas en el área rural	35
Figura 10. Línea del tiempo proyectos de vivienda amazonas	35
Figura 11. Grafica Morfología Urbanahttp://www.codiarco.com/urbanismo/pbot-leticia	36
Figura 12. Escala predial	36
Figura 13. Retícula en damero	37
Figura 14. Edificaciones tipologia	37
Figura 15. Usos del suelo	38
Figura 16. Plano de zonas de riesgos	38
Figura 17. Elementos estructurantes	39
Figura 18. Acceso vehicular a Leticia	40
Figura 19. Aeropuerto Internacional Alfredo Vásquez Cobo, de Leticia.	41
Figura 20. Movilidad fluvial	42
Figura 21. Movilidad en la ciudad	43
Figura 22. Poco espacio público para el esparcimiento	44

Figura 23. Invasión por comercio indígena	44
Figura 24. Circulación Peatonal	45
Figura 25. Servicios Públicos Leticia	45
Figura 26. Gafiica Barcara flotante existente en la quebrada yahuarcaca	46
Figura 27. Grafica condiciones ambientales Leticia	47
Figura 28. Ejes Ambientales	48
Figura 29. Rio Amazonas	49
Figura 30. Selva Amazónica/ Bosque Tropical Más Extenso Del Mundo	49
Figura 31. Sector Urbano de Leticia Límites con Tabatinga (Brasil)	50
Figura 32. Sector Urbano de Leticia aguas Iluvias no tratas ni conducidas	51
Figura 33. Disposición de Aguas negras en el sector norte del área urbana de Leticia.	52
Figura 34. Grafico población según área rural y urbana	52
Figura 35. Población por Género	53
Figura 36. Número de personas por hogar	53
Figura 37. Actividades originarias amazónicas	55
Figura 38. Imagen vivienda Leticia	56
Figura 39. Tipo de vivienda	57
Figura 40. Ubicación urbanización	58
Figura 41. Zonas de riesgo en Leticia	59
Figura 42. Plano de Usos del suelo	62
Figura 43. Plano De llenos y vacíos	63
Figura 44. Plano de vías estructurantes	64
Figura 45. Perfil 1	65
Figura 46. Perfil 2	65
Figura 47. Llegada y distribución de servicios a urbanización manguare	66
Figura 48. Condiciones ambientales del lote	66
Figura 49. Captación de aguas lluvias	68

v	1
х	

Figura 50. Proceso De Reutilización Aguas Lluvias	69
Figura 51. Porcentajes De Realización Aguas Grises	70
Figura 52. Captación Y Distribución Aguas Grises	70
Figura 53. Utilización de aguas grises	71
Figura 54. Esquema de un sistema individual de tratamiento de aguas residuales con 4 opciones de disposición	n de
las aguas residuales tratadas: 1) Riego; 2) Campo de Infiltración; 3) Pozo de Absorción; y 4) Corriente Hídrica	71
Figura 55. Adecuación de terrenos para la instalación de un sistema individual de tratamiento de aguas residu	ales,
en el sitio de origen	72
Figura 56. Sistemas Alternativos Ahorro Hidráulicos	73
Figura 57. Desarrollo General Instalaciones	75
Figura 58. Perlizadores Lavaplatos	75
Figura 59. Sanitario Ahorrador	76
Figura 60. Dispositivos Perlizadores Para Ducha	77
Figura 61. Proceso De Captación Y Recolección De Aguas Lluvias	82
Figura 62. Precipitación Del Lugar	83
Figura 63. Precipitación Mm-Mes	83
Figura 64. Precipitación –Día Mes	85
Figura 65. Cubierta Vivienda	86
Figura 66. Sistema de captación con dos contenedores: uno enterrado y otro elevado	89
Figura 67. Uso Aguas Lluvias	90
Figura 68. Dimensiones De Tanque	91
Figura 69. Deposito Flexible	91
Figura 70. Esquema Deposito Flexible Agua Lluvia	92
Figura 71. Cálculo De Consumo De Agua En Vivienda Con Captación De Aguas Lluvias Y Perlizadores	97
Figura 72. Segregación y tratamiento de efluentes domésticos. 1. Aguas grises, 2. Aguas cafés, 3. Aguas amaril	las
	103
Figura 73. Esquema de distribución aguas residuales grises	104
	xi

	xii
Figura 74. Porcentajes / Litro De Aguas Grises	105
Figura 75. Esquema Sistema Integrado De Aguas Lluvias Y Grises	105
Figura 76. Altura Total Bomba	111
Figura 77. Instalación Del Electronivel	111
Figura 78. Curva para la potencia de flujo de la motobomba de! HP	113
Figura 79. Filtro Sistema De Reutilización De Aguas Grises Aqua2use.	118
Figura 80. Dimensiones Aqua2use Gwdd	118
Figura 81. Almacenamiento aguas grises	120
Figura 82. Tapa Protección Depositos	121
Figura 83. Familia De Tres Habitantes Consumo	121
Figura 84. Instalación tanque	122
Figura 85. Accesorios de tanque	123
Figura 86. Errores De Instalación	124
Figura 87. Sedimentador o pre filtro con retención de sólidos y líquidos extraños al agua	124
Figura 88. Aparatos Utilizados Y Cotizados	128
Figura 89. Esquema De Aguas Servidas Y Pozo De Absorción	129
Figura 90. Tanque séptico integral	130
Figura 91. Medidas Tanque Septico Integrado	132
Figura 92. Distribución Sistema Tratamiento De Aguas Servidas Integrado	132
Figura 93. Esquema Funcionamiento Tratamiento Aguas Servidas	133
Figura 94. Esquema En Urbanización Manguare De Sistema Integrado Séptico Con Campo De Infiltración	133
Figura 95. Esquema De Análisis De Cantidades De Agua Servida Captada Y Tratada Pozo Séptico Total	
Urbanización Maguare	134
Figura 96. Esquema De Fosa Séptica De 3 Etapas Con Filtro De Arena	134
Figura 97. Esquema de CAPA BIOLOGICA	135
Figura 98. Corte Pozo Séptico, Filtro Aeróbico Y Pozo De Absorción	136
Figura 99. Planta Apozo Séptico, Filtro Aeróbico Y Pozo De Absorción	136
	xii

Figura 100. Esquema De Análisis De Cantidades De Agua Servida Captada Y Tratada Pozo Séptico Vivienda	
Urbanización Maguare	136
Figura 101. Esquema De Funcionamiento Y Disposición De Panel Solar	137
Figura 102. Funcionamiento De Sistema De Paneles Solares	137
Figura 103. Ficha De Instalación De Panel Solar	140
Figura 104. Condiciones, medidas de panel solar	141
Figura 105. Distribución Y Gasto De Energía Eléctrica De La Vivienda	142
Figura 106. Distribución Y Gasto De Energía Eléctrica De La Vivienda	143
Figura 107. Diagrama de un poste solar con una luminaria solar fotovoltaica para alumbrado publico	144
Figura 108. Ficha técnica de luminario con panel solar	145
Figura 109. Instalación General Del Sistema De Instalaciones Alternativos En Instalaciones Hidrosanitarias	146
Figura 110. Análisis De General De Los Sistemas	149
Figura 111. Presupuesto Módulo De Vivienda Urbanización Maguare	151
Figura 112. Presupuesto vivienda con sistemas alternativos urbanización manguare	154
Figura 113. Valores Estipulados Por Misterio De Vivienda De Vis Y Vip	155
Figura 114. Comparación Y Clasificación De Tipo De Vivienda	155

Lista de Tablas

	Pág.
Tabla 1. Tabla tarifa acueducto	46
Tabla 2. Tarifa Acueducto	47
Tabla 3. Edad Población En Riesgo/Desplazada	54
Tabla 4. Educación Población En Riesgo/Desplazada	54
Tabla 5. Distribución Población	54
Tabla 6. Tipo De Vivienda	57
Tabla 7. Clasificación De Personas Beneficiadas	60
Tabla 8. Primera Fase	60
Tabla 9. Cuadro general de áreas	61
Tabla 10. Consumo Con Aparatos Tradicionales Por Mes	78
Tabla 11. Consumo Con Aparatos Ahorradores Por Mes	79
Tabla 12. Precipitaciones Por Mes	84
Tabla 13. Precipitaciones Días Por Mes	85
Tabla 14. Precipitaciones Días Por Mes	87
Tabla 15. Tabal De Captación, Demanda Y Almacenamiento	88
Tabla 16. Sustancias Y Productos Contenidos En Cada Una De Las Fuentes De Aguas Grises Y Servida	ıs En Vivienda
	95
Tabla 17. Consumo agua potable estrato 1	97
Tabla 18. Puntos De Consumo De Aguas En La Viviendas	98
Tabla 19. Puntos de recolección de aguas grises en una vivienda	98
Tabla 20. Captación De Aguas Grises En Litros	101
Tabla 21. Captación Por Zona	101
Tabla 22. Producción de aguas grises estrato 1	102

	XV
Tabla 23. Consumo de agua potable por punto en el estrato 1 con ahorradores	102
Tabla 24. Sustancias Aguas Utilizadas En Vivienda	106
Tabla 25. Características Bomba	112
Tabla 26. Comparativo De Costos De Viviendas	154
Tabla 27: Costo Anual Alcantarillado	156
Tabla 28. Costos Sistemas Alternativos	157
Tabla 29. Costos sistemas alternativos	157
Tabla 30. Diferencia Costos Instalaciones Comparación	157
Tabla 31. Tiempo En Pagar El Sistema	158
Tabla 32. Total, tiempo de pago del sobre costo en comparación vivienda convencional	158
Tabla 33. Comparación de precipitación	159
Tabla 34. Análisis de la captación de los dos lugares	159
Tabla 35. Precio instalaciones convencionales	160
Tabla 36. Precio Con Panel Solar	160
Tabla 37. Diferencia de precios	160
Tabla 38. Tiempo A Pagar El Sistema	160

Tabla 39. Presupuesto Y Comparación De Tratamiento De Aguas Servidas

Tabla 40. Tarifa alcantarillado

161

162

Introducción

El presente proyecto de trabajo de grado pretende mediante la práctica empresarial en la empresa Conducción De Fluidos, Redes Y Construcciones Ovidio Cal Niño S.A.S proponer la implementación de un modelo de instalaciones hidráulicas y sanitarias sostenibles que le ofrezcan la posibilidad de ofrecer a sus usuarios la posibilidad a largo plazo de tener dentro del confort de sus vivienda un ahorro mediante la reutilización del agua y a su vez una forma de reconciliación con el medio ambiente.

Capítulo I

1.1 Delimitación Temática Proyecto De Grado

El proyecto propuesto a la empresa conducción de fluidos ,redes y construcciones Ovidio cala s.as está planteado para que esta impulse desde el sector de la construcción y dentro de los ámbitos social y económico la implementación de las instalaciones hidráulicas y sanitarias sostenibles con el fin de ofrecer rentabilidad económica a mediano plazo a través de la reutilización del agua y de la captación de aguas lluvias y a su vez tener un equilibrio ambiental dentro de un confort a agradable para sus usuarios dentro de las normas. (Ver matriz temática).

MATRIZ TEMATICA Y SISTÉMICA PARA PROYECTOS DE GRADO E INVESTIGACIONES DEL PROGRAMA DE ARQUITECTURA						
	AMBIENTAL	CULTURAL	SOCIAL	ECONÓMICO	POLÍTICO	
	Principios de los núcleos sistémicos del territorio					
Núcleos Sistémicos	Sostenibilidad	Territorialidad	Equidad e inclusión	Competitividad a escala	Gobernabilidad y	
				humana	gobernancia	
	Núcleos problémicos					
Áreas temáticas	vulnerabilidad	perdida de identidad y sentido de pertenencia, transculturización, desterritorialización, pocos espacios para manifestaciones culturales, deterioro y poca valoración del patrimonio material e inmaterial	Exclusión, pobreza, desigualdad, segmentación, hecesidades básicas insatisfechas, bajo indice de desarrollo humano, poca felicidad	' '	Falta de transparencia y credibilidad, baja participación de actores sociales, baja gobernabilidad y gobernancia. Inexistencia de normativa o poca aplicación de normativa existente	
Teoria, historia y crítica						
Diseño urbano y paisajístico						
Hábitat popular				X		
Proyecto arquitectónico						
Recuperación del patrimonio						
Tecnologico constructivo	Х					
Ordenamiento territorial						

1.2 Preguntas Problematizadoras

- 1. ¿Cómo se puede implementar a partir de las instalaciones hidráulicas y sanitarias desarrolladas por la empresa conducción de fluidos redes y construcciones Ovidio Cala S.A.S métodos de reutilización del agua?.
- 2. ¿De qué forma puedo desarrollar la vivienda con instalaciones hidráulicas y sanitarias en Leticia, amazonas sin que afecte la condición de los usuarios y que a su vez sea beneficiosa tanto de forma ambiental como económica a largo plazo?
- 3. ¿Cuáles son las directrices, normativas métodos de diseño para implementar dentro una vivienda instalaciones hidráulicas, sanitarias alternativas y sostenibles?

1.3 Planteamiento Del Problema

Actualmente la empresa Conducción de fluidos redes y construcciones Ovidio Cala Niño S.A.S dentro de sus principios se enfoca en el desarrollo de un servicio de autogestión en proyectos que va de la mano con la responsabilidad social y económica con estrategias que tienen en cuenta la comunidad en general y sus usuarios dentro de un entorno sustentable, pero además guiado en actividades que ayuden a contribuir a un medio ambiente consciente y sano. A parte de esta disposición de la entidad, y observando los desequilibrios ambientales que se presentan en la actualidad por causa de uso irresponsable de los recursos naturales por parte del hombre, haciendo que surjan una variedad de fenómenos los cuales han llevado a que la calidad de vida del hombre decaiga. Ya que el agua que es un recurso natural indispensable está escaseando y además que la vivienda es el mayor sector de consumo .Se plantea que la empresa desarrolle y se convierta en el líder a nivel regional en implementar dentro de sus instalaciones hidráulicas y sanitarias métodos alternativos sostenibles que permitan el ahorro y la reutilización del aguas .

NO ACEPTACION POR FALTA DE CONCIENCIA NORMAS NACIONALES QUE POR PARTE DEL HOMBRE PARTE DE LA POBLACION REGULEN LA FORMA DE USO DE A USAS SISTEMAS EN EL CUIDADO DE LOS LOS RECURSOS NATURALES ALTERNATIVOS, POR **RECURSOS** A NIVEL DE INSTALACIONES **FACTORES ECONOMICOS** HIDROSANITARIAS EN LAS **CAUSAS** DE INVERSION, NO VEN EL **VIVIENDAS BENEFICIO A LARGO PLAZO** DETERIORO DE LOS HABITOS DESMEDIDOS E NO RENTABILIDAD EN LOS **RECURSOS NATURALES INCONCIENTES POR FALTA HOGARES POR GASTO** EN ESPECIAL EL AGUA **DE CONTROL DESMEDIDO DEL AGUA**

1.4 Justificación Del Problema

La explotación irracional del ser humano con los recursos naturales ha provocado un deterioro del medio ambiente, esto ha tenido como consecuencia muchos problemas que lo afectan directamente, el cambio climático, la pérdida de biodiversidad, la deforestación la escasez de recursos como el agua, hacen necesario considerar alternativas sustentables que le permitan al hombre reconciliarse con la naturaleza y a la vez buscar un nivel de vida de calidad aceptable.

Teniendo en cuenta el desempeño laborar y la escala que cumple la empresa conducciones, fluidos y redes Ovidio Cala Niño S.A. en cuando a diseño de instalaciones en la región santandereana. Se busca que la empresa se involucre con nuevas alternativas sostenibles que permitan de alguna forma contribuir al ahorro y la reutilización del agua a partir de sus diseños utilizando sistemas eficaces y utilizados en el sector residencial que ese área de mayor porcentaje en el uso del suelo tanto en lo urbano como en lo rural.

La implementación de estos métodos alternativos aplicados a las instalaciones hidráulicas y sanitarias contribuirá a que los usuarios de estas edificaciones ayuden a controlar el agotamiento

del agua, además ofrecerle un confort a su vivienda y también contribuir a la economía de los hogares a mediano plazo.

1.5 Marco Contextual

El **Departamento de Santander está** situado al noreste del país en la región andina, entre los 05°42'34" y 08°07'58" de latitud norte, y los 72°26' y 74°32' de longitud oeste. Cuenta con una superficie de 30.537 km2 lo que representa el 2.7 % del territorio. Limita por el Norte con los departamentos de Cesar y Norte de Santander, por el Este y por el Sur con el departamento de Boyacá y por el Oeste con el río Magdalena que lo separa de los departamentos de Antioquia y Bolívar.. Y está conformado POR 87 municipios y posee Población2'061.079 Habitantes (Proyección DANE 2015).

Figura 1. *Localización Fuente*:https://es.wikipedia.org/wiki/Leticia_(Colombia)#/media/File:Colombia_location_map2. svg

Figura 2. Ubicación empresa Fuente: www. google map.com

La empresa Ovidio Cala Niño S.A.S tiene sus instalaciones administrativas y técnicas en cr19 87-17 diamante ii, Bucaramanga, Santander, Colombia ofrece sus servicios tanto a la ciudad de Bucaramanga, la región de la costa y Bogotá

1.6 Marco Conceptual

Las consecuencias a causa del uso descomunal de los recursos naturales por parte del hombre ha hecho que el medio ambiente se vea deteriorado, por los múltiples efectos que genera ,en este caso cabe mencionar el recurso del agua que está agotándose cada vez más.. En vista se busca que abatir de los procesos desarrollados por la empresa se implemente un sistema de instalaciones alternativo pero a la vez sostenible, por esto cabe centrarnos en estos conceptos:

Sostenibilidad. Desarrollo que cubre las necesidades del presente sin comprometer y la capacidad de generaciones futuras de cubrir sus necesidades .informe brundtland de la ONU OUR COMMON FUTURE.

Permanece en el tiempo, a nivel económico, social y económico.

Arquitectura Sostenible. Es aquella que tiene en cuenta el medio ambiente y que valora cuando proyecta los edificios la eficacia de los materiales y de la estructura de construcción, los procesos de edificación, el urbanismo y el impacto que los edificios tiene en la naturaleza y en la sociedad .fomentar la eficiencia energética, aprovechamiento de los recursos del entorno para el funcionamiento de sus sistemas y no tengan ningún impacto en la naturaleza.

La Vivienda Sostenible. Esta edificación de carácter bioclimática aprovecha las condiciones naturales para disminuir todo lo posible el uso de la energía en este caso el gasto de agua mediante mecanismo de realización, captación, filtrado, tratamiento y su posterior almacenamiento, además de aprovechar las condiciones ambientales como la lluvia a través de la recolección en techos y posteriormente en canales, a partir de un sistema de instalaciones hidráulicas y sanitarias que le permite utilizar de nuevo el agua con óptimas condiciones sin afectar ni su forma de vida ya que están diseñadas de forma que el usuario tenga la comodidad y desarrolle sus actividades cotidianas, pero a su vez observando día a día un ahorro económico y a su vez una satisfacción ya que está protegiendo el medio ambiente.

Nuevas Tecnologías en Instalaciones Hidrosanitarias. La implementación de nuevos materiales y sistemas en este tipo de instalaciones ha hecho que a mediano plazo el usuario vea la rentabilidad de estos sistemas ya que además de la reutilización del agua se, hace el uso de diversos dispositivos que hacen que el agua que llega a la vivienda sea reducido mediante

dispositivos como perlizadores, regaderas especiales, inodoro res ahorradores entre otros los cuales ahorran en primera instancia gran cantidad del líquido.

El uso de purificadores de agua es otro sistema que se ha implementado ya que mediante estudios de laboratorio se han determinado procesos de cloración que permiten que se eliminen pequeñas impuras y sea desinfectada de cualquier tipo de baterías.

Además se suma a este tipo de tecnología el uso de calefacción del agua mediante paneles solares que van unidos al sistema hidráulico que permite calentar el agua y así el usuario pueda disfrutar ahorrar en vivienda energía para calentarla.

- Las Instalaciones Hidráulicas: Son las que me suministran el agua potable es un servicio público prestado por entidades públicas o privadas, este servicio es suministrado a través de tuberías.
- •Instalaciones Sanitarias: Es el conjunto de tuberías de conducción, conexiones, obturadores hidráulicos en general como son las trampas tipo P, tipo S, sifones, céspoles, coladeras, etc., necesarios para la evacuación, obturación y ventilación de las aguas negras y pluviales de una edificación.

Con el fin de adelantar en la empresa conducción, flujos y redes Ovidio Cala Niño S.A.S la inclusión de procesos de diseño de instalaciones con tecnologías ecológicas y autosuficientes y bajo la determinación que la vivienda es el punto principal tanto por el gran porcentaje que se observa en cuanto a uso en la ciudad de Bucaramanga y su área metropolitana, y así mismo el l mayor consumir del agua.se plantea bajo estos paramentos la adaptación de estos procesos en sus bases de diseño en instalaciones hidráulicas y sanitarias los cuales contribuyan en el ahorro

captación, reutilización, re infiltración para alcanzar un grado de autosuficiencia, se tomaran los siguientes conceptos y teorías a continuación definidos:

Ahorro De Agua. El agua es un recurso vital, el cual se debe aprovechar al máximo tanto dentro como fuera vivienda ya que debido a

Sus múltiples usos este puede ser utilizado tanto en el consumo humano, el riego, la limpieza y el aseo.

Para iniciar en este proceso de ahorro del agua, la vivienda en este caso debe contar dentro de sus instalaciones con dispositivos que permitan, sin sacrificar las condiciones de confort, ni cambiar los hábitos, reducir el consumo del agua de forma notable, estable y a su vez que se acople fácilmente a las instalaciones

Dentro de estos dispositivos los que observamos a primera mano encontramos los inodoros de bajo consumo, las regaderas ahorradoras y los perlizadores-

• Captación Y Almacenamiento Del Agua

Para obtener el agua y lograr las condiciones de sustentabilidad y autosuficiencia se puede hacer uso de procesos de captación y almacenamiento, el uso agua lluvia para el uso doméstico, con disposición dentro de los diseños de cubierta para captación y filtración para obtener una calidad óptima del líquido para su posterior almacenamiento

El otro es la captación de aguas pluviales y las tecnologías para el desarrollo y tratamiento de esta, teniendo en cuenta que este sea económico, sencillo, de nulo o escaso consumo de energía, facilidad para su construcción, bajo costo en el mantenimiento y operación y sin dejar a

un lado que este no afecte de ningún modo el medio ambiente y que tenga opciones de viabilidad y eficiencia para de agua a viviendas o a un gran número de estas.

El sistema de captación de agua en cubiertas está compuesta por los siguientes pasos: la captación, la recolección y el almacenamiento

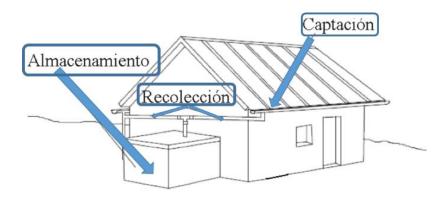


Figura 3. Sistema De Captación De Agua Pluvial

Para este proceso se necesita de un tanque que permita el almacenamiento de gran cantidad de agua para el consumo diario durante las épocas de sequias y debe contar con ciertos dispositivos para el retiro y el drenaje del agua.

Además, es importante que el agua destinada a la limpieza y aseo personal sea tratada antes de su uso. el filtrado de esta agua estar enfocado al retiro de partículas contaminantes del agua antes de ser almacenada y posterior acondicionamiento bacteriológico (cloro).este tipo de tratamiento se puede realizar por medio de un filtro de mesa de arena según de la desinfección con cloro.

Figura 4. Diagrama De Agua Pluvial

Tratamiento Y Reutilización Del Agua. En la obtención de un mayor ahorro a partir de los dispositivos ahorradores, es necesario diseñar un sistema de reutilización de aguas grises en este caso que estamos considerando la vivienda sería la de las duchas, lavados, desagües de la cocina, lavaplatos, lavadora por medio de un tratamiento el cual sea sencillo el proceso de filtrado.

Además de lo anterior este tipo de aguas, se utilizan mediante un proceso de captación, filtrado, clorado y almacenamiento y posterior distribución, para suplir en el uso de inodoros, para riego de zonas verdes, y limpieza de exteriores y demás usos que no necesiten que el agua sea de total pureza.

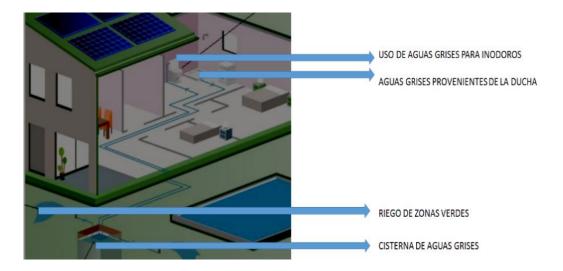


Figura 5. Sistema De Reciclaje de Aguas Lluvias

Este sistema requiere en primer lugar de una serie de desagües de, lavamanos, lavaplatos y duchas a unos respectivos depósitos donde se realiza el filtraje para retener las partículas contaminantes.

Asimismo las aguas negras provenientes de Los inodoros de la vivienda serán sometidas a un tratamiento y seguidamente un re filtrado al subsuelo

Estas aguas serán conducidas a una tanque séptico donde se acondicionara para su seguido re filtraje al subsuelo mediante un pozo de absorción ,el tanque efectúa el siguiente proceso; en primer lugar a partir de una remoción de solidos el cual se realizara mediante un tratamiento biológico ,el cual continuara con un almacenamiento de los sólidos ,después las aguas serán conducida a una área llamada capo de oxidación a partir de filtros subterráneos y si no se cuenta con el terreno suficiente de área pues se realiza por un pozo de absorción.

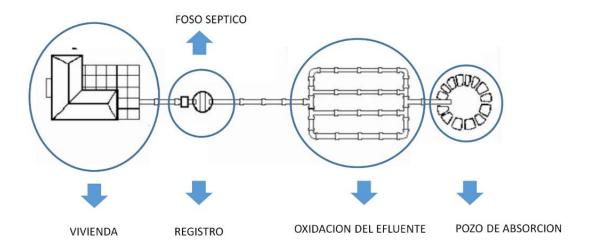


Figura 6. Sistema De Tratamiento De Aguas Grises

1.7 Marco Normativo

La empresa Ovidio Cala Niño s.a.s desarrolla sus procedimientos en cumplimiento de la Norma técnica colombiana NTC 1500 Código Colombiano de Fontanería en donde se establece los requisitos mínimos para garantizar el funcionamiento correcto de los sistemas de abastecimiento de agua potable; sistemas de desagüe de aguas negras y lluvias; sistemas de ventilación; y aparatos y equipos necesarios para el funcionamiento y uso de estos sistemas. Esta norma proporciona las directrices y los requisitos mínimos que deben cumplir las instalaciones hidráulicas, para garantizar la protección de la salud, seguridad y bienestar públicos. Las disposiciones de esta norma se aplican a la construcción, instalación, modificación, reparación, reubicación, reemplazo, adición, uso o mantenimiento de las instalaciones hidráulicas y sanitarias dentro de las especificaciones. Esta norma no incluye especificaciones de los sistemas de distribución de agua para la extinción de incendios, el tema se estudia en la NTC1669 y NTC2301. Flujo.

Artículo 12 del Decreto 111 de 1996, por el cual se estableció el Estatuto Orgánico de Presupuesto, son principios del sistema presupuestal: la planificación, la anualidad, la universalidad, la unidad de caja, la programación integral, la especialización, inembargabilidad, la coherencia macro económica y la homeóstasis (Ley 38/89, artículo 80. Ley 179/94, artículo 40.).

1.8 Objetivos

1.8.1 Objetivo General

Diseñar y presupuestar instalaciones hidráulicas y sanitarias alternativas sostenibles en vivienda de interés prioritario en Leticia, amazonas con el fin de reutilizar el agua y tener un ahorro económico a largo plazo.

1.8.2 Objetivos Específicos

- Investigar acerca de los diferentes sistemas de instalaciones hidrosanitarias implementando métodos alternativos sostenibles que ayuden que contribuyan al ahorro del agua como a la economía a largo plazo de la vivienda.
- Diseñar a partir de las instalaciones hidráulicas y sanitarias de la empresa y los investigados dentro de la vivienda un sistema innovador y útil que permita ahorrar; reutilizar el agua dentro del confort del entorno social ya ambiental
- Demostrar a partir de un presupuesto comparativo que este tipo de instalaciones hidráulicas y sanitarias alternativas sostenibles son viables tanto económicamente como ambientalmente.

1.9 Estructura Metodológica

1.9.1 Fases Metodológicas

Fase 1: Análisis:

- Estudiar las diferentes procesos de análisis de costos en proyectos de construcción y diseño de redes e instalaciones hidrosanitarios y contraincendios y construcción de edificaciones
- indagar acerca de las tecnologías que permitan el implementar sistemas de instalaciones pueda acceder el ahorro del agua en el sector residencial a partir de la reutilización y el ahorro
- diagnosticas los métodos de la empresa conducciones ,fluidos y redes Ovidio Cala Niño
 s.a.s en el diseño instalaciones hidráulicas y sanitarias
- demostrar con el diseño de estos métodos en la implementación en las instalaciones hidrosanitarias que con el uso de estos sistemas alternativos son viables en el ahorro del agua y la reconciliación del ambiente ,como en el factor económico

Fase 2: Formulación y contraste:

- Adquirir de la empresa la planimetría de una vivienda común que se pueda implementar el sistema de instalaciones auto sostenible.
- Realizar los análisis en operaciones aritméticas donde determinen las capacidades según las condiciones climáticas, el número de personas y costumbres de sus habitantes con el fin de no afectar su forma de vida cotidiana

- Utilizar sistemas de nuevas tecnologías que ayuden a contribuir a un ahorro de agua y reutilizarla de forma óptima y con la calidad que se necesita
- diseñar los trazados de las instalaciones hidráulicas y sanitarias ,realizar análisis
 posterior de los beneficios tanto ambientales como económicos para ver su viabilidad
- Realizar un presupuesto donde se determine a apartir de una comparación si es viable y rentable este tipo de instalaciones hidráulicas y sanitarias alternativas.

Fase 3: Sustentación y Aprobación:

- Realizar un proceso de socialización, divulgación y concertación de los elementos del proyecto.
- Conclusión del proceso donde se plasman los objetivos planteados en documentos gráficos y digitales.
- Presentación y sustentación del proyecto, en sus diferentes etapas: ante director, jurados y/o comunidad académica.

Capitulo II

2. Contextualización

2.1 Contextualización Leticia

2.1.1 ubicación

Figura 7. Ubicación
Fuente:https://es.wikipedia.org/wiki/Leticia_(Colombia)#/media/File:Colombia_location_map2.
svg

Figura 8. Ubicación del departamento de amazona Fuente: https://es.wikipedia.org/wiki/Leticia_(Colombia)#/media/File:Colombia_-_Amazonas_-_Leticia.svg

La urbanización manguare es de proyecto de vivienda de interés social en la ciudad de Leticia ubicado en el nororiente de la ciudad de Leticia en el km 4+100via corregimiento de Tarapacá desvió san José de los lagos afueras de Leticia la totalidad del proyecto contempla el reasentamiento de 504 familias que en el momento se encuentran ocupando zonas catalogadas como de alto riesgo según el Plan Básico de Ordenamiento Territorial PBOT de la ciudad de Leticia, en especial los sectores comprendidos por el Caño Simón Bolívar y San Antonio; entre los que se encuentran los Barrios La Unión, Castañal Bajo Simón Bolívar José María Hernández, El, Porvenir y el asentamiento conocido como Barrio Nuevo, constituido por familias que en el año 2006 fueron desalojadas del Brasil por su condición de ilegales y se asentaron en la zona de línea de frontera. A la fecha se encuentra en proceso de construcción la primera fase del proyecto de la cual forman parte 218 familias a las cuales les fueron asignados Subsidios nacionales de Vivienda de Interés Social por parte del Ministerio de Vivienda Ciudad y territorio mediante Resolución No 144 del 30 de mayo de 2008.

2.1.2 Contexto histórico. La fundación de Leticia se dio en el año en 25 de abril de 1867. Y el corregimiento de Tarapacá donde realmente queda ubicado Fue fundado por pobladores peruanos hasta 1932, año en que su soberanía pasó a Colombia. Su nombre proviene de un antiguo departamento peruano que pasó a administración chilena en 1884 luego de la Guerra del Pacífico. Tarapacá perteneció a Perú durante el Conflicto de La Pedrera, en 1911. Algunos pobladores de aquel departamento al ser expulsados por la administración chilena, fueron enviados por el gobierno peruano a colonizar esa zona de la Amazonía.

En cuanto la historia de la vivienda de interés social en la ciudad la vivienda en esta región amazónica, según lo observado se ha trasformado de acuerdo a sus necesidades de adaptarse a

una vida social, a un espacio y una economía. lo que conducido a trasladarse de la zonas selváticas a lugares ya más urbanos. Llevado en este caso a la gestión de proyectos de vis para estas poblaciones por parte de los entes territoriales. Financiadas por FINDETER bajo proceso de elegibilidad

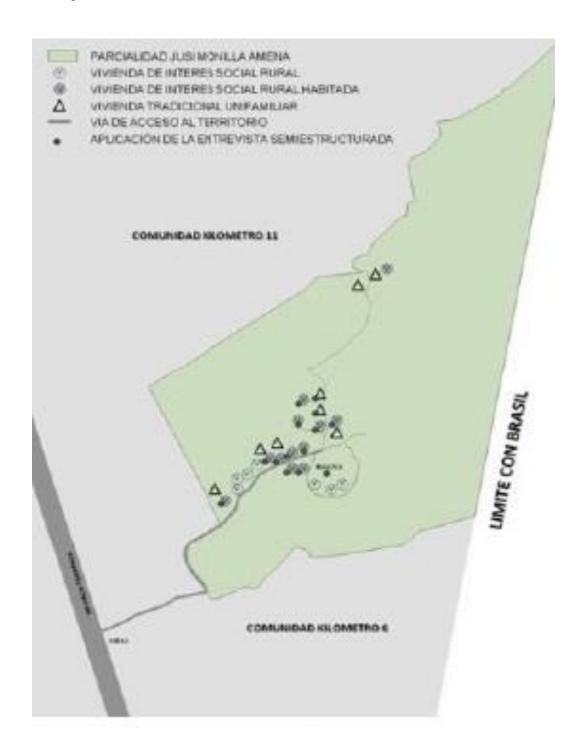


Figura 9. Ubicación de proyectos de iteres social en el amazonas en el área rural Fuete: Transformación de la vivienda indígena* http://www.revistas.unal.edu.co/index.php/bitacora/article/view/28011/html_54

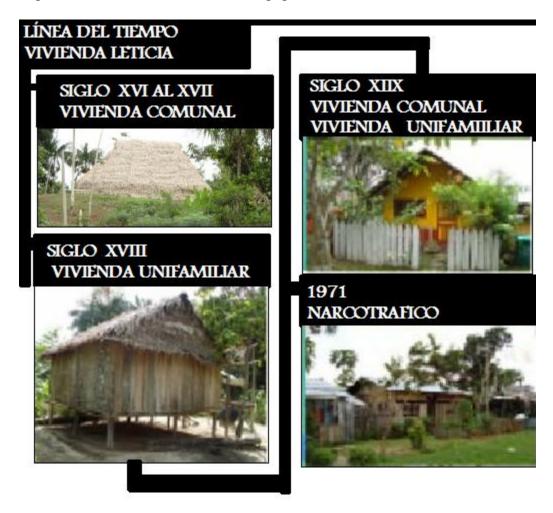


Figura 10. Línea del tiempo proyectos de vivienda amazonas

Fuente: Elaboración propia aprtir de Transformación de la vivienda indígena*

http://www.revistas.unal.edu.co/index.php/bitacora/article/view/28011/html_54

Las actividades de los pobladores y sus posibilidades adquiridas cambiaron radicalmente/aumento de la población /desplazamiento y desempleo e zonas controladas por el narcotráfico (1933). La vivienda en esta región amazónica, según lo observado se ha trasformado de acuerdo a sus necesidades de adaptarse a una vida social, a un espacio y una economía. Lo que conducido a trasladarse de las zonas selváticas a lugares ya más urbanos

llevado en este caso a la gestión de proyectos de VIS para estas poblaciones por parte de los entes territoriales. Financiadas por FINDETER bajo proceso de elegibilidad.

2.3 Contexto Físico

2.3.1 morfología urbana

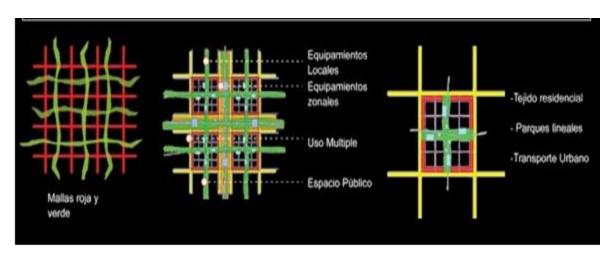


Figura 11. Grafica Morfología Urbanahttp://www.codiarco.com/urbanismo/pbot-leticia

La morfología de la ciudad ha conservado cierta semejanza con su etapa inicial o de fundación la retícula de damero consolidada en el centro de la ciudad es alterada al sur y al norte por los procesos nuevos de urbanización.

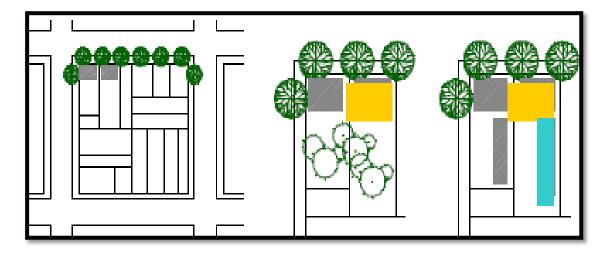


Figura 12. Escala predial

Fuente: Elaboración propia partir de Plano base suministrado por Juan Carlos Murillo

Las manzanas de los nuevos procesos de expansión generan problemas por su propia forma, densidad de ocupación interacción con el medio ambiente y los ecosistemas entre otros. En contraposición con las manzanas tradicionales de Leticia aquellas están desconociendo completamente el entorno y l hábitat propio para esta región (ciudad de la amazonia).

Figura 13. Retícula en damero Fuente: Elaboración propia partir de Plano base suministrado por Juan Carlos Murillo

Los tejidos residenciales de la ciudad constituyen la mayor parte del área urbana con características morfológicas diferenciadas para cada proceso de crecimiento de la cuidad del que se derivan las problemáticas actuales de vivienda generados por la segregación social y espacial con sus consecuentes problemas de servicio y equipamiento

Figura 14. Edificaciones tipologia Fuente: Elaboración propia partir de Plano base suministrado por Juan Carlos Murillo

2.3.2 Usos De Suelo

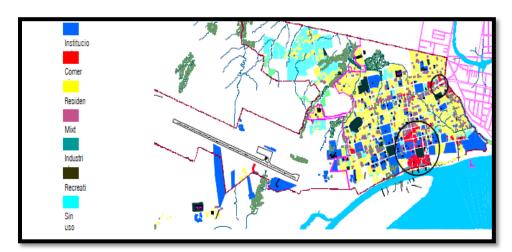


Figura 15. Usos del suelo

Fuente: Tomado del estudio realizado por el arquitecto Gonzalo Lema. Miembro del GEA-UR.

Los tejidos residenciales de la ciudad constituyen la mayor parte del área urbana con características morfológicas diferentes para cada proceso de crecimiento de la ciudad que derivan la problemática actual de vivienda, generando la segregación social y espacial teniendo como consecuencia problemática de servicios y además de espacios recreativos de los cuales carece según observamos en el plano anterior

2.3.3 Zonas De Riesgo

Figura 16. Plano de zonas de riesgos

Fuente: Tomado del plano de usos del suelo del PBOT de Leticia.

La ciudad posee amenazas de todo, en cuanto a lo natural por las condiciones naturales esto se presenta más en el área perimetral ya que está en contacto con puntos hídricos por lo tanto esta propicio a inundaciones de todo tipo. y por la alta precipitación ya que estas aguas no tienen un tratamiento o una estructura adecuada para sacarlas a afluentes o sistemas. Por lo consiguiente estas aguas se convierten en líquidos contaminantes. Que perjudican al ser humano por los olores.

2.4 Contexto funcional

2.4.1 Elementos estructurantes

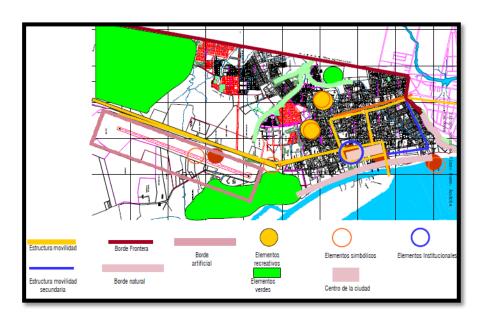


Figura 17. Elementos estructurantes

Fuente: Tomado del estudio realizado por el arquitecto Gonzalo Lema. Miembro del GEA-UR.

Su estructura se desarrolla de la siguiente forma

- Aislamiento geográfico.
- Ubicación en una frontera geográfica y de colonización.
- Proceso de colonización foránea reciente economía de tipo extractivo.

- Aislamiento de los centros educativos y económicos nacionales.
- Tardío proceso de incorporación a la cultura nacional.
- Baja densidad poblacional
- Población multiétnica
- Gran porcentaje de población urbana foránea.

2.4.2 Accesibilidad

Vial

Figura 18. Acceso vehicular a Leticia

Fuente: Elaboración propia a partir de Tomado del estudio realizado por el arquitecto Gonzalo Lema. Miembro del GEA-UR.

Vías de acceso

- Avenidas principales
- Avenida internacional (frontera con tabatinga hasta la calle 12)
- Avenida alfredo vásquez cobo (desde el parque francisco de pula santander hasta el aeropuerto)

- Calle 3 (desde la avenida internacional hasta el muelle turístico)
- Avenida desde la frontera colombo-brasileña hasta la parte militar de tabatinga)
- Avenida da amizade (avenida de la amistad)

Según el sistema de acceso a la ciudad está bien estructurado ya que además de tener acceso. Nacional, regional posee uno de carácter internacional a nivel vehicular. Lo que facilita mayor intercambio comercial e interacción social.

Aérea

Figura 19. Aeropuerto Internacional Alfredo Vásquez Cobo, de Leticia. Fuente: http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-eticia.html

El acceso desde las principales ciudades de Colombia se realiza con conexión en Bogotá y es en avión únicamente. Los vuelos llegan al aeropuerto internacional Alfredo Vásquez Cobo, de Leticia. Desde Bogotá hay vuelos diariamente a Leticia.

Fluvial

Figura 20. Movilidad fluvial Fuente: http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-leticia.html

Aunque a un paso más lento, a Leticia se puede llegar navegando las aguas del río Amazonas. Hay dos formas de naves para contactarse con otras ciudades importantes: los rápidos y los recreos. En un rápido, la distancia entre Leticia e Iquitos es de 12 horas; desde Manaos el viaje tendrá una duración de 36 horas. El viaje en un recreo, a un paso más sosegado, aporta un vistazo a las costumbres y vidas de las gentes que habitan a lo largo del río Amazonas. Los recreos proveen la principal modalidad de transporte sobre el río a las poblaciones. Le llaman 'recreo' porque para los nativos de la región son una alternativa para pasar vacaciones con primos, tíos y abuelos. Para aquellos que viajan sin prisa, la experiencia de viajar por el gran río es recomendada.

Movilidad

Figura 21. Movilidad en la ciudad

Fuente: http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-

leticia.html

http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-leticia.html

En Leticia el transporte lo ofrecen empresas de microbuses o colectivos, taxis, mototaxis y motocar, que conectan incluso hasta la vecina ciudad de Tabatinga. Además, el servicio fluvial es común para los desplazamientos a los corregimientos, las comunidades indígenas y el municipio también colombiano de Puerto Nariño, y recorridos fronterizos, como Benjamin Constant, en Brasil, o Santa Rosa y Caballo Cocha, en Perú.

¿Cuál es el medio de transporte cotidiano de su familia?

Motocicleta: 8078.43%

Caminar: 7472.54%

Bicicleta: 4443.13%

Carro público: 1918.62%

Carro particular: 87.84%

Acuático público: 1.98%

Acuático particular: 00.0%

2.4.3 Espacio Público

Figura 22. Poco espacio público para el esparcimiento Fuente: http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-leticia.html http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-leticia.html

Figura 23. Invasión por comercio indígena Fuente: http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-leticia.html http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-leticia.html

Figura 24. Circulación Peatonal *Fuente:*http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-leticia.html http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonas-leticia.html

La ciudad carece de lugares y actividades de esparcimiento para sus habitantes .el mobiliario es insuficiente y el que ha esa en mal estado además, de que no existen vías peatonales, lo causa accidentalidad.

Las ventas ambulantes por parte d los grupos indígenas hace que se obstaculice la circulación vehicular por esto es necesario la construcción debe equipamientos para uso y de soluciones alternativas para suplir la necesidad de un espacio público apto.

2.4.4 Servicios públicos

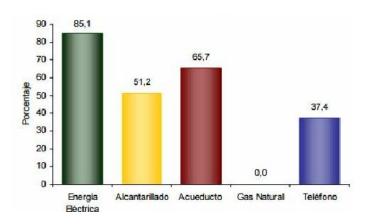


Figura 25. Servicios Públicos Leticia
Fuente: Ficha DANE http://www.dane.gov.co/files/censo2005/perfiles/amazonas/leticia.pdf

La empresa encargada del acueducto y alcantarillado de la ciudad de Leticia es EMPUAMAZONAS SA ESP, la cual a suplir de la fuente hidrica quebrada de YAHUARCACA y bajo una planta de tratamiento de las aguas servidas no muy óptimo

Figura 26. Gafiica Barcara flotante existente en la quebrada yahuarcaca Fuente: file:///C:/Users/HP/Downloads/2.%20%20Informacion%20de%20referencia%20AC

En cuanto al pago se maneja una tarifa básica según estrato

Tabla 1. Tabla tarifa acueducto

ACUEDUCTO	-	n Medición uscriptores)	argo Fijo iscriptores)	Ca	rgo Básico (\$/m³)	Com	Cargo plementario (\$/m³)	Carg	o Suntuario (\$/m³)
ESTRATO 1	\$	11.454,29	\$ 3.679,04	\$	984,34	S	1.968,68	\$	1.968,68
ESTRATO 2	\$	13./45,01	\$ 4.415,30	\$	1.181,21	S	1.968,68	\$	1.968,68
ESTRATO 3	\$	19.472,16	\$ 6.254,25	\$	1.672,81	S	1.968,68	\$	1.968,68
ESTRATO 4	\$	22.908,59	\$ 7.358,08	\$	1.968,68	S	1.968,68	\$	1.968,68
ESTRATO 5	\$	27.490,71	\$ 8.829,46	\$	2.362,41	S	2.362,41	\$	2.362,41
ESTRATO 6	\$	27.490,71	\$ 8.829,35	\$	2.362,41	S	2.362,41	\$	2.362,41
OFICIAL	\$	22.908,59	\$ 7.358,08	\$	1.968,68	S	1.968,68	\$	1.968,68
COMERCIAL	\$	30.925,45	\$ 10.300,85	\$	2.755,01	s	2.755,01	\$	2.755,01

Fuente: file:///C:/Users/HP/Downloads/2.%20%20Informacion%20de%20referencia%20AC

Tabla 2. Tarifa Acueducto

ALCANTARILLADO	n Medicion uscriptores)		argo Fijo uscriptores)	Car	rgo Básico (\$/m²)	Com	Cargo plementario (\$/m²)	Carg	o Suntuario (\$/m²)
ESTRATO 1	\$ 9,636,20	\$	319,77	S	484,77	\$	968,41	\$	968,41
ESTRATO 2	\$ 9.163,34	5	384,63	S	581,50	S	968,41	S	960,41
ESTRATO 3	\$ 12,981,44	\$	543,95	S	823,89	\$	968,41	\$	968,41
ESTRATO 4	\$ 15.272,39	\$	640,67	S	968,41	\$	968,41	\$	968,41
ESTRATO 5	\$ 18.327,11	\$	768,13	5	1.163,00	\$	1.163,00	\$	1.163,00
ESTRATO 8	\$ 18.327,14	\$	768,13	S	1.163,00	\$	1.163,00	\$	1.163,00
OFICIAL	\$ 15,272,39	\$	896.72	S	968,41	\$	968,41	\$	960,41
COMERCIAL	\$ 20.617,64	\$	640,67	S	1.356,45	\$	1.356,45	\$	1.356,45

Fuente: File:///C:/Users/HP/Downloads/2.%20%20Informacion%20de%20referencia%20AC

En cuanto a la energía eléctrica desde Colombia la ciudad no cuenta por eso s ve en la necesidad de comprarla a Brasil, por tanto es muy costosa según recibos obtenidos .los cosos oscilan entre 150 mil y 300 mil para un grupo familiar de tres personas la empresa encargada es energía del amazonas .aunque alcanza la totalidad de la población.

2.5 Contextos Ambiental

2.5.1 Condiciones ambientales

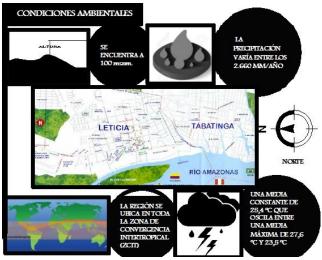


Figura 27. Grafica condiciones ambientales Leticia Fuente elaboración propia a partir de *Fuente*:https://es.wikipedia.org/wiki/

Ejes Ambientales

Estructura ecológica

- Sistema de lagos
- Sistema hídrico
 Sistema de parques urbanas
- Estructura de espacio público verde

Figura 28. Ejes Ambientales

Fuente: Elaboración propia partir de http://www.leticia-amazonas.gov.co/apc-aa-files/33366639393863386234333861356137/plan-de-desarrollo-municipio-de-leticia-lpc.pdf

Figura 29. Rio Amazonas *Fuente:* Elaboración propia partir de http://www.leticia-amazonas.gov.co/apc-aa-files/33366639393863386234333861356137/plan-de-desarrollo-municipio-de-leticia-lpc.pdf

El rio amazonas mayor fuente hídrica del departamento y posee el mayor caudal del mundo. Además del rio amazonas es el eje principal de desarrollo tanto económico, turístico y ambiental por su ubicación y gran diversidad.

Figura 30. Selva Amazónica/ Bosque Tropical Más Extenso Del Mundo Fuente: Elaboración propia partir de http://www.leticia-amazonas.gov.co/apc-aa-files/33366639393863386234333861356137/plan-de-desarrollo-municipio-de-leticia-lpc.pdf

Leticia es una de las zonas más privilegiadas del mundo ya que cuenta un extensión de selva considerable dentro de la cual cuenta con una gran variedad de fauna y fitotetura. Además de una red hídrica de carácter regional que suple tanto las comunidades indígenas como zona rural.

Contaminación. Las amenazas y que en la mayoría de ocasiones corresponden a los espacios con mayor grado de transformaciones físicas, biológicas y ambientales debido igualmente a los procesos de poblamiento de los cuales han sido objeto, por ejemplo, la amenaza por Contaminación hídrica o de fuentes y caños en el sector urbano principalmente, aunque se presenta igualmente en el área rural que rodea al casco urbano de Leticia.

Figura 31. Sector Urbano de Leticia Límites con Tabatinga (Brasil) http://www.corpoamazonia.gov.co/files/Ordenamiento/POT/Exp_Municipal_Leticia.pdf

La amenaza por contaminación se evidencia igualmente por la disposición final de residuos sólidos y líquidos provenientes de las actividades domésticas y comerciales de la ciudad. Las condiciones ambientales que presenta el sector pueden en algún momento afectar la salud de los

pobladores más cercanos, pero además, influye de manera directa en el deterioro del espacio público urbano y colectivo del municipio. En esta área se presenta no solo la acumulación de los residuos o deshechos en la superficie del terreno, sino también una gran afectación por los fuertes olores que despiden los lixiviados generados por tales deshechos.

Figura 32. Sector Urbano de Leticia aguas lluvias no tratas ni conducidas Fuente: http://www.corpoamazonia.gov.co/files/Ordenamiento/POT/Exp_Municipal_Leticia.pdfcauamul ación de aguas negras en el sector de la Plaza de Mercado de Leticia

En cuanto a los procesos de contaminación de las fuentes hídricas y caños en el sector urbano de la ciudad de Leticia, se puede observar que aunque se contemplan las áreas afectadas por la amenaza dentro del PBOT, no se determinan las acciones preventivas o de mitigación de los daños ocasionados por la disposición de residuos sólidos y líquidos en las fuentes de agua. Es común encontrar amplios sectores o barrios en los cuales no se han desarrollado completamente la cobertura de servicios públicos domiciliarios como acueducto y alcantarillado, lo cual empeora la situación de contaminación de las fuentes.

Figura 33. Disposición de Aguas negras en el sector norte del área urbana de Leticia. http://www.corpoamazonia.gov.co/files/Ordenamiento/POT/Exp_Municipal_Leticia.

2.6 Contexto demográfico

2.6.1 Población por área

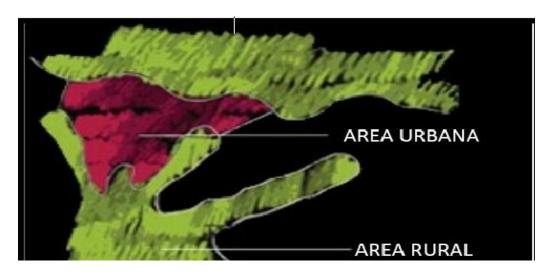


Figura 34. Grafico población según área rural y urbana Fuente. Elaboración propia de apartir de plan de desarrollo leticia

2.6.2 Población por sexo

Población	Cantidad	%
Población urbana	25.594	62%
Población rural	14.748	38%
total	40.342	100%

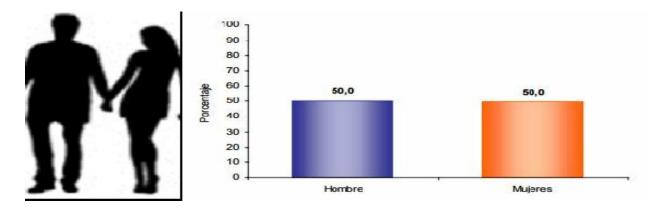


Figura 35. Población por Género Fuente: Boletín Censo General 2005 Perfil Leticia—Amazonas http://www.dane.gov.co/files/censo2005/perfiles/amazonas/leticia.pdf

2.6.3 Personas por hogar

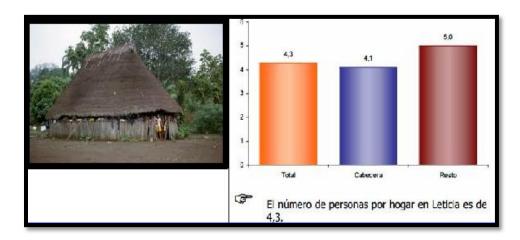


Figura 36. Número de personas por hogar *Fuente*: Boletín Censo General 2005 Perfil Leticia - Amazonas http://www.dane.gov.co/files/censo2005/perfiles/amazonas/leticia.pdf

2.6.4 Población Zona De Riesgo/Desplaza

Tabla 3. Edad Población En Riesgo/Desplazada

MUNICIPIO _ LLEGADA	1 – Menores de Edad	2 – Mayores de Edad	3 – Adultos Mayores	4 - ND	Total General
LETICIA	426	578	43	18	1065

Fuente. Plan de desarrollo de Leticia

Tabla 4. Educación Población En Riesgo/Desplazada

1 – Preescolar	2 – Primaria	3 – Secundaria	4 Técnico(a)/ Tecnólogo(a)	5 – Pregrado	6 – Postgrado	7 – Ninguno
14	359	270	8	15	2	106

Fuente. Plan de desarrollo de Leticia

2.6.5 distribución población

Tabla 5. Distribución Población

□ CAPITAL	LETICIA
RESGURADOS INDIGENAS	16
COMUNIDADES	26
BARRIOS	21
CENTROS POBLADOS	11
URBANIZACIONES	7

Fuente. Plan de desarrollo de Leticia

2.7 Contexto antropológico

2.7.1 Actividades realizadas población

IDIOMA: ESPAÑOL Y PORTUGUÉS

GENTILICIO LETICIANO

Figura 37. Actividades originarias amazónicas *Fuete:*https://sites.google.com/a/misena.edu.co/amazon2008/cultural

Las mujeres: siembran y mantiene los cultivos fabrican recipiente de barro y los budares, fogones para hacer las tortas de cazabe, la mayor parte de los objetos de cestería y procesa alimentos.

Los hombres: tala de bosques, fábrica de armas tradicionales, instrumentos musicales, hamacas de cumare, chambira u otras fibras, cierto tipo de cestería como los balayes y cebucanes o matafrios (un exprimidor de yuca) y canoas https://sites.google.com/a/misena.edu.co/amazon2008/cultural

2.7.2 Vivienda tradicional. Viven en aldeas pequeñas, de entre 40 o 50 personas, que se construyen en círculo completamente abiertas. Sus viviendas tienen forma cónica y viven en grupos de familias.

Figura 38. Imagen vivienda Leticia Fuete:https://sites.google.com/a/misena.edu.co/amazon2008/cultural

Se reúnen alrededor de la hoguera, comen, conversan, fabrican su utillaje, explican sus historias, mitos, leyendas y enseñan a los niños sus tradiciones.

Según (DANE, 2007), en el departamento existen 10.003 diferentes tipos de vivienda para el departamento, de las cuales 5.713 se ubican en las cabeceras y 4.290 se encuentran en las áreas rurales, existe además 608 diferentes tipos de viviendas desocupadas.

Tabla 6. Tipo De Vivienda

	TIPOS DE VIVIENDA AMAZONAS*								
		Cabecera			Rural				
TIPOS DE VIVIENDA	Ocupada con personas presentes	Desocupadas	Total	Ocupada con personas presentes	Desocupadas	Total	Total		
Casa	4.061	174	4.235	3.299	252	3.551	7.786		
Casa indígena	0	1	1	672	30	702	703		
Apartamento	683	43	726	10	0	10	736		
Tipo cuarto	625	99	724	10	4	14	738		
Otro tipo de vivienda	27	0	27	13	0	13	40		
Total	5.396	317	5.713	4.004	286	4.290	10.003		

Fuente: Sistema de Información Geográfica para la Planeación y el Ordenamiento Territorial – SIG-OT, 2010

Hogares en hacinamiento. Amazonas

Según el plan de ordenamiento Territorial (SIG-OT), 2010), la mayor parte del departamento presenta una tasa mayor al 70% en hacinamiento por hogar, mientras que Leticia y el corregimiento de El Encanto presenta valores entre 10 y 15% de hacinamiento por hogar, los corregimientos de Puerto Alegría y Mirití-Paraná no registraron valores.

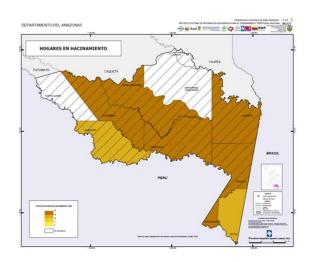


Figura 39. Tipo de vivienda

Fuente: Boletín Censo General 2005 Perfil Leticia - Amazonas

http://www.dane.gov.co/files/censo2005/perfiles/amazonas/leticia.pdf

2.8 Contextualización Urbanización manguare

2.8.1 Ubicación

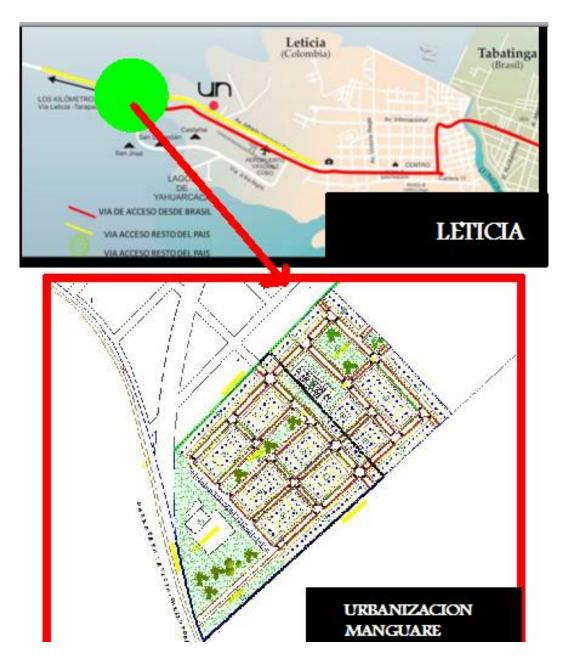


Figura 40. Ubicación urbanización Fuente. http://infraestructuramazonas.blogspot.com.co/2012/10

2.9 Población beneficiada

2.9.1 Áreas A Reubicar. Zonas Catalogadas Como De Alto Riesgo

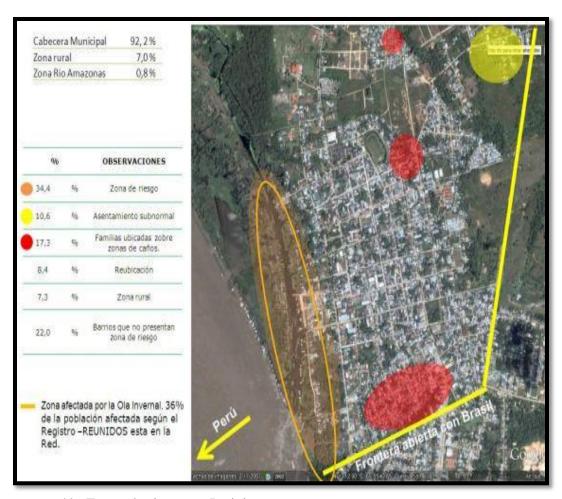


Figura 41. Zonas de riesgo en Leticia

Fuente: Plan de desarrollo Leticia

http://www.leticia-amazonas.gov.co/apc-aa-files/33366639393863386234333861356137/plan-de-desarrollo-municipio-de-leticia-lpc.pdf

Sectores comprendidos por el caño simón bolívar y san Antonio; entre los que se encuentran los barrios la unión, castañal bajo simón bolívar José maría Hernández, el porvenir.

Desplazadas Brasil. Asentamiento conocido como barrio nuevo, constituido por familias que en el año 2006 fueron desalojadas del Brasil por su condición de ilegales y se asentaron en la zona de línea de frontera.

Total
Fase I
210 VIVIENDA----- DOS FASES ----504 FAMILIAS
Tabla 7. Clasificación De Personas Beneficiadas

DESCRIPCION.	No.	Niños de 0- 13 años	Jóvenes de 14- 18 años.	Madres cabeza de Hogar.	Total Población.
FAMILIAS A REASENTAR.	230.	467	338	65	1.265
DESPLAZADOS.	12.				

Fuente. Plan de desarrollo de Leticia

Población Beneficiada Primera Fase

Tabla 8. Primera Fase

		No. DE FAMILIAS	No. DE VIVIENDAS
déficit de vivienda			4.000
Vivienda a reasignar de zonas de alto riesgo		1.200	
Predios en el casco urbano			9.334
□ Construcciones			9.000
SU	IBSIDIOS ASIGN	IADOS	
PROYECTO	URBANOS	RURALES	SUBSIDIOS
urbanización manguare	218		-
VIVIENDAS EN ZO	NAS DE RIESGO	(REASENTAMIENTO)	
			No. DE FAMILIAS
Caño san Antonio y simón bolívar			350
barrio el águila y victoria regia			350
isla de la fantasía			150
barrio ηuevo			115
TOTAL			1.200

Fuente. Plan de desarrollo de Leticia

2.10 Contexto físico

2.10.1 Áreas de cesión urbanización

Tabla 9. Cuadro general de áreas

	CUADRO GENERAL I	DE AREAS			
	CARACTERISTICAS DE	L PREDIO	_		
IDENTIFICA CION	2505540101155				DE 4000
IDENTIFICACION	RECREACIONALES	LINDEROS			
CERTIFICADO CATASTRAL No	00-00-0001-0019-001	NORTE 500MTS			LIVSION DE
CERTIFICADO CATASTRAL NO	00-00-0001-0013-001	NORTE		Δ ΝΔΟΙΩΝ CON Ε	CTENSION DE
MATRICULA INMOBILIARIA No	400-1188	SUR	500MTS	A NACION CON LA	(TENSION DE
WATRICOLA INWODILIARIA NO	400 1100	3010	CON PREDIOS DE L	A NACION COON E	EXTENSION
DIRECCION	RECREACIONALES LOS LAGOS	ORIENTE	DE 200MTS		
		-	CON PREDIOS DE L	A NACION CON EX	KTENSION DE
		OCCIDENTE	200MTS		
	DATOS DE LA URBAN	_	AREA	LINIDAD	PORC
ADEA CENEDAL DEL DREDIO	DESCRPCION	CANT	100.000,000		
AREA GENERAL DEL PREDIO		1,00			100%
AREA URBANIZABLE		1,00	58.650,300	IVIZ	89,84%
	20.100,0	LOTES	AREA	TOTAL	31,36
	MANZANA A	1 al 18	100,5	UNIDAD M2 M2	0,17
	MANZANA B	1 al 14	100,5		2,40
	MANZANA C	1 al 14	100,5		2,40
AREAS PRIVADAS	MANZANA D	1 AL 14	100,5		2,40
	MANZANA E	1 AL 18	100,5	·	3,08
	MANZANA F	1 AL 12	100,5		2,06
	MANZANA G	1 AL 12	100,5	1.206,00	2,06
	MANZANA H	1 AL 12	100,5		2,06
	MANZANA I	1 AL 13	100,5		2,23
	MANZANA J	1 AL 10	100,5		1,71
	MANZANA K	1 AL 10	100,5		1,71
	MANZANA L	1 AL 13	100,5	1.306,50	2,23
	MANZANA M	1 AL 18	100,5		3,08
	MANZANA N	1 AL 14	100,5	1.407,00	2,40
	MANZANA O	1 AL 8	100,5	804,00	1,37
	AREAS DE CES				
	17.328,011				29,54
	MANZANA P	1,00	272,1519		0,46
AREAS COMUNES DE CESION	MANZANA Q	1,00	1.653,2905		2,82
OBLIGATORIA	MANZANA R	1,00	2.808,9980		4,79
	MANZANA S	1,00	1.671,4784		2,85
	MANZANA T - ZONA DE EQUIPAMIENTOS	1,00	9090,9849		15,50
TOTA	MANZANA U	1,00	1831,1074	M2	3,12
IOIA	L DE AREAS DE CESION		17.328,0111		
AREA VIAS INTERNAS	VIAS Y ANDENES INTERNOS		21.222,2889	M2	36,18
TOTAL AREAS DE CESIONES			38.550,3000	M2	65,73
	RESUMEN GENERAL DE AREAS DEL I	PROYECTO URBA	NISTICO		
NUMERO DE LOTES UNIFAMILIAF				UND	200
TOTAL DE AREAS PRIVADAS				M2	20.100,00
TOTAL DE AREAS PUBLICAS					38.550,30
TOTAL AREA	M2 M2				

Fuente: Elaboración propia a partir de información suministrada por la empresa

2.10.2 Usos Del Suelo

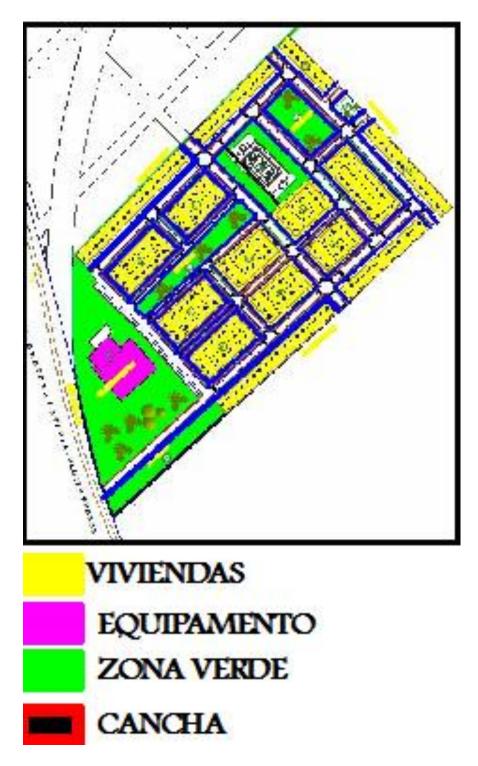


Figura 42. Plano de Usos del suelo Fuete: Elaboración propia

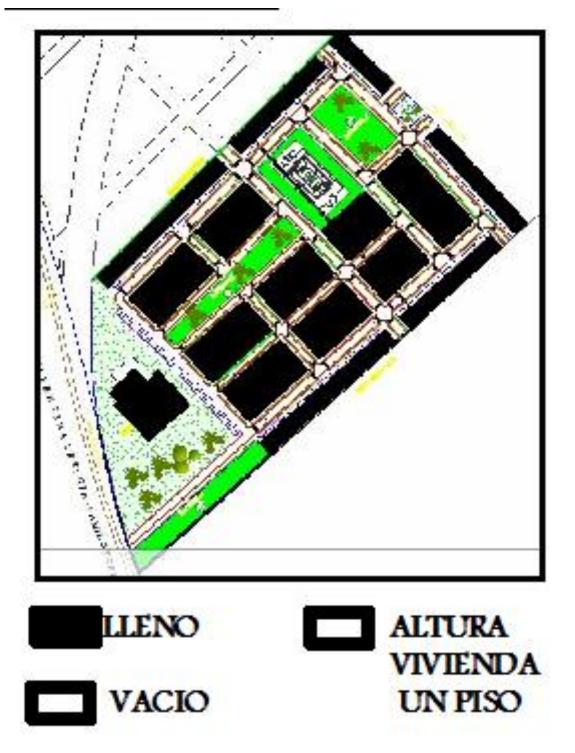


Figura 43. Plano De llenos y vacíos Fuente: Elaboración propia

63

2.12 Contexto Funcional

2.12.1 Ejes Estructurantes

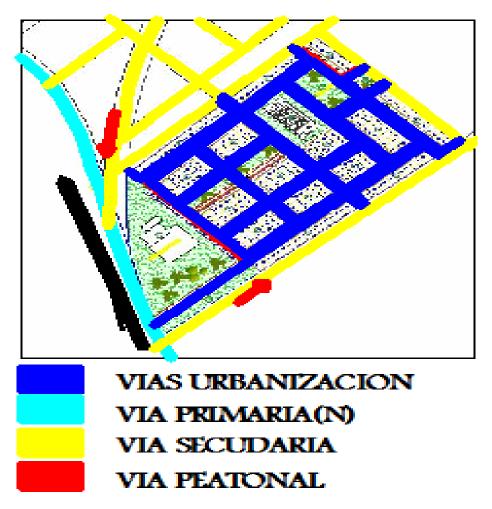


Figura 44. Plano de vías estructurantes Fuente: Elaboración PROPIA

Cuenta con *Via De Acceso Principal* debidamente construida en concreto rígido con un ancho de 3,5 metros; cuyo tramo comprende: sobre la calle 21 desde la carrera 1 A E hasta la carrera 3 E; y sobre la carrera 3 E desde la calle 21 hasta la calle 24, sobre la cual igualmente se encuentra construido el vox coulbert sobre el afluente de la quebrada urumutu de acceso a la urbanización.

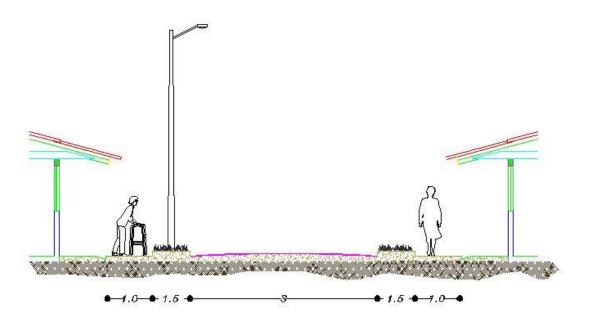


Figura 45. Perfil 1 Fuente: Elaboración propia

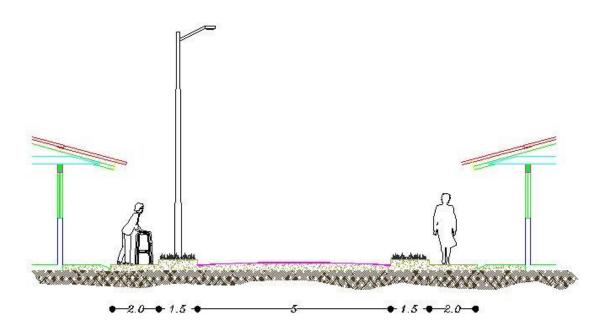


Figura 46. Perfil 2 Fuente: Elaboración propia 2.12.2 Servicios Públicos

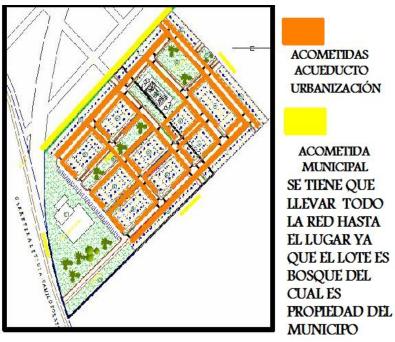


Figura 47. Llegada y distribución de servicios a urbanización manguare Fuente: Elaboración propia

2.13 Contexto Ambiental

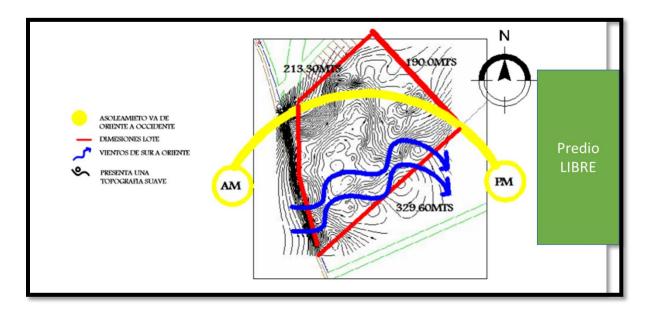


Figura 48. Condiciones ambientales del lote Fuente: Elaboración propia

La condición del lugar es muy favorable e vista a que esta dentro de una zona de altas precipitaciones lo que os contribuye el proceso de captación, además los vientos esta dispuestos de modo que circula de forma adecuada por la estructura vial lo que permite que la ventilación sea más distribuida y adecuada. EN cuanto a su topografía es suave esta entre 1 y el 2% en sus alrededores se observa la presencia de un área verde que nos puede servir para futuro tratamiento de las aguas servidas

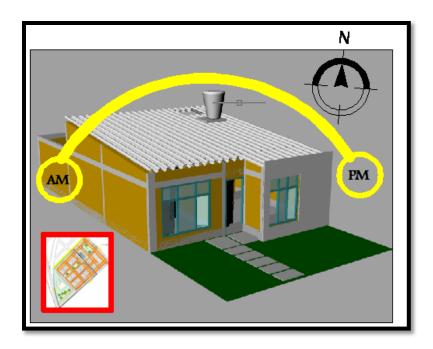


Figura: Vivienda con condiciones ambientales

Fuente: Elaboración propia

Si observamos en todas las viviendas va a tener una captación diferente de la energía solar ya que esta ubicadas de diferentes formas, de acuerdo al diseño, lo único que permite que sea la captación de forma más efectiva es la inclinación en este caso que fue modificada a 15%.

2.14 Referente

2.14.1 Referente captación aguas lluvias

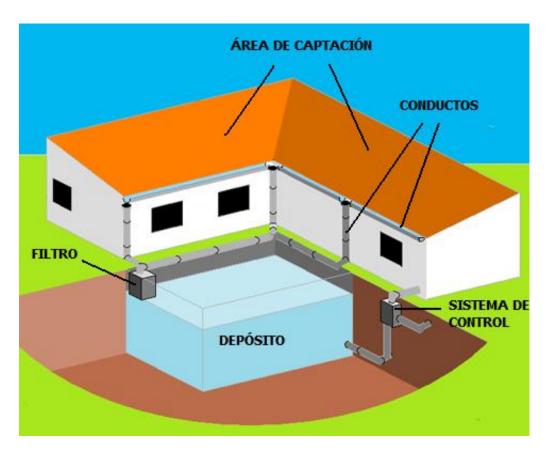


Figura 49. Captación de aguas lluvias

Fuente: http://www.sitiosolar.com/los-sistemas-de-recoleccion-de-agua-de-lluvia/

Recoger el agua de lluvia supone utilizar el espacio de los tejados y cubiertas de un edificio para captar el agua que precipita desde el cielo. Esta agua será canalizada, filtrada y almacenada en un gran depósito o aljibe para su posterior uso cuando sea necesario. Los sistemas de captación de agua constan de los siguientes elementos:

Área de captación- Consistente normalmente en el tejado y las cubiertas así como de cualquier superficie impermeable. El material en que se realicen o que de mínimo la cubra las cubiertas deben ser inocuas para el agua (piedras, tejas de cerámica, etc.) y no contener ningún impermeabilizante que pueda aportar sustancias Filtros- deben de eliminar el polvo y las impurezas que tóxicas a la misma.

Depósitos o aljibes- Son los espacios en los que queda almacenada el agua recolectada. Serán de diferentes tamaños en función del agua que se pueda y quiera almacenar. Las paredes del depósito deben de ser de materiales que permitan la correcta conservación del agua. Tradicionalmente los aljibes se construían como un espacio enterrado delimitado por muros. En la actualidad

acondicionados para contener esta agua. (Tanques

metálicos, depósitos plásticos etc....) que también pueden

ir enterrados.

Conductos de agua- Ya sea la propia inclinación del teiado v/o una serie de canalones o conductos que dirijan el agua captada al depósito. Deben de dimensionarse correctamente para evitar que se desborden y que se pueda desaprovecharse parte del agua.

porte el agua. Existen múltiples sistemas de filtrado que van desde la simple eliminación de las impurezas mas gruesas hasta los sistemas que permiten la potabilización y el pleno uso del agua. También existen filtros que permiten desechar automáticamente los primeros litros de agua recolectados en cada lluvia para permitir un lavado de la superficie colectora que elimine las impurezas que pueda haber.

existen también depósitos plásticos especialmente Sistemas de control- Estos son sistemas opcionales que gestionan la alternancia de la utilización del agua de la reserva y de la red general. Es decir cuando el agua de Iluvia se acaba pasa automáticamente a suministrar agua de la red. En el momento que vuelve a llover y se recarga el depósito pasa de nuevo a emplear el agua de la red.

Figura 50. Proceso De Reutilización Aguas Lluvias Fuente: http://www.sitiosolar.com/los-sistemas-de-recoleccion-de-agua-de-lluvia/

2.15 Referente tratamiento Aguas Grises

Las aguas grises son todas aquellas utilizadas y generadas en duchas, bañeras, lavamanos y lavanderías. Denominamos reciclaje o tratamiento de aguas grises al sistema que nos permite utilizar esta agua para usos en los que no es imprescindible el agua potable, tales como inodoros, riego, lavadoras o limpieza de suelos o vehículos. El agua resultante es un agua limpia y completamente higiénica que, sin embargo, no recibe legalmente el estatus de agua potable, pero que puede utilizarse en multitud de usos cotidianos de casas particulares, restaurantes, hospitales, polideportivos, etc. ahorrando miles y miles de agua potable al año.

2.15.1 Cantidades de captación vivienda aguas grises

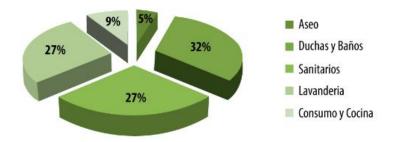


Figura 51. Porcentajes De Realización Aguas Grises
Fuente: http://recitrac.co/home/index.php/component/content/article?id=108

2.15.2 Captación Y Distribución Aguas Grises

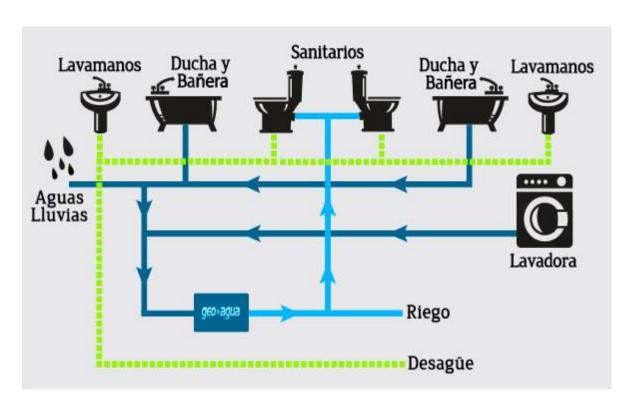


Figura 52. Captación Y Distribución Aguas Grises
Fuente: http://recitrac.co/home/index.php/component/content/article?id=108

2.15.3 Utilización De Aguas Grises. ¿Cuánta agua gris puede generar una unidad unifamiliar?. Como un estándar se tiene que una unidad unifamiliar puede generar 110.000 litros de aguas grises al año, o un equivalente de 300 litros de aguas grises al día.

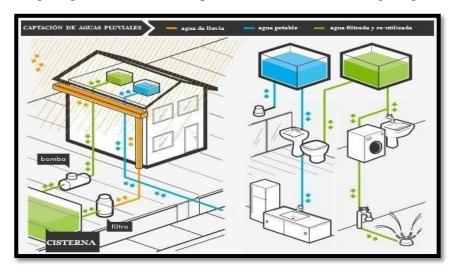


Figura 53. Utilización de aguas grises
Fuente: http://recitrac.co/home/index.php/component/content/article?id=108

2.16 Referente Aguas Servidas

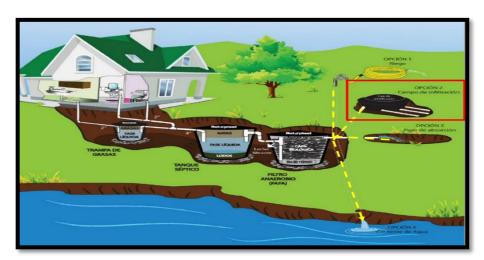


Figura 54. Esquema de un sistema individual de tratamiento de aguas residuales con 4 opciones de disposición de las aguas residuales tratadas: 1) Riego; 2) Campo de Infiltración; 3) Pozo de Absorción; y 4) Corriente Hídrica

Fuente:http://www.rotoplast.com.co/wp-content/uploads/Sistema-septico-domiciliario-diagrama.jpg

Figura 55. Adecuación de terrenos para la instalación de un sistema individual de tratamiento de aguas residuales, en el sitio de origen Fuente:

http://www.fcpa.org.pe/archivos/file/Proyectos/Proyectos%20ejecutados/C1L2%202009/Agua% 20y%20Saneamiento/031%20Laramate/Laramate%20-%20zanjas%20de%20infiltracion.jpg

Los sistemas individuales se fundamentan en el tratamiento y disposición "in situ" de las aguas residuales generadas por viviendas aisladas o pequeñas urbanizaciones e instalaciones, en general, en donde no es posible el vertido de las aguas servidas a una red de alcantarillado (bien sea por inexistencia o por distancia). Debido a que estas aguas no deben ser vertidas sin tratamiento, se han planteado desde hace varias décadas, sistemas pequeños que permiten el tratamiento y la disposición de estos efluentes sobre el suelo, con el mínimo impacto sobre los ecosistemas o sobre los componentes ambientales (aire, agua, suelo, población, etc.).

CAPITULO III

3. Desarrollo proyecto

3.1 Sistemas Alternativos Sostenible Hidrosanitarios

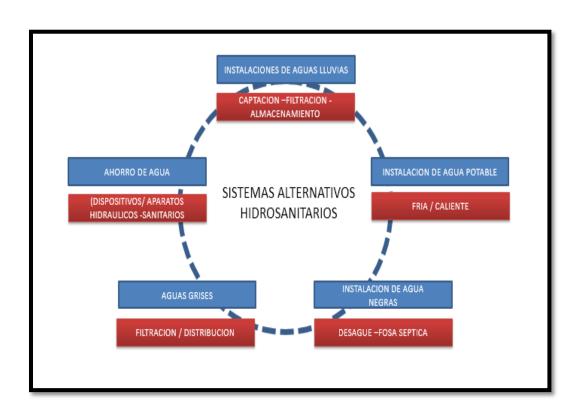


Figura 56. Sistemas Alternativos Ahorro Hidráulicos Fuente: Elaboración propia

Las instalaciones de aguas pluviales y aguas lluvias de los techos y pisos serán tratada a partir de filtros y su posterior almacenaje como agua potable

Las instalaciones de agua potable distribuirán el agua en duchas, lavadero, y lavadora. La cisterna de agua potable deberá procurar almacenar el agua suficiente para épocas de sequía, y en caso de no ser así, también se podrá bombear Agua de la presa para ser filtrada y utilizada.

El agua potable se calentará por medio de un colector solar con la capacidad suficiente para satisfacer las necesidades de agua caliente para 3 personas, y se distribuirá en duchas, lavamanos y en el lavadero.

Las instalaciones de aguas grises, reutilizarán el agua proveniente de los desagües de Lavamanos, lavaplatos, duchas, lavadero y lavadora, filtrándolas y almacenándolas, para después ser distribuidas en los inodoros y como agua para riego.

Las instalaciones de aguas negras, conducirán las aguas provenientes de los inodoros, y de los posibles excedentes de aguas pluviales y grises, a una fosa séptica para descomponer los residuos sólidos y más adelante a un pozo de absorción para re infiltrarlos líquidos al subsuelo.

Para obtener una buena presión en la distribución del agua s utilizarán tanques Elevados para el agua potable y las agua grises, por lo que también se ocuparán Bombas para elevar e agua y llevarla de las cisternas a los tanques.

Para un menor consumo de agua y dimensionar correctamente los Contenedores de almacenamiento, se instalarán dispositivos ahorradores

Inodoros de bajo consumo, regaderas ahorradoras y Perlizadores,

En baños, lavamanos, lavaplatos, fregaderos Y duchas;

Con el uso de estos dispositivos se podrá alcanzar un Ahorro de aproximadamente 50%, sin modificar los hábitos de consumo.

Figura 57. Desarrollo General Instalaciones

Fuente: "Diseño de los sistemas eléctricos e hidraúlicos para el desarrollo de una casa ecológica autosuficiente en el estado de querétaro"

3.2 APARATOS AHORRADORES DE AGUA

3.2.1 Perlizadores

Ahorrador Economizador De Agua Grifos Lavaplatos Lavamanos

\$ 14,500

Figura 58. Perlizadores Lavaplatos

Fuente: http://portal.homecenter.com.co/hogarverde/ahorro-agua/

Estos son dispositivos que van acoplados directamente a la salida de los aparatos como lavamanos, lavaplatos fregaderos y duchas y son los que filtran el agua y hacen del agua sea más suave, pero además haciendo de forma efectiva y beneficiosa el *Desarrollo General Instalaciones* la salida del aire, reduzca la cantidad de agua gastada de u 40% a un 70% en la vivienda. Estos dispositivos los podemos encontrar tipo hembra u se pueden instalar en todas las salidas de los aparatos

3.2.2 Inodoros ahorradores. Este tipo de aparato ahorra de forma muy efectiva ya que en cada descarga utiliza solo cinco litros de agua, mientras que los inodoros tradicionales evacuan entre 12 y 23 litros de agua en cada una, mencionando además que el sistema va a incluir la utilización de aguas grises lo que permitirá un mayor ahorro

Figura 59. Sanitario Ahorrador

Fuente: https://www.easy.com.co/c/sanitarios/

3.2.3 Regaderas Ahorradoras. En las duchas se utilizara este sistema porque su diseño solo permite la evacuación de solo 10 litros por minuto lo que nos lleva a un ahorro del 20% al 80% frente a las duchas tradicionales contando además con las ventajas de fácil instalación y resistencia al agua caliente.

Figura 60. Dispositivos Perlizadores Para Ducha Fuente. http://portal.homecenter.com.co/hogarverde/ahorro-agua/

3.2.4 Grifería Monomando. Ayudan a reducir el consumo de agua hasta un 50% gracias a un sistema de clic de seguridad que obliga a forzar el mando hacia arriba si se desea una mayor cantidad de agua. Además, incorpora un dispositivo que permite disminuir la temperatura del agua.

3.2.5 Monomando Convencional. Grifería tres reduce en un 50% el consumo de agua y de energía, una grifería mano mando incorporado un sistema de apertura en agua mono mando esta posición central y permiten utilizar agua caliente solo cuando se gira hacia a la izquierda

A continuación se desarrolla el análisis con los aparatos y dispositivos en una vivienda convencional y una vivienda con aparatos ahorradores en una vivienda para un núcleo familiar de tres personas

3.3 Análisis

3.3.1 Análisis De Vivienda Convencional Consumo

Tabla 10. Consumo Con Aparatos Tradicionales Por Mes

	% CONSUMO	LITROS CONSUMO
LAVADORA	31%	4960 litros
DUCHA	14%	2240 litros
LAVAMANOS	3%	480 litros
LAVAPLATOS	15%	2400 litros
SANITARIOS	26%	4160 litros
LAVADERO	4%	640litros
JARDÍN	1%	160 litros
LIMPIEZA	3%	480 litros
PREPARACIÓN ALIMENTOS	3%	480 litros
	total	16000m2/mes

Fuente: "Diseño de los sistemas eléctricos e hidráulicos para el Desarrollo de una casa ecológica autosuficiente en el estado de Querétaro"

3.3.2 Análisis De Vivienda Con Aparatos Ahorradores

Tabla 11. Consumo Con Aparatos Ahorradores Por Mes

	% CONSUMO	LITROS CONSUMO
LAVADORA	0%	4960
DUCHA	50%	1120
LAVAMANOS	40%	28,8
LAVAPLATOS	40%	1440
SANITARIOS	72%	1160
LAVADERO	0%	640
JARDÍN	0%	160
LIMPIEZA	0%	480
PREPARACIÓN ALIMENTOS	0%	480
	total	10468,8

Fuente: "Diseño de los sistemas eléctricos e hidráulicos para el Desarrollo de una casa ecológica autosuficiente en el estado de Querétaro"

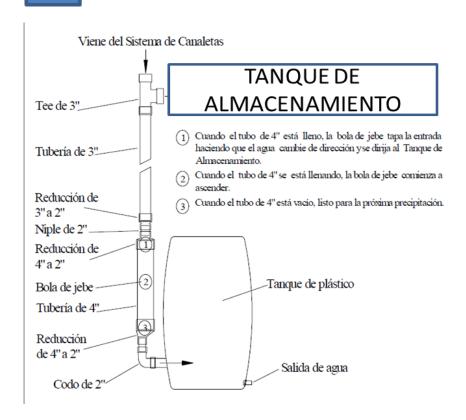
Se puede concluir que el ahorro es muy significativo ya que es 5531 litros que comparado con una vivienda tradicional representa un ahorro del 34,56%% de su promedio en el mes, lo que significa 165.930 litros /día.

En base a lo anterior se deduce la cantidad de almacenamiento en los tanques de y se evalúa la captación de las aguas pluviales determinando si es o no suficiente para las necesidades de la vivienda.

3.4 Instalaciones De Aguas Lluvias

3.4.1 Proceso

R E C O L E C C I O N


C A P T A C I O N

INTERCEPTOR:

• CONCRETO PARA CUALQUIER VOLUMEN

EN EL DISEÑO DEL DISPOSITIVO SE DEBE TENER EN CUENTA EL VOLUMEN DE AGUA REQUERIDO PARA LAVAR EL TECHO Y QUE SE ESTIMA EN 1 LITRO POR M2 DE TECHO. EVITANDO CONTAMINACION

A L M A C E N A M I E N T 0

ALMACENAR EL VOLUMEN DE AGUA DE LLUVIA,EL CONSUMO DIARIO

IMPERMEABLE PARA EVITAR LA PÉRDIDA DE AGUA POR GOTEO O TRANSPIRACIÓN,

- DE NO MÁS DE 2 M DE ALTURA PARA MINIMIZAR LAS SOBRE PRESIONES,
- CON TAPA PARA IMPEDIR EL INGRESO DE POLVO, INSECTOS Y DE LA LUZ SOLAR,
- DISPONER DE UNA ESCOTILLA CON TAPA SANITARIA LO SUFICIENTEMENTE GRANDE COMO PARA

QUE PERMITA EL INGRESO DE UNA PERSONA PARA LA LIMPIEZA Y REPARACIONES NECESARIAS,

- LA ENTRADA Y EL REBOSE DEBEN CONTAR CON MALLAS PARA EVITAR EL INGRESO DE INSECTOS Y ANIMALES.
- DOTADO DE DISPOSITIVOS PARA EL RETIRO DE AGUA Y EL DRENAJE.

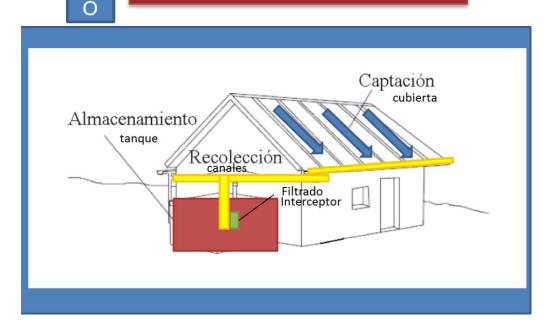


Figura 61. Proceso De Captación Y Recolección De Aguas Lluvias Fuente: "Diseño de los sistemas eléctricos e hidráulicos para el Desarrollo de una casa ecológica autosuficiente en el estado de Querétaro"

3.5 Diseño

Figura 62. Precipitación Del Lugar

3.5.1 Análisis Precipitación Leticia Amazonas

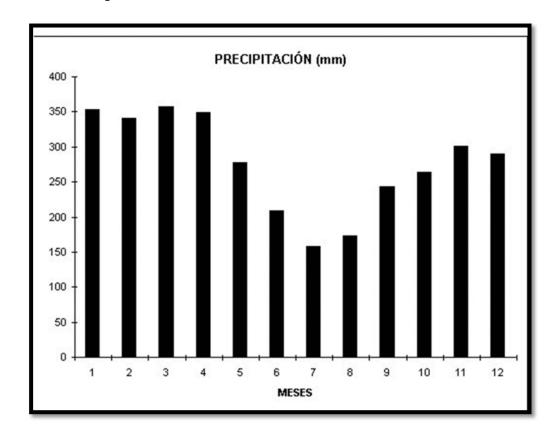


Figura 63. Precipitación Mm-Mes

Fuente: Programa de Meteorología Aeronáutica del IDEAM

Tabla 12. Precipitaciones Por Mes

MES	DIAS
ENERO	350
FEBRERO	320
MARZO	350
ABRIL	330
MAYO	370
JUNIO	170
JULIO	150
AGOSTO	154
SEPTIEMBRE	230
OCTUBRE	260
NOVIEMBRE	280
DICIEMBRE	250

Fuente: "Diseño de los sistemas eléctricos e hidráulicos para el Desarrollo de una casa ecológica autosuficiente en el estado de Querétaro" y Programa de Meteorología Aeronáutica del IDEAM

A partir de la gráfica anterior se realizó los cálculos y se concluyó:

- En Leticia la precipitación media multianual es de 3.194 mm., con valores mínimos en los meses de julio-agosto
- El promedio de agua lluvia que cae es de promedio 266,66 mm/ m2 en un mes
- En un día 8,86 mm/ m2

Conclusión:

1mm de lluvia -----1m2 de suelo

De lo anterior se determina que al día cae por cada metro cuadrado

8,86 litros por metro de suelo

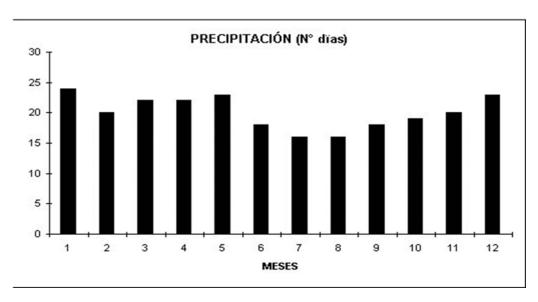


Figura 64. Precipitación –Día Mes *Fuente:* Programa de Meteorología Aeronáutica del IDEAM

Tabla 13. Precipitaciones Días Por Mes

MES	DIAS
ENERO	24
FEBRERO	20
MARZO	23
ABRIL	23
MAYO	24
JUNIO	18
JULIO	16
AGOSTO	18
SEPTIEMBRE	19
OCTUBRE	20
NOVIEMBRE	21
DICIEMBRE	24

Fuente: Programa de Meteorología Aeronáutica del IDEAM

Área De Captación

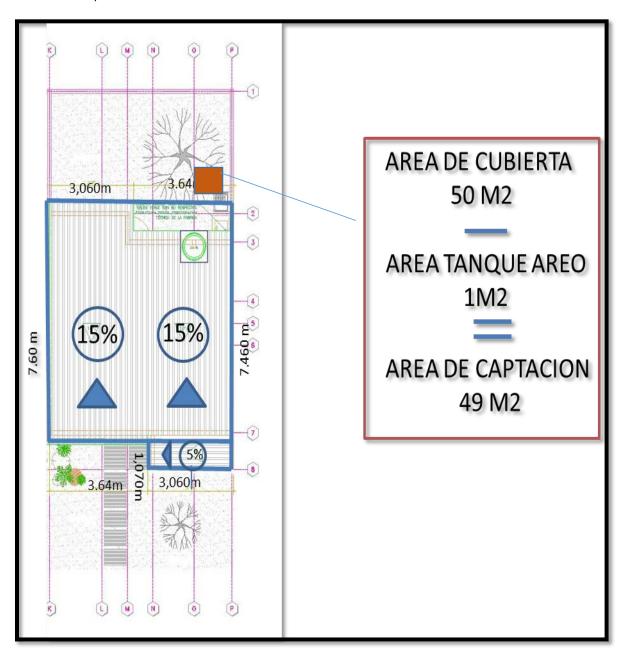


Figura 65. Cubierta Vivienda Fuente. Elaboración propia

Escorrentía Para Material De La Superficie De Captación

Tabla 14. Precipitaciones Días Por Mes

Material	COEFICIENTE DE ESCORRENTÍA
LAMINA METÁLICA	0.9
APLANADO DE CEMENTO Y TECHO DE ARCILLA	0,85
Madera	0.8
Paja	0.7

Fuente: "Diseño de los sistemas eléctricos e hidráulicos para el desarrollo de una casa ecológica autosuficiente el estado de Querétaro"

Material cubierta

<u>Cubierta master 1000 de acceso color verde con su respectiva estructura según</u> especificación técnica de la fábrica

Coeficiente escorrentía correspondiente a este material

0,85

Se procede a determinar la cantidad de agua captada por mes por Medio de la siguiente fórmula:

$$A_i = P_{Pi} \frac{P_{Pi} X Ce X Ac}{1000}$$

DONDE:

PPI= PRECIPITACION PROMEDIO MENSUAL (L/M2)

Ce= coeficiente de escorrentía

AC= AREA DE CAPTACION (M2)

AI= ABASTECIMIENTO CORRESPONDIENTE AL MES "I" (M3)

Determinar el volumen del tanque de almacenamiento

$$Vi = Ai - Di$$

DONDE=

VI = Volumen Del Tanque De Almacenamiento Necesario Para Un MeS "I" (M3)

AI= Volumen Del Agua Que Se Captó En El Mes "I" (M3)

DI=Volumen Del Agua Demandada Por El Usuario Para El Mes" (M3)

Tabla 15. Tabal De Captación, Demanda Y Almacenamiento

MES	Precipitació n (mm)	Abastecimient o (mm)	Demanda (m3)	Almacenamiento (m3)
ENERO	350	14,57	7,44	7,13
FEBRERO	320	13,74	6,72	7,02
MARZO	350	14,57	7,44	7,13
ABRIL	330	13,74	7,2	6,54
MAYO	370	15,41	7,44	7,97
JUNIO	170	7,08	7,2	-0,12
JULIO	150	7,08	7,2	-0,12
AGOSTO	154	7,08	7,44	-0,36
SEPTIEMBRE	230	9,57	7,2	2,37
OCTUBRE	260	10,82	7,44	3,38
NOVIEMBRE	280	11,62	7,2	4,42
DICIEMBRE	250	10,41	7,2	3,21
TOTAL		135,69	87,12	48,57
PROMEDIO		11,3075	7,26	4,0475

Fuente: Elaboración propia a partir de Programa de Meteorología Aeronáutica del IDEAM y "diseño de los sistemas eléctricos e hidráulicos para el desarrollo de una casa ecológica autosuficiente en el estado de Ouerétaro"

Para esta vivienda se necesita un tanque de almacenamiento de 22,615m3

Los valores de precipitación de la tabla anterior son los valores promedio de la zona, y como se puede observar, para un año promedio se tendrá la cantidad suficiente de agua para satisfacer las necesidades, se tendrán que almacenar un una tanque de

almacenamiento de 23 m3 para poder contar con el agua suficiente para los meses en los que casi no llueve.

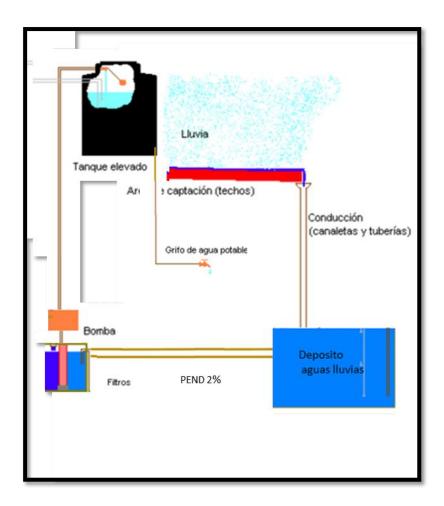
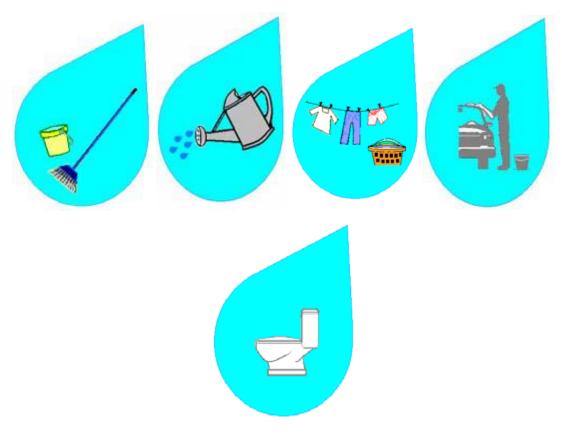



Figura 66. Sistema de captación con dos contenedores: uno enterrado y otro elevado Fuente: Elaboración propia

3.6 Uso Que Se Le Pretende Dar Al Agua De Lluvia Captada

Según la necesidad o prioridad el agua puede servir para:

Usos simples como limpieza de pisos, inodoros o excusados, limpieza de ropa, riego de plantas, limpieza de autos y otros

Usos complejos: Limpieza corporal, agua para beber y cocinar.

Figura 67. Uso Aguas Lluvias Fuente: Utilización http://es.slideshare.net/marilooliis/aguas-pluviales-38991618del agua

3.7 Tanque De Aguas Lluvias

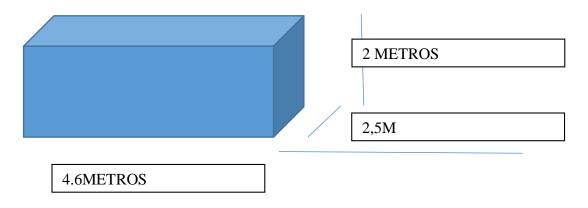


Figura 68. Dimensiones De Tanque

Fuente: Elaboración propia

El sistema para almacenar el agua proveniente de la captación de aguas lluvias es un deposito flexible fabricado en poliéster con PVC y resistente al desgarro, la posición de este depósito es subterránea y está cubierta por una malla que permita el cubrimiento.

La gran ventaja de este depósito es la sencillez de su instalación El agua en estos depósitos se mantiene limpia de algas ya que no hay aire y la calidad del tejido permite incluso que pueda utilizarse para agua potable. En tal caso habría que aplicarle un recubrimiento de tejido de registro sanitario.

Figura 69. Deposito Flexible

Fuente: http://blog.is-arquitectura.es/2008/07/27/deposito-bolsa-para-aguas-pluviales/

- Tratamiento anti UV.
- Garantía de 10 años.
- Modulable, con capacidad de almacenamiento de 1 a 400m³. Incluso es posible una fabricación "a medida".
- No hay evaporación del agua almacenada.

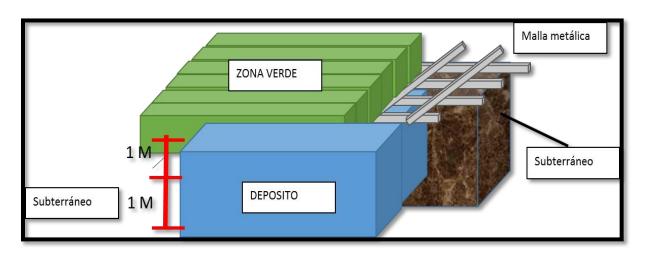


Figura 70. Esquema Deposito Flexible Agua Lluvia

Fuente: Elaboración propia

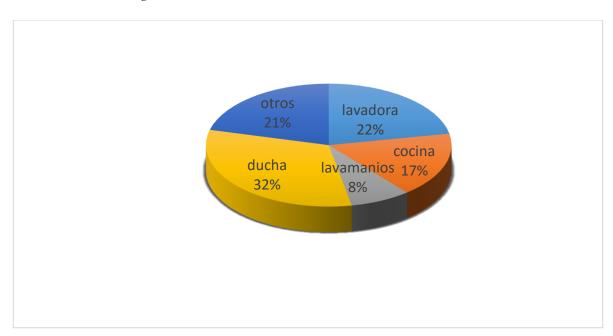
La ubicación de este depósito subterráneo va hacer en la parte posterior de la vivienda ya que es el único espacio de área grande y libre en caso de mantenimiento para evitar cualquier incomodidad y la malla con el fin de brindar protección ante cualquier.

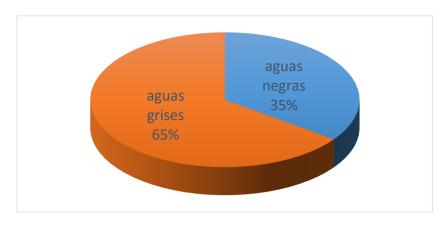
3.7.1 Instalaciones Aguas Grises. Las aguas grises se definen como las aguas residuales, generadas por la duchas, lavamanos, lavaplatos, lavadoras y lavaderos (Jefferson et al, 2004), estas representan la mayor fuente potencial de ahorro de agua en las viviendas, ya que representan entre el 50 y 80 % del uso total de agua (Flowers, 2004).la reutilización pueden conseguir el ahorro de entre un 30% y un 45% de agua potable; protege las reservas de agua subterránea y reduce la carga de las aguas residuales (Gallo, 2010).

Son las derivadas de las actividades realizadas en los hogares, tales como lavado de ropas, uso de la ducha, el lavamanos, lavado de platos y utensilios. Son altamente nutritivas para las plantas y representan entre el 55 y 75 % del consumo de agua potable en el hogar (Morel & Diener, 2006), tanto en zonas urbana como en zonas rurales (Abu Ghunmi, 2009).

3.7.2 Análisis de aguas grises en vivienda

3.7.2.1 Distribución aguas lluvias




Gráfico 1. Distribución de aguas grises por fuente en una vivienda.

Fuente: Elaboración propia partir de estudio de las aguas grises domésticas en tres niveles socioeconómicos de la ciudad de Bogotá

file:///c:/users/hp/downloads/ninorodriguezelkindario2013.pdf

Aguas grises crudas domésticas. Son las provenientes de lavamanos, duchas, lavaplatos, lavaderos y lavadoras de los inmuebles y aún no han sido tratadas o expuestas a algún proceso de mejora. Y comprenden entre el 60 y 75 % del agua residual de las viviendas (Gulyas & Raj Gajurel, 2004),

3.7.2.2 Producción de aguas grises y negras en el hogar

Gráfico 2. Distribución de aguas negras y grises en los hogares. Fuente: adaptado de Rodríguez, Argentina (2008).

La producción de aguas grises depende de las dinámicas de la vivienda. Se influencia por factores como el servicio de suministro de aguay la base principal la infraestructura como es caso de este proyecto ya que esta no está a mano por causa de ser alejado del área urbana, el número de miembros de la casa, la distribución de edades y las características del estilo de vida de los mismos. Los volúmenes de agua gris son bajos en regiones dónde se usan ríos o lagos para la higiene personal, el lavado de ropa y utensilios de la cocina. Los datos indican, que el consumo típico de agua gris esta entre 90 y 120 L/Hab. – Día, con el agua conducida por tuberías (Morel & Diener, 2006).

Teniendo en cuenta países como Australia donde la producción es igualmente baja, derivada de los escases del agua, y el acceso limitado al recursos tambien la producción de agua gris por persona está en 120 L/Hab. – día según el Departamento de Salud del Gobierno del Oeste de Australia (2010), de los cuales el 50 % lo generan los baños.

Generalmente estas aguas representan entre el 50 y 80 % del uso total de agua de las viviendas (Eriksson et al, 2002; Al-Jayyousi, 2003; Flowers, 2004;). En nuestro medio estas

corresponden al 26 % del agua potable consumida en una vivienda estrato 4, y la fuente de mayor generación, es la ducha (Ochoa, 2007).

3.7.2.3 Sustancias y productos en aguas grises y servidas

Tabla 16. Sustancias Y Productos Contenidos En Cada Una De Las Fuentes De Aguas Grises Y Servidas En Vivienda

Origen	contenido	observaciones
Duchas	Jabón ,shampo ,algunas grasas y baterías	
fregadero, lavaplatos	Materia orgánica ,nutrientes ,solidos, detergentes ,y altos niveles de grasas y aceites	Normalmente necesita pre tratamiento
lavadero	Altas concentraciones de detergentes y regulares de químicos como cloro además de higiene	El lavado de pañales puede elevar drásticamente los niveles de patógenos
lavamanos	Jabones ,pasta de dientes y otros productos de higiene	
Sanitarios	Altas cantidades de patógenos y materia orgánica	No deben integrarse a un sistema de aguas grises

Fuente: Rodríguez, Argentina (2008)

3.8 La Reutilización De Aguas Grises

Según El Ministerio de Vivienda y la Comisión de Regulación de Agua y Saneamiento Básico (CRA) anunciaron EL 8 DE FEBRERO DEL PRESENTE AÑO LA nuevas disposiciones para fomentar el ahorro y uso eficiente del agua y evitar el derroche del líquido vital, (Min vivienda 2016).

Modificación del consumo básico de agua. Otra de las disposiciones que adoptó la CRA fue rebajar los topes de agua para consumo en los hogares.

En ese sentido, se redujo el consumo básico de 20 metros cúbicos en todo el país para los estratos 1, 2 y 3, dependiendo de cada municipio, así:

- 16 metros cúbicos para municipios ubicados en clima cálido
- 13 metros cúbicos para municipios de clima templado
- 11 metros cúbicos para municipios ubicados en clima frío.

EL CONSUMO PROMEDIO DE UNA FAMILIA EN COLOMBIA ES DE 10,76 METROS CÚBICOS DE AGUA Y EL CONSUMO POR HABITANTE ES DE 76,32 LITROS POR DÍA.

A PARTIR DE LAS DOS FUENTES LO QUE GASTA COMÚNMENTE UN USUARIO DE ESTRATO 1 Y EL CONSUMO BÁSICO EN LOS ESTRATO 1 ,2 Y 3

Gráfico de análisis de consumo de vivienda convencional colombiana

Fuente: www.ministerio vivienda.gov.co

Tomaremos la opción dos, correspondiente a el valor de clima cálido que es en este caso 16 m3 el que nos compete y además por el motivo de que un proyecto de vis que va hacer por parte del gobierno

3.9 Análisis y adaptación de sistema de aguas grises a estrato 1

Tabla 17. Consumo agua potable estrato 1

Estrato	Consumo común	Consumo básico mes	Consumo clima cálido / mes	Consumo con equipos ahorradores
	72,32	20. 2	16.2	10.026.2
1	litros/día/hab	20 m3	16m3	10,036m3
		20000 litros	16000 litros	10036 litros

Fuente: Elaboración propia

10468 litros en 30 días

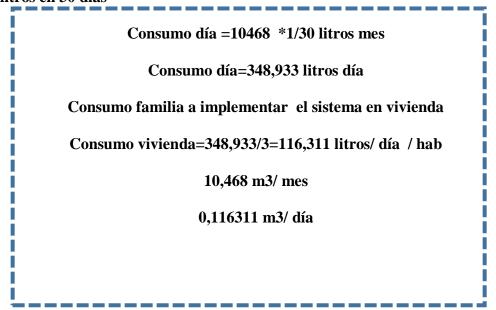


Figura 71. Cálculo De Consumo De Agua En Vivienda Con Captación De Aguas Lluvias Y Perlizadores

Fuente: Elaboración propia

Tabla 18. Puntos De Consumo De Aguas En La Viviendas

Punto	punto
1	Lavadora
2	Ducha
3	Lavamanos
4	Lavaplatos
5	Sanitarios
6	Lavaderos
7	Jardín y materas
8	Limpieza de pisos
9	Preparacion de alimentos

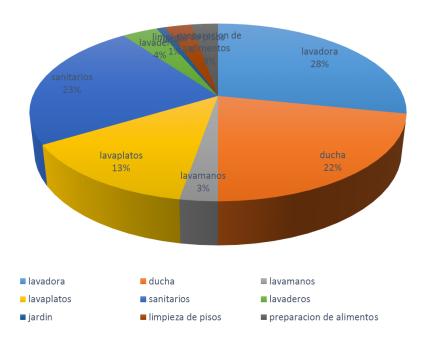

Fuente: Elaboracion prropia

Tabla 19. Puntos de recolección de aguas grises en una vivienda

No	punto
1	Lavadora
2	Duchas
3	Lavamanos
4	Lavaplatos
5	Lavadero
6	Limpieza general(pisos)

Fuente: Elaoracion propia

Observando la zona donde va a implementar el sistema se debe tener en cuenta el estrato y de acuerdo a esto el gasto que este tiene puntualmente. En este caso el estrato 1 ya que es el beneficiado con el proyecto de vivienda

Gráfico 3. Consumo De Agua Potable Por Punto En El Estrato 1 Elaboración propia partir de file:///C:/Users/HP/Downloads/NinoRodriguezElkinDario2013.pdf

Estudio de las aguas grises domésticas en tres niveles socioeconómicos de la ciudad de Bogotá

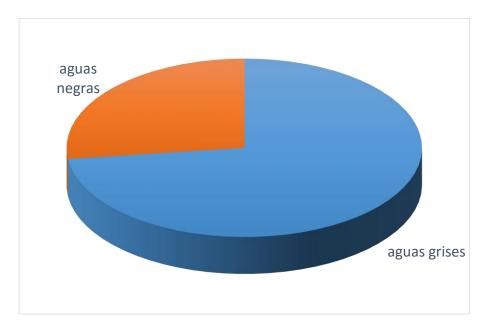
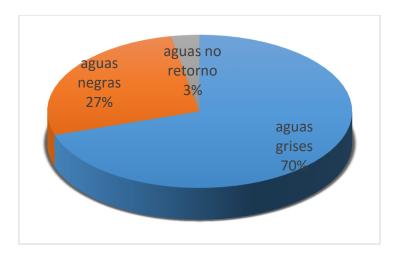
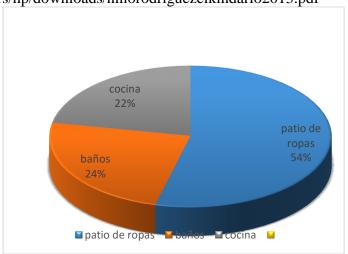



Gráfico 4. Composición de las aguas residuales en el estrato1

Fuente: Elaboración propia partir de estudio de las aguas grises domésticas en tres niveles socioeconómicos de la ciudad de Bogotá

file:///c:/users/hp/downloads/ninorodriguezelkindario2013.pdf

Determinó la distribución del agua consumida con respecto a la producción de aguas negras, grises y de no retorno. Como aguas grises se tomaron las aguas producidas por la lavadora, la ducha, el lavamanos, el lavaplatos, el lavadero y la limpieza de pisos. Las aguas negras fueron las producidas por el sanitario, y las de no retorno, las consumidas en la preparación de alimentos y el riego de jardines y materas.



Gráfica: Distribución del agua consumida en el estrato 1

Fuente: Elaboración propia partir de estudio de las aguas grises domésticas en tres niveles

socioeconómicos de la ciudad

debogotáfile:///c:/users/hp/downloads/ninorodriguezelkindario2013.pdf

Gráfico 5. Produccion De Aguas Por Zona Estrato 1

Fuente: Elaboración propia partir de estudio de las aguas grises domésticas en tres niveles socioeconómicos de la ciudad de Bogotá

file:///c:/users/hp/downloads/ninorodriguezelkindario2013.pdf

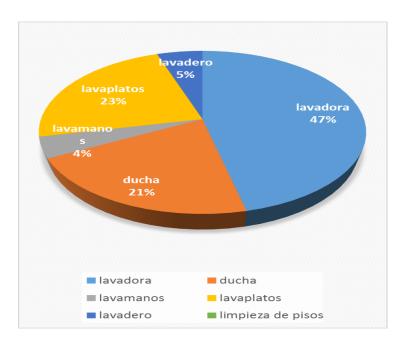


Gráfico 6. Producción de aguas grises estrato 1

Fuente elaboración propia partir de estudio de las aguas grises domésticas en tres niveles socioeconómicos de la ciudad de Bogotá

file: ///c: /users/hp/downloads/ninorodriguezelkindario 2013.pdf

Adaptación de gasto captación de aguas grises a consumo y adaptación de sistemas

Tabla 20. Captación De Aguas Grises En Litros

Agua grises	70%	7328,3 litros
Aguas negras	27%	2826,63litros
Aguas no retorno	3%	314,07Llitros

Fuente: Elaboración propia

Tabla 21. Captación Por Zona

Patio de ropas	54	5653,26 litros
Baños	24	2512,56 litros
cocina	22	2303.18 litros

Fuente: Elaboración propia

Tabla 22. Producción de aguas grises estrato 1

Lavadora	47%	3444.30 litros
Lavamanos	4%	293.132litros
Lavadero	5%	366.415 litros
Ducha	21%	1538.943litros
lavaplatos	20%	1465.66litros
Limpieza de pisos	3%	219.849 litros

Fuente: Elaboración propia

Tabla 23. Consumo de agua potable por punto en el estrato 1 con ahorradores

	% ahorro	litros ahorro
Lavadora	0%	4960 litros
ducha	50%	1120 litros
lavamanos	40%	28,8 litros
lavaplatos	40%	1440 litros
sanitarios	72%	1160 litros
lavadero	0%	640 litros
Jardín	0%	160 litros
limpieza	0%	480 litros
Preparación alimentos	0%	480 litros
	total	10468,8 litros

Fuente: Elaboración propia

3.10 Captación y distribución vivienda prototipo urbanización manguare

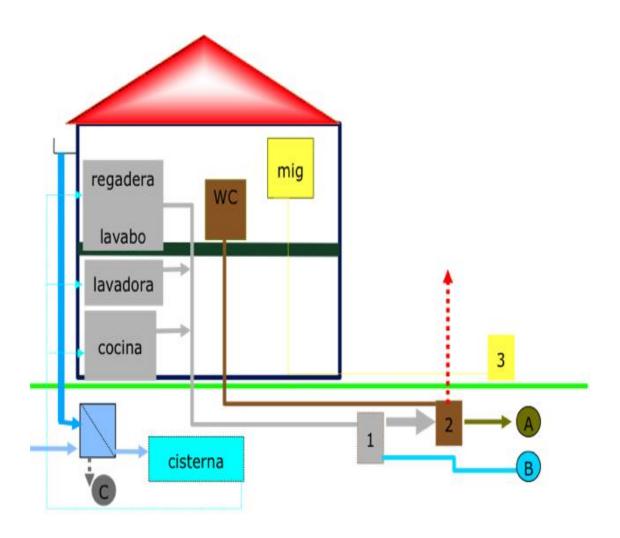


Figura 72. Segregación y tratamiento de efluentes domésticos. 1. Aguas grises, 2. Aguas cafés, 3. Aguas amarillas

Fuente: Elaboración propia d ehttp://www.revista.unam.mx/vol.14/num10/art37/

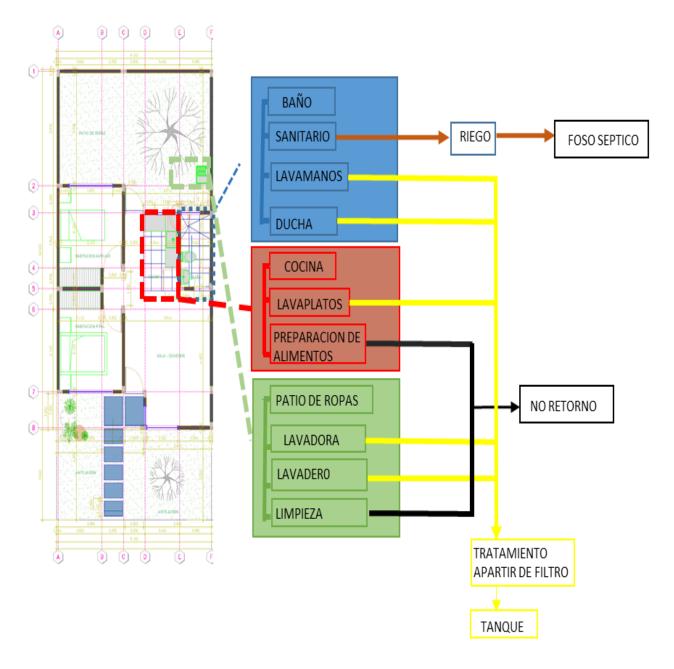


Figura 73. Esquema de distribución aguas residuales grises Fuente: Elaboración propia

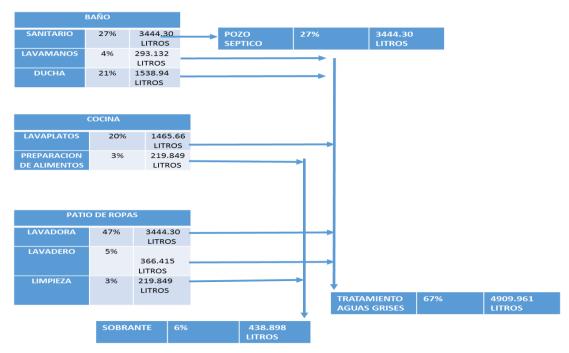


Figura 74. Porcentajes / Litro De Aguas Grises

Fuente: Elaboración propia

3.11 Funcionamiento sistema integrado aguas lluvias y grises

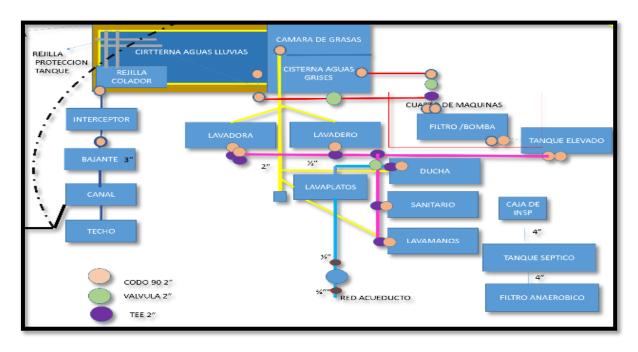


Figura 75. Esquema Sistema Integrado De Aguas Lluvias Y Grises

Fuente: Elaboración Propia

Los sistemas hasta el proceso de captación funcionan de forma independiente, pero la red de llegada al filtro y posteriormente a la bomba, trabaja de la siguiente forma:

Para la utilización de aguas lluvias que va hacer la más utilizada pasa del depósito por la red de tubería y es controlada en un punto con una válvula de paso la cual tiene como objetivo detener el paso cuando se está realizando mantenimiento o cuando se esta utilizando el agua gris.

Igualmente la agua gris tiene el mismo funcionamiento posee la misma válvula de paso para cuando se haga el mantenimiento o estemos utilizando el agua lluvia ya que el filtro solo tiene una entrada por lo tanto para la entrada de los dos utilizaremos un accesorio de tee .y también para evitar que se mezclen y se contaminen el líquido a utilizar.

3.12 Sustancias de aguas utilizadas en la vivienda

Tabla 24. Sustancias Aguas Utilizadas En Vivienda

	Agua café	Agua gris	Agua Amarilla
pH	8.8	8.4	4.4 – 8
	· (g/L	
DQO _T	9	0.724	9.6
AGV	1.5	120	0.04
C_HCO3	1.2		
N _T	1.9	0.0263	7.4
N_NH ₄ ⁺	1.4	0.0027	0.3
P _T	0.22	0.0072	
Ps	0.09		15.1
P_PO ₄	0.08	2.36	1.2
Detergentes		0.054	

Fuente: http://www.revista.unam.mx/vol.14/num10/art37/

Aproximadamente 100 L/hab/d corresponden a las aguas grises que mediante un tratamiento sencillo (aireación y micro filtración. L. Hernández *et al*, 2007), gracias a su baja cantidad de materia orgánica y nula carga de microorganismos fecales, pueden estar disponibles para reusó en servicios de limpieza y desalojo de WC (de 40 a 20 L/hab/d) y el resto para la industria, agricultura e infiltración.

El caudal de aguas cafés, de 20 a 10 L/hab/d sería tratado por digestión anaerobia en reactores compactos para producir energía (32 Whr/hab/d) y agua residual que requiere un pos tratamiento (Moreno *et al*, 2013).

El tratamiento de las aguas amarillas (orina diluida con una pequeña cantidad de agua y detergente), para la recuperación de nitrógeno y fósforo, representa el restablecer ciclos de convivencia sustentable entre la ciudad y el campo en vez de ser la primera el sumidero del segundo El tratamiento consiste en la hidrólisis de la urea y precipitación de P como estruvita (MgNH₄PO₄•6H₂O). Una ventaja adicional es que se evita la contaminación del agua por productos farmacéuticos presentes en la orina (Espinosa *et al*, 2013).

El tamaño relativo de los reactores que tratarían los efluentes segregados *in situ*. Se aprecia que el volumen de tratamiento es menor que el volumen de una planta de tratamiento del agua residual sin segregar.

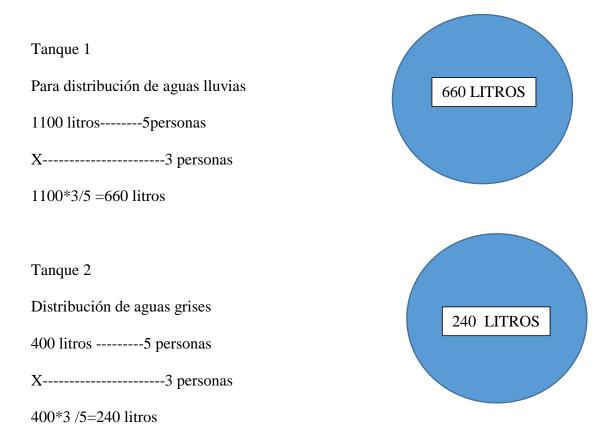
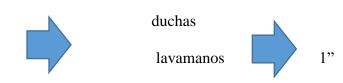
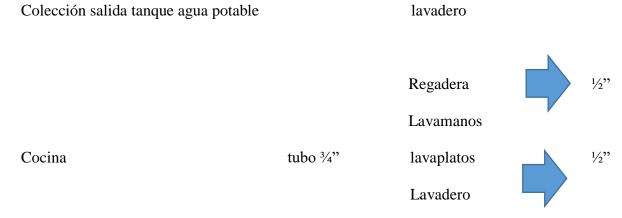

Fracción del AR	F (L/hab.d)	Vr (L/hab)
Agua gris	90-100	7
Agua café	10-20	12
Agua amarilla	2	10
Agua s/segregar	120	50

Tabla: Parámetros de diseño para tratamiento segregado.

Fuente: Elaboración propia http://www.revista.unam.mx/vol.14/num10/art37/

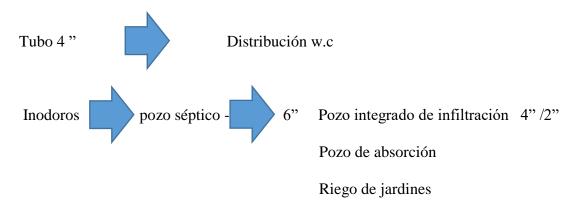
El sobrante del reusó local del agua gris puede ser enviado a las plantas de tratamiento para infiltración y el efluente de las PTAC a las PTAR-FORSU para su tratamiento para riego agrícola.


3.13 Estudios Previos Según Referentes En Cuanto A Tanques, Tubería Y Filtro Bomba 3.13.1 Tanques



3.13.2 Distribución Aguas Grises Tubería

1 para cada tanque


Tubería cobre ½"

Lavadora

3.13.3 Distribución Tubería Aguas Servidas

3.13.4 Filtro. Se utilizara 3 filtros cada uno de los tanques y una válvula de paso

Aguas lluvias

Filtro a

Capa de grava gruesa 0,48 m de profundidad (eliminación impurezas

Capa fina de 0,33 m de profundidad (lo no captado por la malla)

F	i	ltr	0	h
Г	ι	$\iota \iota$	()	"

Capa de carbón activada----- eliminación de polvo

Filtro c

Restos

Aguas grises

Filtro a

Trampa grasas por diferencia densidad

1,2M

Filtro b

Grava gruesa

Filtro c

Grava fina (gravedad) -----arenas pequeñas

Tanque de almacenamiento

Bomba. 1. se calcula la altura total del almacenamiento del agua en este caso 2 m. teniendo en cuenta la altura de succión y la altura de descarga

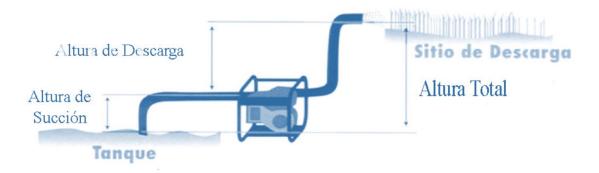


Figura 76. Altura Total Bomba

Fuente: Elaboración propia a partir de Programa de Meteorología Aeronáutica del IDEAM y "Diseño de los sistemas eléctricos e hidráulicos para el desarrollo de una casa ecológica autosuficiente en el estado de Querétaro"

Cantidad de agua en este caso como es uso residencial se realiza con una potencia fraccionada la cual nos lleva a llenar el tanque en 20 minutos, además se debe tener en cuenta un sistema de control el cual actúa de forma automática el cual llena el tanque, cuando esté a punto de vaciarse a partir de un eletronivel.

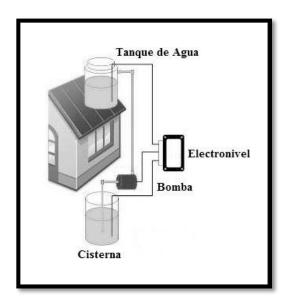


Figura 77. Instalación Del Electronivel

Fuente: Elaboración propia a partir de Programa de Meteorología Aeronáutica del IDEAM y "Diseño de los sistemas eléctricos e hidráulicos para el desarrollo de una casa ecológica autosuficiente en el estado de Querétaro"

Distribución De Aguas Lluvias

Calcular

Altura total= altura de succión +altura casa +altura de tanque

Altura total=5,42m+ 3.25 +1,020=9,69 m

Altura total=9,69M

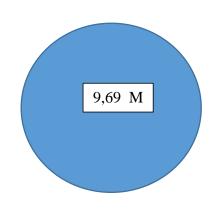


Tabla 25. Características Bomba

motor	Monofásico de corriente alterna
Diámetro de Succión	1" ¼
Diámetro de descarga	1"
Frecuencia	60hz
Tensión	127 v
Corriente nominal	8 A
Factor de Servicio	1.15
Corriente de factor a servicio	9.3 A
Velocidad	3540 RPM
Eficiencia	90%
Tiempo de Arranque (TS)	3 SEG

Fuente: Elaboración propia a partir de programa de meteorología aeronáutica del ideam y "Diseño de los sistemas eléctricos e hidráulicos para el desarrollo de una casa ecológica autosuficiente en el estado de Querétaro"

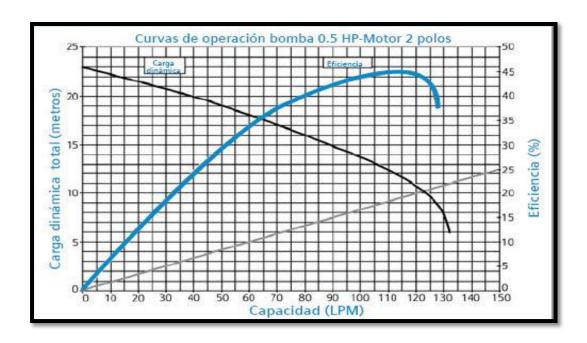
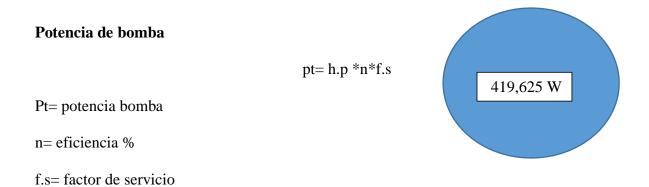
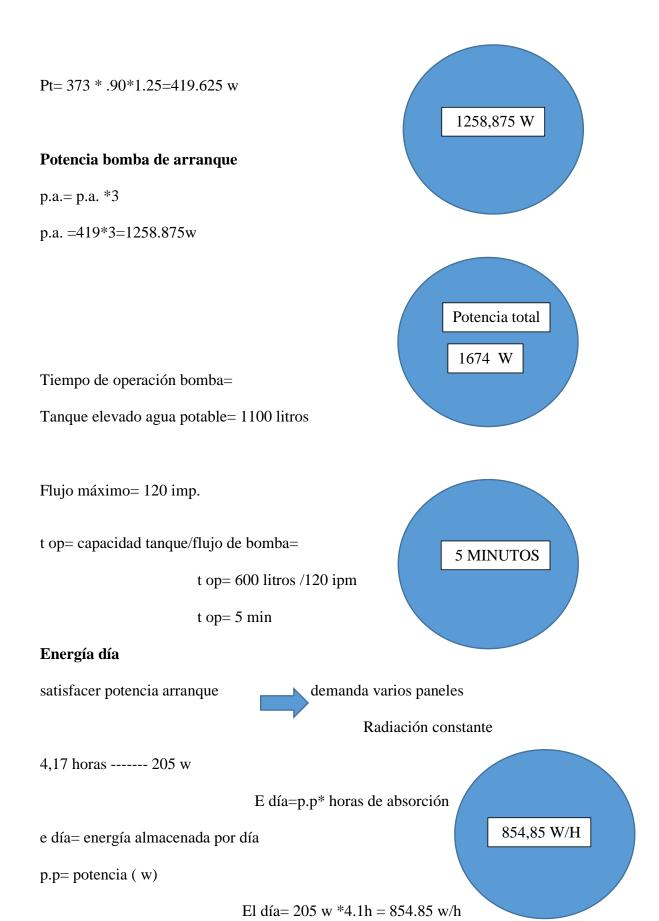
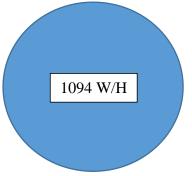




Figura 78. Curva para la potencia de flujo de la motobomba de! HP Fuente: Elaboración propia a partir de Programa de Meteorología Aeronáutica del IDEAM y "diseño de los sistemas eléctricos e hidráulicos para el desarrollo de una casa ecológica autosuficiente en el estado de Querétaro"

Este motor tiene un arranque con capacitor y una protección térmica para alguna Sobrecarga que se pudiera presentar. De la siguiente gráfica de altura dinámica para Este tipo de motor se tiene un flujo máximo de 120 lpm (litros por minuto) a 10 m de Altura.

Ahorro determinado consumo total energía eléctrica de bomba consumo 3 minutos de arranque


Consumo de arranque = pa * tiempo

Donde= consumo de arranque wh

P.a. = potencia (w)

Ta = tiempo(s)

Consumo arranque = 1258,875 w * 3 s * 1 h / 3600 s = 1094 wh

Pt * top

Donde =

Consumo bomba = consumo arranque +consumo operación

Consumo bomba= 1049 wh + 64.104 wh = 65.153 w/h

Tiempo= encendido bomba

Tiempo vaciado tanque = capacidad tanque / consumo día

Tiempo vaciado tanque = $1100 \, 1 \, 284 \, 1 / \, día = 3,87 \, días$

Por el uso de electo nivel se reduce a 2 día/ medie bomba

fotovoltaico..... garantice el encendido bomba

1 ajuste= ifs * 1,25

Donde= ifs corriente factor de servicio (a)

i ajuste= 9.34*1.25 = 11.62 a

Valor 15^ao

Arranque bomba

Interruptor termo magnético

Protector contra sobre corriente interruptor

Corriente máxima * 1,25

Bomba de aguas grises

Altura total= altura de succión +altura casa +altura de tanque

1,88 m + (3,05+0,99 m) = 5,92 m

6m aproximadamente

1/ 2 hp marca siemens

bomba de agua potable

flujo 135 ipm

240 litros agua grises 62 min

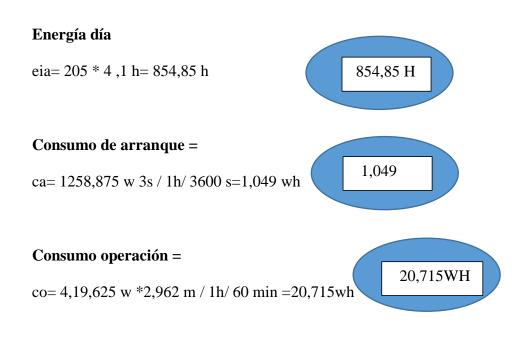
Potencia de la bomba

$$pt = 373*.90*1,25 = 419,625w$$

419,625

Potencia

1679W


Potencia de arranque

1258,875

Tiempo de operación

to = 240 1/135 1/min= 2,962 min

2,962

Consumo bomba= consumo de arranque+ consumo de operación

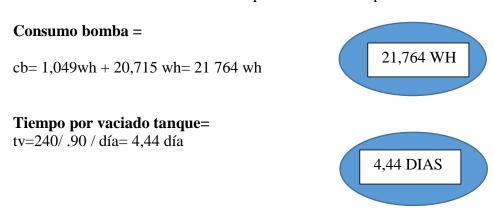


Gráfico 7. Cálculo De Tanque, Tubería, Bomba De Vivienda Fuente: Elaboración propia a partir de Programa de Meteorología Aeronáutica del IDEAM y

"diseño de los sistemas eléctricos e hidráulicos para el desarrollo de una casa ecológica autosuficiente en el estado de Querétaro".

3.13.5 Aparatos a utilizar

3.11.5.1 Filtro/bomba

Sistema de reutilización de aguas grises aqua2use

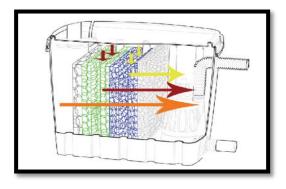


Figura 79. Filtro Sistema De Reutilización De

Aguas Grises Aqua2use.

Fuente:

http://sustenta.life/producto/sistema-de-tratamiento-de-aguas-grises-aqua2use/

- Precio \$ 490.000
- Sistema de filtrado de aguas grises multicameral, probado en más de 40 países.
- Se conecta a salida de 220 volts. Sistema completamente automatizado con Smart Controller.
- Bomba diseñada para aguas grises, se conecta fácilmente al sistema de irrigación.
- Bajo mantenimiento, se limpia fácilmente cada 2 meses. Garantía de 1 año para todas las partes.

Dimensiones

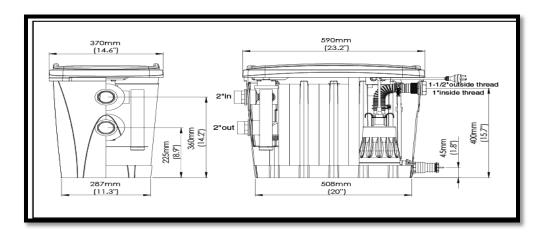


Figura 80. Dimensiones Aqua2use Gwdd Fuente: http://sustenta.life/producto/sistema-de-tratamiento-de-aguas-grises-aqua2use/

La toma de la decisión de este filtro se dio a partir de las facilidades tanto de instalación, de facilidad de traslado ya que en uno contamos con dos aparatos la bomba y el filtro, además de la fácil conexión a tuberías de fácil acceso.

Descripción del Producto

- innovador sistema patentado de filtración progresivo.
- filtros de gran capacidad (30 a 60 litros por minuto según modelo).
- filtración profunda por flujo cruzado: cada grupo de filtros posee una estructura de 3 dimensiones, capaz de filtrar un alto volumen de impurezas sin taparse.
- concepto de columna de agua y multicámara: si el primer grupo de filtros se obstruye la
 filtración es realizada por el segundo y tercer conjunto. si el segundo grupo se obstruye,
 la filtración se realiza por el tercer filtro.
- eliminación de sólidos: remoción de más del 75% de los sólidos totales (unidad con bomba) y más del 90% para la unidad sin bomba.
- bomba sumergible con controlador de bomba electrónica integrada (epc).
- Bomba protegida para el funcionamiento en seco y atascos.
- Construido con rebalse para evitar desbordamiento.
- Fácil de limpiar.
- El sistema puede ser instalado sobre el suelo o bajo este.
- Sistema cuenta con certificación WaterMark (ATS5200.460-GWDD CN: WMK 30004).

Cómo funciona

 Paso 1: Aqua2Use posee una válvula que te permite desviar el agua al desagüe o hacia el dispositivo.

- Paso 2: Las aguas grises fluyen a través del primer grupo de filtros que retienen principalmente partículas grandes y medianas como pelo, pelusa, papel, detergente y otras impurezas (filtro negro de baja densidad y verde de mediana densidad).
- Paso 3: Las aguas grises fluyen a través del segundo grupo de filtros que retienen partículas medianas y pequeñas (filtro verde de mediana densidad y azul de alta densidad).
- Paso 4: Las aguas grises fluyen a través del tercer grupo de filtros que retienen partículas pequeñas y microscópicas (filtro azul de alta densidad y gris de alta densidad).

3.13.6 Depósito de almacenamiento aguas grises

Figura 81. Almacenamiento aguas grises

Fuente: Elaboración propia

3.13.7 Tapa protección de depósitos

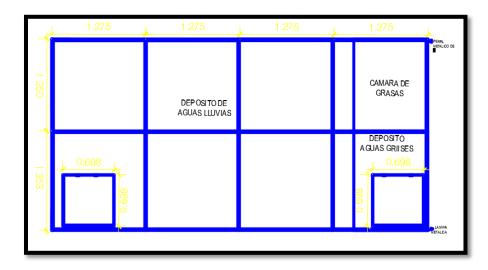
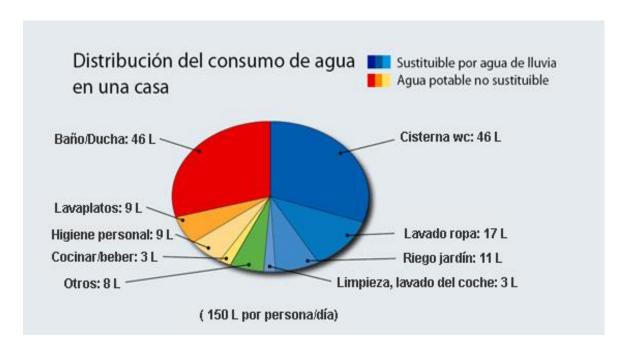


Figura 82. Tapa Protección Depositos *Fuente elaboración propia*


La tapa que protege los depósitos de almacenamiento y además que permite la circulación dentro del patio está construida en lámina metálica de n°18 esta reforzada de 1".posee unas compuertas que permiten accesorio a las entradas de los tanques para permitir su mantenimiento

3.13.8 Tanque elevado. El tanque elevado de 200 litros fue escogido por que es el más aproximado a capacidad diaria que se necesita para esta familia que está conformada por tres la cual es de 150 litros, lo que quiere decir 50 litros por persona.

Figura 83. Familia De Tres Habitantes Consumo

Fuente: Elaboración propia

Gráfico 8. Distribución del consumo de agua en una casa *Fuente:* http://www.medioambiente.jcyl.es/web/jcyl/MedioAmbiente/es/Plantilla100/1236755648932/_/_

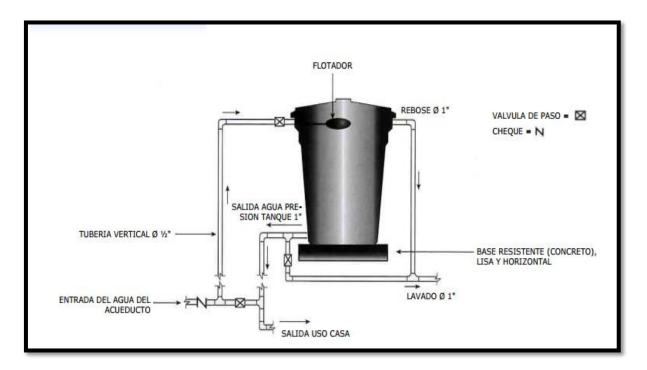


Figura 84. Instalación tanque http://www.coval.com.co/pdfs/manuales/man_colempaques_tanques_plasticos.pdf

Figura 85. Accesorios de tanque http://www.coval.com.co/pdfs/manuales/man_colempaques_tanques_plasticos.pdf

HIGIENICO:

Colaminado. Capa interior virgen, recomendado para alimentos. Aprobada por la F.D.A. (Federación de Drogas y Alimentos de los Estados Unidos).

No sueltan color.

Evitan la producción de algas y bacterias debido a su color negro.

No se corroen.

No tienen partes metálicas que se oxiden.

No sueltan sedimento.

No producen cáncer.

FUNCIONAL: • Colaminado. Capa interior virgen, recomendado para alimentos. Aprobada por la F.D.A. (Federación de Drogas y Alimentos de los Estados Unidos). • No sueltan color. • Evitan la producción de algas y bacterias debido a su color negro. • No se corroen. • No tienen partes metálicas que se oxiden. • No sueltan sedimento. • No producen cáncer. • De fácil manejo para su instalación, transporte y almacenamiento. • Con aletas que permiten que la tapa

permanezca fija. • Con aditivo U.V. que bloquea los rayos ultravioleta, haciéndole resistente a la intemperie.

Figura 86. Errores De Instalación

Fuente: http://www.coval.com.co/pdfs/manuales/man_colempaques_tanques_plasticos.pdf

3.13.9 Trampa De Grasas

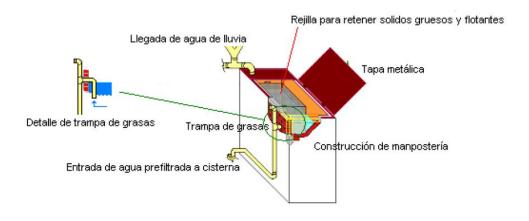


Figura 87. Sedimentador o pre filtro con retención de sólidos y líquidos extraños al agua

Fuente: http://www.coval.com.co/pdfs/manuales/man_

El mantenimiento de un sistema de recolección de agua de lluvia puede ser

Sencillo, pero es necesario llevarlo a cabo sobre todo cuando empieza la temporada de lluvias o si de preferencia desde unos días antes. Este comienza con la revisión de todos los componentes del sistema desde el área de captación o techo, hasta los contenedores del agua, pasando por las canaletas, tuberías, los pre filtros y los filtros, así mismo se deberá revisar el correcto funcionamiento de las bombas electromecánicas o los sistemas mecánicos u de otro tipo de elevación de agua. En su caso será necesario limpiar todos los componentes del sistema de captación (barrerlos, limpiarlos, lavarlos, repararlos o sustituirlos) retirando los materiales que puedan obstruir y los que puedan alterar la calidad del agua, sobre todo en las áreas de captación y las canaletas que durante un buen tiempo no han recibido la lluvia y que lo más seguro es que se llenen de polvo, hojas de árboles u otros materiales. También se deberá revisar que en estas áreas no se tengan grietas o filtraciones, para evitar pérdidas de agua y daños a las edificaciones.

Limpieza y reparación (esta se efectúa al principio de la temporada)

- Limpiar la superficie donde el agua será captada.
- Limpiar los canales y tuberías y los rebosaderos de las cisternas.
- Limpieza de los sedimentadores, tanques y cisterna por lo menos una Vez al año.

3.13.10 Fichas de aparatos utilizados sistema intrgrado aguas lluvias yaguas gises

CANAL AMAZONAS	3M	56.850	http://www.homecenter. com.co/homecenter- co/product/40816/Canal -amazonas-blanca-3- metros/40816
	1 UNIDAD	14300	http://www.homecenter. com.co/homecenter- co/product/40816/Canal -amazonas-blanca-3- metros/40816
UNION AMAZONAS			http://www.h
	2" 3" 4"	10.053 12000 13.171	http://www.homecente r.com.co/homecenter- co/product/65853/3x- 6-metros-tubo- sanitario/65853
TUBO PVC			
	1 UNIDAD	6250	http://www.tuspinturasyb arnices.com/603-rejillas- y-coladores
REJILLA PLÁSTICO 0.70 X 0.70 CM			

1 UNIDAD \$ 1.734 http://www.homecenter.com.co/homecenter-co/product/17004/Rejilla -5-x-4-corriente-plastica
1 UNIDAD \$14300 http://www.homecenter.com.co/homecenter-co/product/40816/Canal-amazonas-blanca-3-metros/40816
VALVULA 2"
1 UNIDAD \$36.919 http://www.homecenter. com.co/homecenter- co/product/17004/Rejilla -5-x-4-corriente-plastica
CODO 90 2"
1 UNIDAD \$ 3.000 http://www.homecenter. com.co/homecenter- co/product/17004/Rejilla -5-x-4-corriente-plastica
NIPLE 2"

Figura 88. Aparatos Utilizados Y Cotizados Fuente: Elaboración propia

3.14 Aguas Servidas

3.14.1 Pozo 1 séptico integrado y campo de infiltración

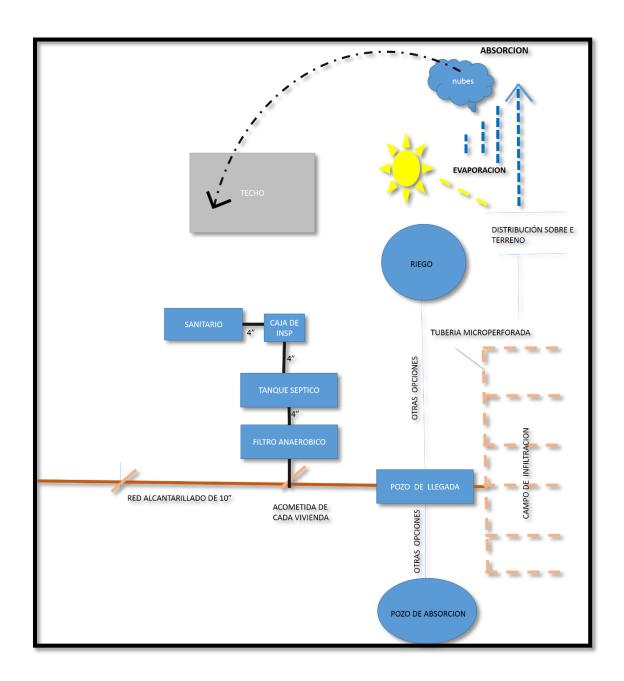
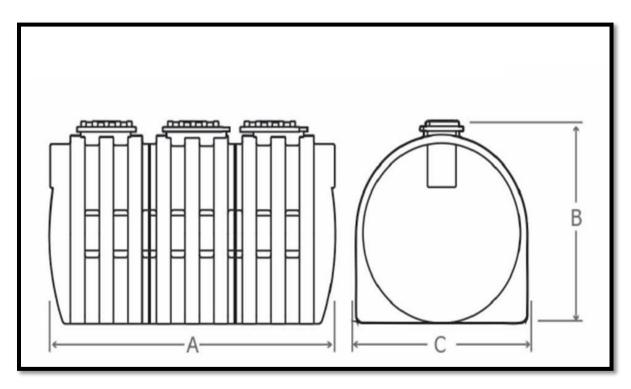


Figura 89. Esquema De Aguas Servidas Y Pozo De Absorción Fuente: Elaboración propia aguas servidas partir de http://www.rotoplast.com.co/wp-content/uploads/sistema-septico-domiciliario-diagrama.jpg

Según este proceso de aprovechamiento de aguas servidas el destino final de filtración es que con el mismo calor del sol y las temperaturas al ser distribuida por la tubería micro perforada es absorbida, evaporada y vuelva a llegar a ser acogida esta agua por las nubes para iniciar de nuevo el proceso según este proceso de aprovechamiento de aguas servidas el destino final de filtración es que con el mismo calor del sol y las temperaturas al ser distribuida por la tubería micro perforada es absorbida, evaporada y vuelva a llegar a ser acogida esta agua por las nubes para iniciar de nuevo el proceso además de ser que estas aguas pueden ser absorbidas directamente por el suelo o pueden sr utilidad en riego.


Figura 90. Tanque séptico integral Fuente:http://www.rotoplast.com.co/wp-content/uploads/sistema-septico-domiciliario-diagrama.jpg

Los sistemas sépticos integrados son tanques cilíndricos horizontales con refuerzos internos, fabricados con polietileno lineal de alta resistencia al impacto, cuentan con divisiones internas que conforman un tanque séptico de dos cámaras y un filtro anaerobio de flujo ascendente (FAFA).

Características

- Fácil instalación: solo requiere de una excavación para ser instalado.
- Resistentes estructuralmente.
- Flexibles (movimientos de la tierra) no se fisuran.
- Modulares.
- Fácil mantenimiento.
- Reutilizable (instalaciones provisionales).
- Por su diseño y color negro son más eficientes.
- Material resistente a rayos UV.

Medidas nominales, sistemas sépticos integrados

Capacidad	Medida (cm)		
(Lts. medidas nominales)	Α	В	С
1.650 2.000 3.000 5.000 7.500 10.000 12.500 15.000 17.500 20.000 25.000 30.000 35.000 40.000 45.000 50.000	230 215 225 242 342 442 542 642 742 500 610 724 838 952 1066 1180	107 125 150 183 183 183 183 183 246 246 246 246 246 246 246	100 110 131 173 173 173 173 173 173 230 230 230 230 230 230 230 230

Medidas aproximadas en cm.

Figura 91. Medidas Tanque Septico Integrado Fuente: http://www.rotoplast.com.co/wp-content/uploads/sistema-septico-domiciliario-diagrama.jpg

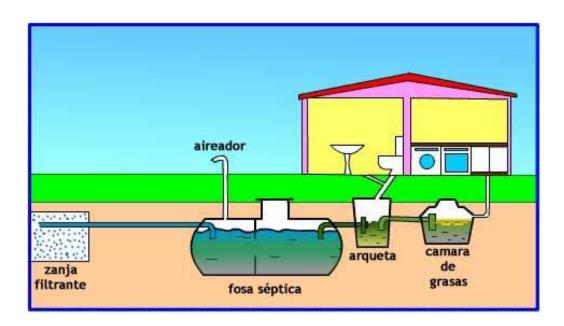


Figura 92. Distribución Sistema Tratamiento De Aguas Servidas Integrado Fuentes: http://www.tuboschulavista.com/productos.html http://www.totagua.com/productos/depuradoras-viviendas/28-fosas-septicas.html

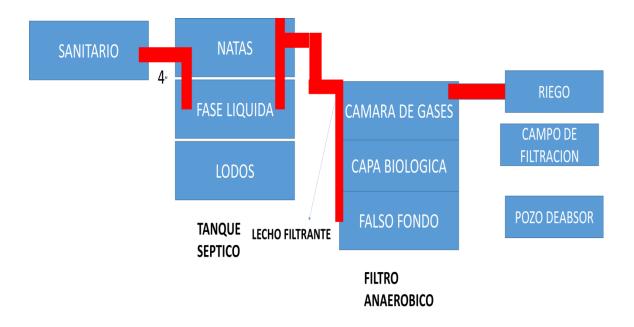


Figura 93. Esquema Funcionamiento Tratamiento Aguas Servidas Fuente: Elaboración propia

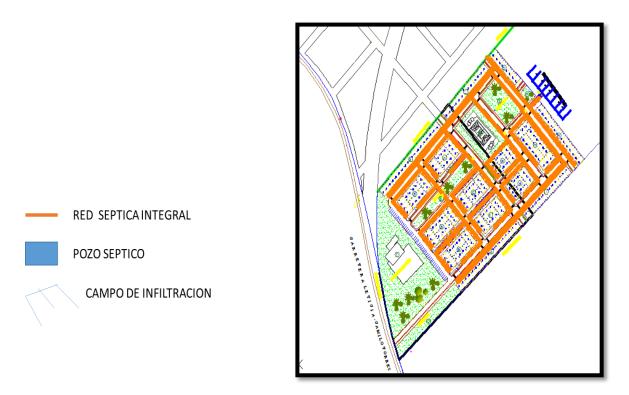


Figura 94. Esquema En Urbanización Manguare De Sistema Integrado Séptico Con Campo De Infiltración

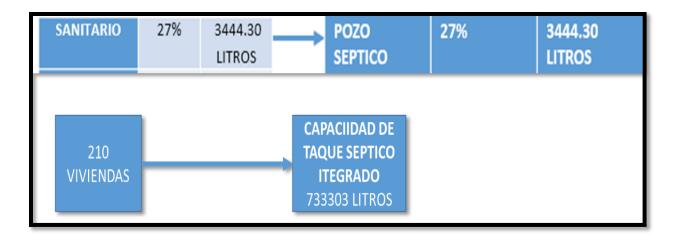


Figura 95. Esquema De Análisis De Cantidades De Agua Servida Captada Y Tratada Pozo Séptico Total Urbanización Maguare

Fuente: elaboración propia

3.14.2 Pozo 2 Séptico Con Pozo De Absorción

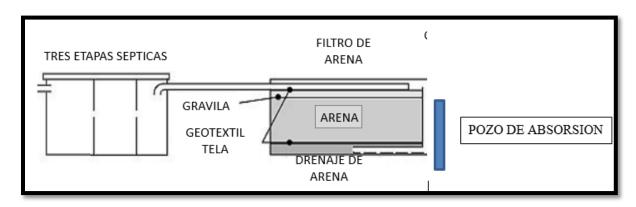


Figura 96. Esquema De Fosa Séptica De 3 Etapas Con Filtro De Arena Fuente: Dirección general de aguas dga (2010, pag.14)

El lecho tiene que ser bien drenado para prevenir formación de zonas de agua estancada en parte del mismo. Para ello, el fondo debe contener una lámina de polietileno tipo "actifill" que provee un drenaje efectivo. Por otro lado, se debe emplazar una malla mosquitera en la parte superior del "actifill" para prevenir la des configuración de la siguiente capa de arena gruesa. En la parte superior de la arena gruesa se contempla una capa de mezcla de arena con concreto

común, debiendo los primeros cincuenta centímetros constar de suelo rico en humus (no se deben utilizar suelos de arcilla)" (Dirección General de Aguas-DGA, 2010, pág. 15). En la Ilustración 3 se muestra un esquema de la Cámara de Suelo, usada para el tratamiento de aguas grises.

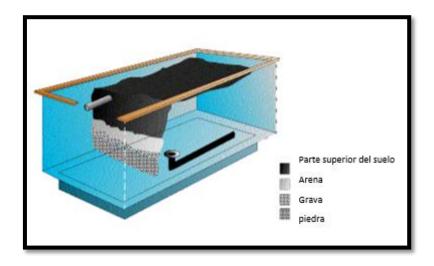


Figura 97. Esquema de CAPA BIOLOGICA *Fuente:* Dirección general de aguas-DGA (2010.PAG .15)

Diseño

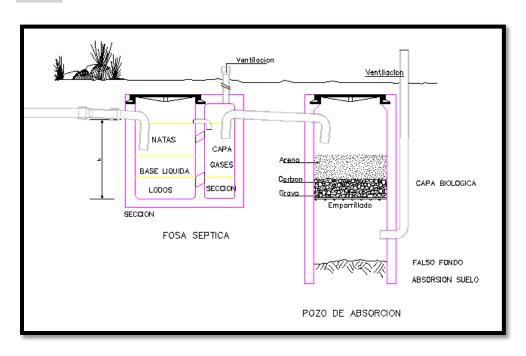


Figura 98. Corte Pozo Séptico, Filtro Aeróbico Y Pozo De Absorción *Fuente:* Elaboración Propia

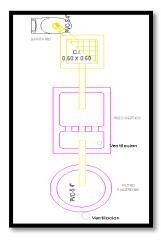


Figura 99. Planta Apozo Séptico, Filtro Aeróbico Y Pozo De Absorción Fuente: elaboración propia

Figura 100. Esquema De Análisis De Cantidades De Agua Servida Captada Y Tratada Pozo Séptico Vivienda Urbanización Maguare

Fuente: Elaboración propia

3.15 PANEL SOLAR

3.15.1 Panel solar vivienda

3.15.1.1 Funcionamiento

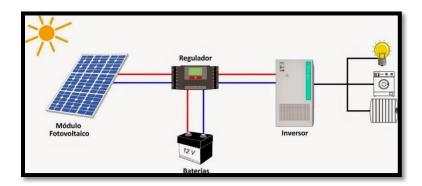


Figura 101. Esquema De Funcionamiento Y Disposición De Panel Solar Fuente: http://erenovable.com/como-funcionan-los-paneles-solares/

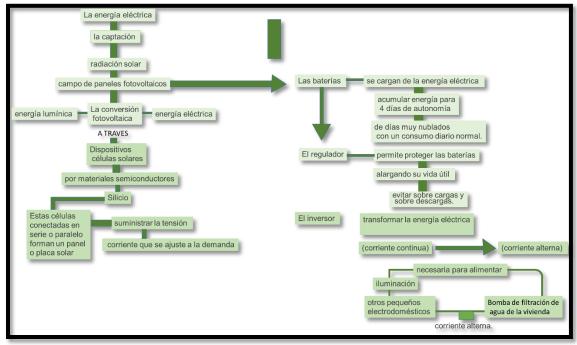


Figura 102. Funcionamiento De Sistema De Paneles Solares Fuente: Elaboración propia partir de http://twenergy.com/a/como-funciona-la-energia-solar-fotovoltaica-339

3.15.1.2 Instalación de panel solar

Paso 1

Lo primero que haremos será colocar en el tejado, los carriles que soportarán los paneles. En la parte inferior situaremos unos neoprenos autoadhesivos para garantizar la estanqueidad.

Paso 2

Presentamos los carriles, y los atornillamos con unos tornillos autoperforantes, a los que colocaremos unas juntas de goma para evitar que el agua filtre al interior del hogar. Los apretamos con el taladro provisto de una llave de vaso.

Paso 3

Una vez que tengamos los dos carriles fijados al tejado, colocaremos las pletinas de sujeción y la placa fotovoltaica. Podremos regular la posición de la pletina en función del tamaño de la placa.

Paso 4

A continuación, apretamos bien las pletinas con la ayuda de una llave allen, para evitar que el viento mueva la placa.

Paso 5

Para llevar la electricidad al interior de la casa, conectamos los cables al panel. Debemos tener siempre en cuenta la polaridad de los cables.

Paso 6

Ahora pasamos los cables al interior de la casa. Estos cables serán los que conducirán la energía al interior.

Paso 7

A continuación, colocamos el resto de elementos. Primero cortamos las canaletas a medida, con la sierra de calar y una hoja para cortar plástico.

Paso 8

Ya podemos empezar a colocar las canaletas que taparán y conducirán los cables. Aplicamos adhesivo de montaje en la parte inferior de la base de la canaleta y la fijamos en su posición.

Paso 9

Ahora, presionamos para que el adhesivo se impregne bien. Retiramos la pieza de plástico y una vez que hayan transcurrido 5 minutos, la pegamos definitivamente.

Paso 10

Después, colocamos la tapa de la primera canaleta, para que los cables no se caigan, y los pasamos al otro extremo.

Paso 11

El siguiente paso será realizar las conexiones eléctricas, siguiendo las indicaciones del fabricante. En primer lugar, conectamos el regulador de carga de la batería a la caja de conexiones. Luego, a la misma caja de conexiones le unimos los cables que vienen del panel solar, teniendo en cuenta siempre la polaridad.

Paso 12

Conectamos el inversor a la caja, consiguiendo convertir 12 voltios en 230, y después, realizamos las conexiones que van a la batería. Terminaremos el trabajo fijando los cables en los bornes de la batería. Para eso, sustituiremos la punta para atornillar por una llave de vaso.

Paso 13

Es el momento de enchufar la toma de corriente de la casa a la batería. Aportará energía suficiente para toda la vivienda

Paso 14

Fijamos la tabla al suelo con el taladro atornillador para que no se mueva. Comprobamos la posición de la tabla e introducimos los tirafondos.

Paso 15

Para finalizar, esperamos a que la batería se cargue, y la amarramos con unas cinchas. Después, comprobaremos que el sistema funciona correctamente.

Para finalizar, esperamos a que la batería se cargue, y la amarramos con unas cinchas. Después, comprobaremos que el sistema funciona correctamente.

Instalando de forma sencilla una placa fotovoltaica en el tejado de una caseta móvil, hemos conseguido tener luz y poder cargar las baterías de nuestros aparatos electrónicos en cualquier lugar.

Figura 103. Ficha De Instalación De Panel Solar Fuente: http://erenovable.com/paneles-solares-listos-para-instalar-uno-mismo/

- 3.15.1.3 Ventajas. Limpia: Al no producirse ningún tipo de combustión, no se generan contaminantes atmosféricos en el punto de utilización, ni se producen efectos como la lluvia ácida, efecto invernadero por CO2, etc.
 - **Silenciosa**: Prácticamente se produce la energía con ausencia total de ruidos. ¡Adiós al ruido infernal de los generadores "Diesel".
 - Material básico abundante: El Silicio, elemento base para la fabricación de las células fotovoltaicas, es muy abundante ya que se encuentra en la arena, no siendo necesario explotar yacimientos de forma intensiva.
 - **Descentralizada y autónoma**: Al ser una energía fundamentalmente de ámbito local, evita pistas, cables, postes, no se requieren grandes tendidos eléctricos, y su impacto visual es reducido. Tampoco tiene unos requerimientos de suelo necesario excesivamente grandes (1kWp puede ocupar entre 10 y 15 m2).
 - Gratuita y disponible para todos: no precisa ningún suministro exterior (combustible)
 ni presencia relevante de otros tipos de recursos (agua, viento)

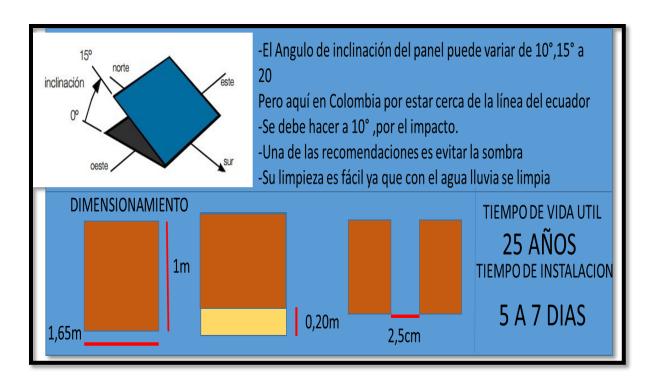


Figura 104. Condiciones, medidas de panel solar

Fuente: Elaboración propia a partir

http://recursostic.educacion.es/secundaria/edad/4esotecnologia/quincena7/unidad_instalaciones_electricas _indice.html

3.15.1.4 Distribución de aparatos eléctricos y necesidad eléctrica en vivienda

En una vivienda de 50 m2, tenemos los siguientes receptores en cada habitación:

- Sala Comedor: 2 bombillas de 100 W, televisión de 150 W, equipo de música 135 W, DVD 60 W, lámpara de 40 W. Ventilador 90 w+2* 45tomas celulares etc
- Patio de ropas: 1 bombilla, lavadora 800 W
- Cocina: 1 bombilla 100 W, Nevera de 350 W, licuadora 100 w +100w toma adicional
- Dormitorio de matrimonio: 1 bombillas de 100W, 1 lámparas de 40 W, televisión de 80 W. Ventilador 90 w+1 toma doble
- Dormitorio del niño: 1 bombillo 100 w, Lámpara de bajo consumo de 7 W,+toma doble 70w, Ventilador 90 w
- Baño: 1 bombillas de 25 W, ducha.+70 toma doble
- Hall .bombillo
- Cuarto de máquinas 1 bombilla conexión bomba /filtro

Obtener la potencia total instalada en la vivienda:

Solución: La potencia instalada será:

Habitación	Potencias	Total
Comedor y sala	2*100 + 150 +135 + 60 + 40+90+70	745W
Patio de ropas	3*100+800	1100 W
Cocina	1*100 + 350 + 100+100	650 W
Dormitorio de matrimonio	60 + 40 + 80+90+70	270W
Dormitorio del niño	100 +7 +90+150+70	417W
Hall	2*100	200 w
Baño	100+ 220+150+70	570 W
antejardín	2*100	200w
Cuarto de maquinas	1*100+	100+200w
Total		4372 W

Si dividimos la potencia total por la tensión obtenemos la corriente que entrará en la vivienda.

I = P/V = 2942 W/ 230 V = 12.7913^aPanel de capacidad 5000 watt

Figura 105. Distribución Y Gasto De Energía Eléctrica De La Vivienda Fuente: Elaboración propia partir de www.hmltda.com/proyectos/americafotovolt/energia-solar-hogares.htm

3.15.1.5 Panel Solar A Utilizar Según Necesidad De Energía Eléctrica

Kit Solar Fotovoltaico A La Red 5000 W

LU	LUX-5.00KW - Mono Fase (Doble MPPT)				
Potencia Nominal Generada por los Paneles Solares (W).				5000Watt	
Nom	Nominal AC Voltaje / Frecuencia			220V-240V / 50Hz/60Hz	
Espacio Necesario Para Instalación de los Paneles			40 m2 espacio minimo		
	Item	Detalle	Vida Útil	Cantidad	
1	Paneles Solares Fotovoltaicos	Poly PV panel 250W A grad	25 Años	20	
2	Inversor Eléctrico	1 Fase 5000TL 2 MPPT	5/10 Años	1	
3	Soporte Para Montaje	En Tejas/ Azotea / Hormigón	10 Años	1	
4	DC Aislador / DC 600V IP66	Seguridad Europea o Equivalente	5 Años	1	
5	AC Aislador/ AC 440V IP66	Seguridad Europea o Equivalente	5 Años	1	
6	Monitor	Conector Wifi	5 Años	1	
7	Cable a Tierra	6 S.q.mm	5 Años	50	
8	Conectores conexión a tierra (Paneles Solares)	Tornillos de Cobre	5 Años	40	
9	Cables de Conexión Paneles DC	4 S.q.mm	5 Años	50	
10	Conectores MC4	SLMC4	5 Años	6	
C		A ===	ga 30 Dias	\$10.520.623	
Gar	antía total del Sistema 3	Anos	ga 60 Dias	\$ 8.530.032	

Gráfico: Componentes, capacidad de kit panel solar

Fuente: http://blog. is-arquitectura. es/2011/11/24/aqua2use-gwdd-filtro-para-reciclar-aguas-grises/#prettyPhoto

3.15.2 Propuesta Urbana Con Sistema Alternativo Solar

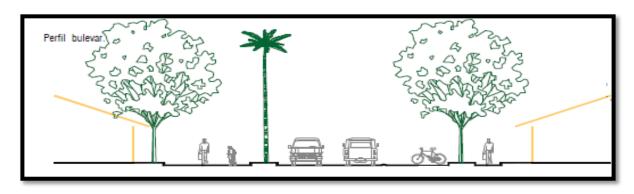


Figura 106. Distribución Y Gasto De Energía Eléctrica De La Vivienda

Fuente: Elaboración propia

3.15.2.1 Implementación de panel solar en espacio público. Bajo este análisis se pretende que desde la estructura ambiental y observado la condición de espacio público se plantea como una forma de captar energía y aprovechado las condiciones físicas y las mismas necesidades .en primer lugar la vivienda a partir del montaje de los sistemas de recolección de aguas lluvias ,reutilización de aguas grises y aprovechamiento de las aguas residuales (negras) así mismo la utilización de paneles solares; de la misma forma se sugiere partir de panel solar aprovechar estos de recursos con el fin de ahorrar energía en este caso la del alumbrado público creando más conciencia ambiental renovado el espacio público ya que va a permitir que este sea u lugar de mayor estar de los habitantes.

Figura 107. Diagrama de un poste solar con una luminaria solar fotovoltaica para alumbrado publico

Fuente://www.esco-tel.com/luminaria_solar_para_alumbrado_publico_LD40W.html

Estos elementos Son fuentes de luz que son generados por los paneles fotovoltaicos generalmente montados sobre la estructura de iluminación, los cuales partir de un sistema de paneles fotovoltaicos cargan una batería recargable, que alimenta una lámpara fluorescente o LED durante la noche. Por lo tanto Las luminarias solares alumbraran toda la noche.

LUMINARIA SOLAR PARA ALUMBRADO PÚBLICO MODELO LED 40W

DESCRIPCIÓN Y DIMENSIONES EXTERNAS DEL LUMINARIO.

MATERIAL: ALUMINIO ANODIZADO

LARGO: 30 CM. ANCHO: 28 CM.

ALTURA: 14 CM. (ALTURA)

PESO: 5 KGS

CONEXIONES:

CONECTOR NEGRO: A LÍNEA CONECTOR BLANCO: A LÍNEA CONECTOR VERDE: A TIERRA E FACTOR DE POTENCIA > 0.95 DISTORSIÓN ARMÓNICA <15%

ACABADO 100% ALUMINIO EXTRUIDO Y ANODIZADO CON LENTE DE POLICARBONATO Y TORNILLERÍA EN ACERO INOXIDABLE.

DIMENSIONES L 30 CM X A 28 CM X H 14 CM **MONTAJE** EN BRAZO DE 1 ½" A 2 ¾", SUSPENSIÓN O

ESTRUCTURA.

PESO 5 KGS

TEMPERATURA DE COLOR (CCT) 5,900K FLUJO LUMINOSO FOTÓPICO 4,100 LUMEN FLUJO LUMINOSO ESCOTÓPICO 7,330 LUMEN FLUJO LUMINOSO EFECTIVO 6,440 LUMEN MANTENIMIENTO LUMENS 70% A LAS 140,000 HRS. HUMEDAD 0 - 99%

TEMPERATURA DE OPERACIÓN -40° C A 55° C

INSTRUCCIONES:

ESTA LÁMPARA DEBERÁ SER INSTALADA EN UN BRAZO DE POSTE PARA ALUMBRADO PÚBLICO, CON UNA TENSIÓN NOMINAL DE 80-370V~ A 60HZ. ADVERTENCIA: NO TOCAR LA LÁMPARA MIENTRAS ESTÉ EN OPERACIÓN YA QUE PUEDE SUFRIR DESCARGA ELÉCTRICA Y/O

PUEDE SUFRIR DESCARGA ELECTRICA Y QUEMADURA

Figura 108. Ficha técnica de luminario con panel solar

Fuente: Elaboración propia a partir de:

http://www.escotel.com/luminaria_solar_para_alumbrado_publico_LD40W.html

3.16 Descripción general proyecto

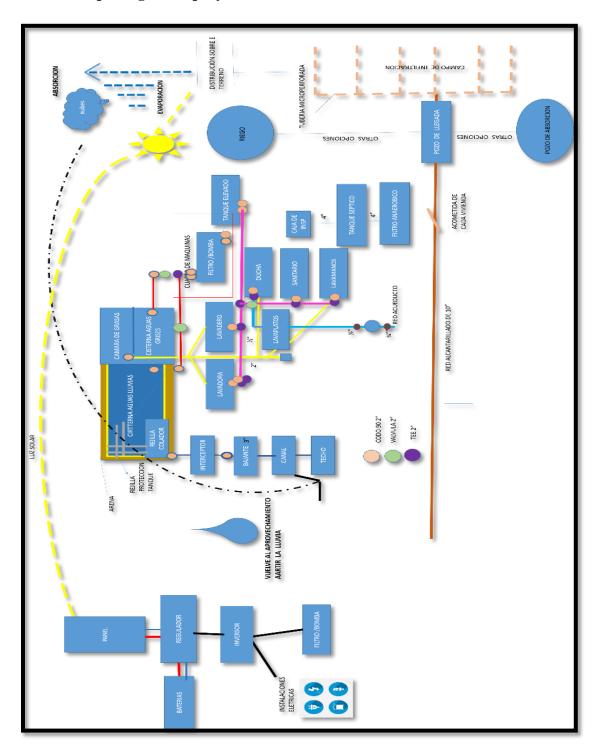


Figura 109. Instalación General Del Sistema De Instalaciones Alternativos En Instalaciones Hidrosanitarias

La Instalación del sistema de mecanismos alternos en instalaciones hidrosanitarias funciona y está dispuesta de la siguiente manera:

En primer lugar con la captación a partir del techo que posee una área de 40m2 y una de 15% hacia la parte posterior de la vivienda, esta seguidamente es recolectada inclinación por una canal amazonas de pavco de 15 cm la cual pasa el agua a través de un tubo bajante de 3" que lleva a un interceptor donde se realiza una breve limpieza de la cubierta ya que se derraman los primeros 10 litros, ya que el interceptor funciona bajo un sistema de control con una bola de jebe que ,haciendo que a lo que se llévela cesión del tubo esta suba y permita el paso al colador que elimine las impurezas que por cualquier motivo pudieron pasar, pasado por estos pequeños sistemas de filtros el agua es almacenado en la cisterna la cual tiene una capacidad de 23m2 según los cálculos realizados de las precipitaciones del lugar en este caso Leticia amazonas .en este caso elegimos un deposito flexible el cual tiene diferentitas beneficios frente al convencional hecho en concreto en cuanto a que tiene fácil instalación es fácil su utilización, mantenimiento, economía y transporte ya que es fácil su traslado por su flexibilidad. Para su instalación se acondicionará un lugar subterráneo realizando una excavación un poco más grande que el deposito con el fin de extender una capa de arena, la cual cubrirá el deposito con el fin protegerla de desgarres o cualquier otro factor de daño. A si mismo para que no esté expuesto y para que permita la circulación en el patio será cubierto por una rejilla o placa metálica para su uso de este líquido se estableció una red de tubería y accesorios de 2", que esta complementada por una válvula de corte que va funcionar como un control cuando no se quiera utilizar o cuando se quiera realizar un mantenimiento de limpieza al depósito .al estar esta llave abierta es conducida al filtro bomba la cual funciona (ver página). Después de este proceso es conducido por misma bomba; la cual funciona con energía solar. Llevando el líquido al tanque elevado el

cual tiene una capacidad de 200 litros, suplirá con la necesidad básica diaria de los habitantes en este caso las tres personas el agua. Luego es distribuida para su utilización los puntos hidráulicos, excepto si el usuario quiere que el líquido no llegue al lavaplatos para el consumo y a la ducha por si llega a dudar de su tratamiento óptimo. Por esta razón se contará con una válvula de corte. Aparte de esta se tendrá un suministro de la red del acueducto municipal para el consumo en la cocina y en la ducha

El agua que llega a la vivienda y es distribuida es reducido su consumo mediante el sistema de aparatos ahorradores en este caso la ducha, lavamanos lavaplatos, que utilizan los perlizadores, además de la utilización de un sanitario ahorrador

La reutilización de aguas grises el cual se da mediante la recolección del líquido utilizado en los diferentes aparatos esta se da mediante una red tubería de 2" sanitaria, excepto la del sanitario la cual es conducida a una red de tratamiento de aguas servidas en red de tubería sanitaria de 4".

Después de ser recolectadas estas aguas son conducidas al tanque de almacenamiento el cual tiene incluido un área de trampa de grasas, la cual realiza un proceso de eliminación de grasas y sustancias de jabón y de más sustancias que vienen en el líquido, pasando en el mismo deposito a su almacenamiento; .el filtrado es el mismo que el de aguas lluvias posee una tubería de 2" y también tiene su válvula de corte para el control cuando se esté utilizando el agua lluvia

En cuanto al agua del sanitario es conducido como se mencionó anteriormente en tubería de 4" un tanque séptico y luego a uno anaeróbico los cuales mediante un proceso de filtraje eliminan los sólidos y sustancias ,segundo de este proceso y como se tiene se propone proyectar el acueducto de la urbanización maguare observando el sistema se para el aprovechamiento de estas aguas que estas sean recolectadas de todas viviendas en tubería de 10" y luego sean

reunidas en un pozo para un proceso de filtrado mediante una tubería micro perforada la cual mediante un mecanismo de absorción del suelo permite su distribución y mejor contacto con el sol generando una evaporación aran que las nubes tomen el agua para iniciar el mismo proceso. (Ver gráfico de aguas sistema de aguas servidas)

3.17 Análisis general de ahorro de agua

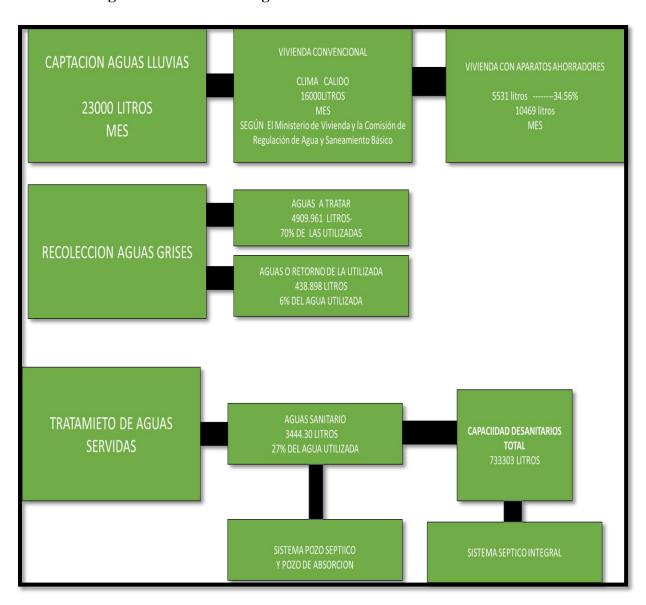


Figura 110. Análisis De General De Los Sistemas Fuente: Elaboración propia

3.18 Presupuestos

3.18.1 Presupuesto Vivienda Convencional

	CONSTRUCCIÓN DE VIV	/IEND	A		
ITEM	DES CRIP CION	UN	CANT.	V/UNITARIO	V/PARCIAL
1	CMENTACION				
1,1	Replanteo y localizacion, sobre terreno	M2	76,08	\$2.500,00	\$ 190
1,2	Concreto pobre de resistencia 2000 psi	M3	10,11	\$535.406,49	\$ 5.41
1,3	Viga de amarre para cimentacion en concreto de 3000 P s i	M3	1,35	\$ 647.250,17	\$ 87:
1,4	Relleno en material seleccionado de la excavación compactado	M3	18,75	\$23.143,57	\$ 43
1,5	Acero de Refuerzo	kg	268,80	\$3.425,50	\$ 920
			SUB TO	OTAL	\$ 6.913.
2	PLACA EN CONCRETO				
2,1	P laca base en concreto 3000 psi e=0.08 m	M2	50,56	\$68.084,01	\$ 3.44
2,2	Malla electrosoldada	kg	168,52	\$3.425,50	\$ 577
			SUB TO)TAL	\$ 4.019.
3	ESTRUCTURA				
3,1	Columna concreto de resistencia 3000 psi (0.20 x 0.13 x I)	M3	1,54	\$792.260,71	\$ 1.21
3,3	Viga corona de 0.13 x 0.20 en concreto de 3000 P s i	ML	53,67	\$37.253,78	\$ 1.999
3,4	Viga cinta de 0.13 x 0.15 m en concreto de resistencia 3000 P si	ML 41,33 \$37.253,78		\$ 1.539	
3,5	Placa o losa Concreto resistencia 210 kg/cm2-3000 psi, para tanque elevado e= 0.10m	e= M2 1,00 \$113.349,58		\$ 113.349,58	\$ 113
3,6	Mesones en concreto 0.07 mts reforzado, con muro lateral en ladrillo	M2	1,50	\$ 113.349,58	\$ 170
	NAME OF THE OWNER OWNER OF THE OWNER OWNE	SUB TOTAL			\$ 5.042
4	MAMPOSTERIA Y PANETE				
4,1	Muro en bloque No . 5 de 0.12 m, (30 x 12 x 20)	M2	122,98	\$60.689,70	\$ 7.46
4,2	Graniplast sobre pañete en fachada	M2	11,28	\$ 15.500,00	\$ 17-
			SUB TO	OTAL	\$ 7.638
5	REFUERZO				
5,1	Acero de Refuerzo Grado 60	KG	552,53	\$3.425,50	\$ 1.89
	2.13700		SUB TO	OTAL	\$ 1.892
6	PANETE				
6,1	Pañete liso (allanado) muros 1:4, incluye filos y dilataciones	M2	26,42	\$26.352,75	\$ 69
	ENGHAPES V. LOGES OPIOS		SUB TO	OTAL	\$ 696
7	ENCHAPES Y ACCESORIOS				
7,1	Enchape piso-pared ceramica lisa 20 x 20 blanca	M2 7,64 \$36.030,38		\$ 27	
			SUB TO	OTAL	\$ 275
8	CARPINTERIA METALICA				
8,1	Puerta en lamina cold rolled calibre 18 pintada con anticorros ivo, incluye marco. Suministro e instal	un	2,00	\$386.000,00	\$ 77
8,2	Ventana en lamina cold rollled calibre 18, pintada e instalada, con vidrio incoloro 4 mm. Suministro e instal.	M2	11,18	\$ 135.789,00	\$ 1.5
	mm to amain to v motal		SUB TO	NT + T	\$ 2.289

9	CUBIERTA				
			SUB TO	TAL	
10	INSTALACIONES ELECTRICAS				
10,1	ACOMETIDA VIVIENDA	UN	1,00	\$460.485,00	\$ 460.485
	TABLERO BIFILAR 6 PTS	UN	1,00	\$ 100.832,00	\$ 100.832
	S ALIDA LUZ INC ANDES CENTE	UN	8,00	\$37.568,00	\$ 300.544
	SALIDA TOMA DOBLE	UN	7,00	\$34.256,00	\$ 239.792
	SALIDA TOMA DOBLE CAL 12.	UN	1,00	\$42.568,00	\$ 42.568
	SALIDA TOMACORRIENTE GFCI	UN	1,00	\$70.895,00	\$ 70.895
	SALIDA TELEVISION	UN	1,00	\$25.000,00	\$ 25.000
	SALIDA TOMA TELEFONO	UN	1,00	\$25.000,00	\$ 25.000
	SONDEO DE LA VIVIENDA	UN	1,00	\$ 18.956,00	\$ 18.956
10,2	SALIDA TOMA CORRIENTE TIMBRE	UN	1,00	\$41.225,00	\$ 41.225
			SUB TO	TAL	\$ 1.325.297
11	INSTALACIONES HIDRAULICAS				
11,1	Punto agua fria PVC 1/2"	UN	6,00	\$ 18.179,99	\$ 109.080
11,2	Punto desagüe sanitario pvc 2"	UN	5,00	\$30.982,15	\$ 154.911
11,3	Punto desagüe sanitario pvc 3" con sifon	UN	1,00	\$85.475,15	\$ 85.475
11,4	Punto desagüe sanitario pvc 4"	UN	1,00	\$85.475,15	\$ 85.475
11,5	Caja de inspeccion 80 x 80	UN	2,00	\$280.000,00	\$ 560.000
11,6	Tuberia sanitaria PVC 2". Suministro e instal.	ML	6,20	\$22.443,79	\$ 139.152
11,7	Tuberia sanitaria PVC 3". Suministro e instal.	ML	3,75	\$40.139,70	\$ 150.524
11,8	Tuberia sanitaria PVC 4". Suministro e instal.	ML	8,50	\$40.139,70	\$ 341.187
11,10	Tuberia presion P VC RDE 9 1/2". Suministro e instal.	ML	15,00	\$7.148,69	\$ 107.230
11,11	Sanitario blanco porcelana. Suministro e instal.	UN	1,0	\$ 165.000,00	\$ 165.000
11,12	Lavamanos colgarblanco con conjunto mezclador 4" prisma. Suministro e instal.	UN	1,0	\$85.000,00	\$ 85.000
11,13	Lavaplatos en acero inoxidable 80 x 50, con mezclador. Suministro e instal.	UN	1,0	\$68.567,00	\$ 68.567
11,14	Tanque elevado 500 lts con conexion y distribucion PVC de 1/2" y 1". Suministro e instal.	UN	1,0	\$260.500,00	\$ 260.500
11,15	Ducha prys ma conjunto individual (tipo cromada) con regis tro o valvula	UN	1,0	\$45.000,00	\$ 45.000
11,16	tuberia de ventilacion	ml	1,5	\$ 15.5 11,77	\$ 23.785
11,17	Punto de ventilacion	UN	1,0	\$31.237,13	\$ 31.237
		SUB TOTAL			\$ 2.412.123
subtotal					\$ 32.965.093
adminis taracion				10%	\$ 3.296.509
impre vis to				4%	\$ 1.318.604
utilidad				5%	\$ 1.648.255
iva/utilidad				16%	\$ 263.721
TOTAL					\$ 39.492.181

Figura 111. Presupuesto Módulo De Vivienda Urbanización Maguare Fuente: Empresa Ovidio cala elaboración propia

3.18.2 Presupuesto vivienda con sistemas alternativos ahorradores

	CONSTRUCCIÓN DE VIVIENDA SISTE	MAS	ALTERNAT	IVOS	
ITEM	DES CRIP CION	UN	CANT.	V/UNITARIO	V/PARCIAL
1	CIMENTACION				
1,1	Replanteo y lo calizacion, so bre terreno	M2	76,08	\$2.500,00	\$ 1
1,2	Concreto pobre de resistencia 2000 psi	M3	10,11	\$535.406,49	\$ 5.4
1,3	Viga de amarre para cimentacion en concreto de 3000 P si	M3	1,35	\$647.250,17	\$ 8
1,4	Relleno en material seleccionado de la excavación compactado	M3	18,75	\$23.143,57	\$ 4
1,5	Acero de Refuerzo	kg	213,38	\$3.425,50	\$ 7
			SUB TO	OTAL	\$ 7.64
2	PLACA EN CONCRETO				
2,1	P laca base en concreto 3000 psi e=0.08 m	M2	50,56	\$68.084,01	\$ 3.
2,2	Malla electrosoldada	kg	168,52	\$3.425,50	\$ 5
		SUB TOTAL		\$ 4.01	
3	ES TRUCTURA				
3,1	Columna concreto de resistencia 3000 psi (0.20 x 0.13 x 1)	M3	1,54	\$792.260,71	\$ 1.
3,3	Viga corona de 0.13 x 0.20 en concreto de 3000 P si	ML	53,67	\$37.253,78	\$ 1.9
3,4	Viga cinta de 0.13 x 0.15 m en concreto de resistencia 3000 P s i	ML 41,33 \$37.253,78		\$ 1.5	
3,5	Placa o losa Concreto resistencia 210 kg/cm2-3000 psi, para tanque elevado e= 0.10m	M2	1,00	\$ 113.349,58	\$
3,6	Mesones en concreto 0.07 mts reforzado, con muro lateral en ladrillo	M2	1,50	\$ 113.349,58	\$ 1
		SUB TOTAL		\$ 5.04	
4	MAMPOS TERIA Y PANETE				
4,1	Muro en blo que No . 5 de 0.12 m, (30 x 12 x 20)	M2	122,98	\$60.689,70	\$ 7.4
4,2	Graniplast sobre pañete en fachada	M2	11,28	\$ 15.500,00	\$ 1
			SUB TO	OTAL	\$ 7.63
5	REFUERZO				
5,1	Acero de Refuerzo Grado 60	KG	552,53	\$3.425,50	\$ 1.8
			SUB TO	OTAL	\$ 1.89
6	PANETE				
6,1	Pañete liso (allanado) muros 1:4, incluye filos y dilataciones	M2	26,42	\$26.352,75	\$ (
			SUB TO	OTAL	\$ 69
7	ENCHAPES Y ACCESORIOS				
7,1	Enchape piso-pared ceramica lisa 20 x 20 blanca	M2	7,64	\$36.030,38	\$ 2
			SUB TO	OTAL	\$ 27
8	CARPINTERIA METALICA				
8,1	Puerta en lamina cold rolled calibre 18 pintada con anticorros ivo, incluye marco.	un	2,00	\$386.000,00	\$ 7
8,2	Ventana en lamina cold rollled calibre 18, pintada e instalada, con vidrio incoloro 4 mm. Suministro e instal.	M2	11,18	\$ 135.789,00	\$ 1.5
			SUB TO	1	\$ 2.28

9	CUBIERTA				
			SUB TO	ΓAL	
10	INSTALACIONES ELECTRICAS				
10,1	ACOMETIDA VIVIENDA	UN	1,00	\$460.485,00	\$ 460.483
10,2	TABLERO BIFILAR 6 PTS	UN	1,00	\$100.832,00	\$ 100.832
10,3	SALIDA LUZ INCANDESCENTE	UN	8,00	\$37.568,00	\$ 300.544
10,4	SALIDA TOMA DOBLE	UN	7,00	\$34.256,00	\$ 239.792
10,5	SALIDA TOMA DOBLE CAL 12.	UN	1,00	\$42.568,00	\$ 42.568
10,6	SALIDA TOMACORRIENTE GFCI	UN	1,00	\$70.895,00	\$ 70.895
10,7	S ALIDA TELEVISION	UN	1,00	\$25.000,00	\$ 25.000
10,8	SALIDA TOMA TELEFONO	UN	1,00	\$25.000,00	\$ 25.000
10,9	SONDEO DE LA VIVIENDA	UN	1,00	\$ 18.956,00	\$ 18.95
10,1	SALIDA TOMA CORRIENTE TIMBRE	UN	1,00	\$41.225,00	\$ 41.225
			SUB TO	ΓAL	\$ 1.325.297
11	INSTALACIONES HIDRAULICAS				
11,1	Punto agua fria PVC 1/2"	UN	6,00	\$ 18.179,99	\$ 109.080
11,2	Punto des agüe sanitario pvc 2"	UN	5,00	\$30.982,15	\$ 154.91
11,3	Rejilla 3" plastica	UN	1,00	\$ 12.900,00	\$ 2.90
11,4	Punto des agüe sanitario pvc 4"	UN	1,00	\$85.475,15	\$ 85.47
11,5	Caja de inspeccion 80 x 80	UN	1,00	\$280.000,00	\$ 280.00
11,6	Tuberia sanitaria PVC 2". Suministro e instal.	ML	9,09	\$22.443,79	\$ 204.01
11,8	Tuberia sanitaria PVC 4". Suministro e instal.	ML	8,50	\$40.139,70	\$ 341.18
11,10	Tuberia pres ion P VC RDE 9 1/2". Suministro e instal.	ML	11,91	\$7.148,69	\$ 85.14
11,12	Lavamanos colgarblanco con conjunto mezclador 4" prisma. Suministro e instal.	UN	1,0	\$85.000,00	\$ 85.00
11,13	Lavaplatos en acero inoxidable 80 x 50, con mezclador. Suministro e instal.	UN	1,0	\$68.567,00	\$ 68.56
11,14	Tanque elevado 500 lts con conexion y distribucion P VC de $V2"$ y $I"$. Suministro e instal.	UN	1,0	\$260.500,00	\$ 260.500
11,15	Ducha prysma conjunto individual (tipo cromada) con registro o valvula	UN	1,0	\$45.000,00	\$ 45.000
11,16	tuberia de ventilacion	ml	1,5	\$ 15.5 11,77	\$ 23.78:
11,17	Punto de ventilacion	UN	1,0	\$31.237,13	\$ 31.23
		SUB TOTAL		\$ 1.786.79	
	INSTALACION DE SISTEMA				
12,00	APARATOS AHORRADORES				
12.01	Ahorrador Economizador De Agua Grifos Lavaplatos Lavamanos	UN	2,0	\$ 14.500,00	\$ 29.00
12.02	Ahorrador de agua para ducha	UN	1,0	\$ 15.500,00	\$ 15.50
12.03	Sanitario Ahorrador Ticino Bone Gratis Juego de Accesorios	UN	1,0	\$315.900,00	\$ 315.90
		_	_	_	\$

13.00	INSTALACION DE AGUA LLUVIA Y REUTILIZACCION DE AGUA GRISES					
13.01	instalacion tuberia de 2"	ml	3,9	\$22.443,79	\$	87.531
13.02	ins talacion tuberia de 3"	ml	0,8	\$20.000,00	\$	16.000
13.03	ins talacion tuberia de 4"	ml	0,4	\$40.139,70	\$	16.056
13.04	tanques de almacenamiento	un	1,0	\$ 1.748.498,00	\$	1748.498
13.05	instalacion reductor de 4" a 2"	un	2,0	\$29.275,00	\$	58.550
13.06	ins talacion niple 2"	un	1,0	\$ 19.490,00	\$	19.490
13.07	instalacion codo 90 "	un	5,0	\$ 18.186,23	\$	90.931
13.08	bo la de jebe	un	1,0	\$500,00	\$	500
13.09	filtro /bomba AQUA2USE	un	1,0	\$490.000,00	\$	490.000
13.10	instalacion tee 2"	un	1,0	\$23.095,00	\$	23.095
13.11	valvula de 2"	un	2,0	\$54.426,57	\$	108.853
13.12	canalamazonas 15cm	un	1,0	\$ 143.459,00	\$	143.459
					\$	146.909
			SUB TOTAL			2.802.963
14,00	SUMINSTRO DE PANEL SOLAR					
14.01	panel solar 5000W,inclye transporte	un	1,0	8.530.000	\$	8.530.000
14.02	ins talacion i	un	1,0	\$70.000,00	\$	70.000
			SUB TO	ΓAL	\$	8.600.000
					\$	35.773.670
subtotal					\$	35.773.670
adminis taracion				10%	\$	3.577.367
impre vis to				4%	\$	1.430.947
utilidad				5%	\$	1.788.683
iva/utilidad				16%	\$	286.189
TOTAL					\$	42.856.856

Figura 112. Presupuesto vivienda con sistemas alternativos urbanización manguare Fuente: Elaboración propia ver archivo presupuesto vivienda aún (apus vivienda)

3.18.3 Comparación Costo De Vivienda

COSTO VIVIENDA CONVENCIONAL	COSTO DE VIVIENDA CON SISTEMAS ALTERNATIVOS
\$ 39.492.181	\$ 42.856.856,49
	DIFERENCIA
	\$ 3.364.675,17

Tabla 26. Comparativo De Costos De Viviendas

3.18.4 Análisis De Clasificación Programa De Vivienda Nacional

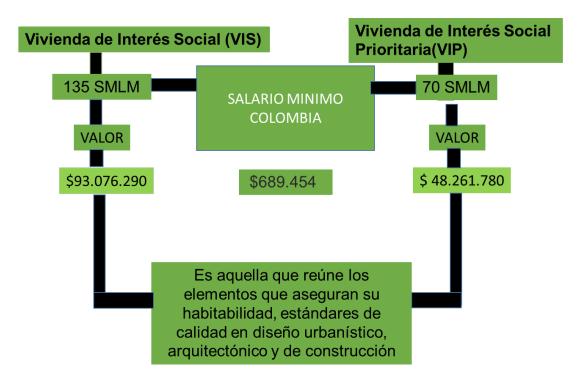


Figura 113. Valores Estipulados Por Misterio De Vivienda De Vis Y Vip Fuente: Elaboración propia a partir de http://www.minvivienda.gov.co/viceministerios/viceministerio-de-vivienda/vis-y-vip

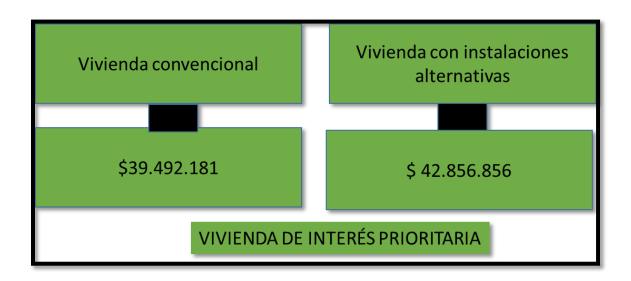


Figura 114. Comparación Y Clasificación De Tipo De Vivienda Fuente elaboración propiahttp://es.exchangerates.org.uk/historia/brl-cop.html

3.19 Análisis Económico

3.19.1 Instalación Hidrosanitario

Tarifa alcantarillado por meses /empresa empuamazonas S.A E.S.P.

ALCANTARILLADO	Medición (scriptores)	Cargo Fijo Suscriptores)	Cargo Básico (\$/m³)												Cargo Complementario (\$/m³)		(\$/m³) Complen		Complementario		Car	go Suntuario (\$/m³)
ESTRATO 1	\$ 9.636,20	\$ 319,77	\$	484,77	\$	968,41	\$	968,41														
ESTRATO 2	\$ 9.163,34	\$ 384,63	\$	581,50	\$	968,41	\$	968,41														
ESTRATO 3	\$ 12.981,44	\$ 543,95	\$	823,89	\$	968,41	\$	968,41														
ESTRATO 4	\$ 15.272,39	\$ 640,67	\$	968,41	\$	968,41	\$	968,41														
ESTRATO 5	\$ 18.327,14	\$ 768,13	\$	1.163,00	\$	1.163,00	\$	1.163,00														
ESTRATO 6	\$ 18.327,14	\$ 768,13	\$	1.163,00	\$	1.163,00	\$	1.163,00														
OFICIAL	\$ 15.272,39	\$ 896,72	\$	968,41	\$	968,41	\$	968,41														
COMERCIAL	\$ 20.617,64	\$ 640,67	\$	1.356,45	\$	1.356,45	\$	1.356,45														

TABLA DE TARIFA ALCANTARILLADO TOMADA

DEfile:///C:/Users/HP/Downloads/2.%20%20Informacion%20de%20referencia%20AC%20Y%20ALL.

Tabla 27: Costo Anual Alcantarillado

ESTRATO 1/MES	9.636,20
CONSUMO DE UN AÑO	\$ 115.634,40

Fuente: Elaboración propia

Comparación de costos de instalaciones hidrosanitarias convencionales e instalaciones hidrosanitarias alternativas

Costos instalación hidrosantaria convencional

Tabla 28. Costos Sistemas Alternativos

PRECIOS CON EL SISTEMA HIDROSANITARIO ALTERNATIVO	VALOR
INSTALACIONES HIDRAULICAS Y SANITARIOS APARATOS AHORRADORES	\$ 1.786.797 360.400
INSTALACION DE AGUA LLUVIA y REUTILIZACCION DE AGUA GRISES	\$ 2.802.963
VALOR	\$ 4.950.160

Fuente: Elaboración propia

Costos instalaciones hidrosanitarias alternativas

Tabla 29. Costos sistemas alternativos

PRECIO DE INSTALACION HIDROSANITARIA CONVENCIONAL	\$2.412.122,95
---	----------------

Fuente. Elaboración propia

Diferencia de costos

Tabla 30. Diferencia Costos Instalaciones Comparación

DIFERENCIA ENTRE INSTALACONES HIDROSANITARIAS	VALOR
PRECIO DE INSTALACION HIDROSANITARIA CONVENCIONAL	\$ 2.412.122,95
PRECIOS CON EL SISTEMA HIDROSANITARIO ALTERNATIVO	\$ 4.950.160
DIFERENCIA	\$ 2.538.037,04

Tabla 31. Tiempo En Pagar El Sistema

SOBRE COSTO VIVIENDA CON SISTEMAS ALTERNATIVOS LETICIA	\$ 2.538.037,04
COSTO DE UN AÑO DE ACUEDUCTO	\$ 137.451,48
AÑOS DE PAGO	18,46496697

Fuente: Elaboración propia

Desde el análisis no es muy viable ni a corto y mediano plazo, aunque largo plazo si según los cálculos realizados .también no es viable ya que ellos poseen una tarifa muy económica que los lleva a que no sea tan necesario este tipo de ahorro en cuanto a lo a económico, pero si lo tomamos desde la calidad del agua tratada en Leticia esta no es muy buena, lo que en conclusión a corto y mediano plazo no es viable económicamente, en cuanto a salud si por que la prevención de enfermedades.

Pero si analizamos estas instalaciones en otra parte del país económicamente son muy viables a corto plazo, a continuación, aremos la comparación en este caso con la ciudad de Pamplona Norte de Santander.

Análisis De Vivienda Con Instalaciones Hidrosanitarias Alternativas En Pamplona

Tabla 32. Total, tiempo de pago del sobre costo en comparación vivienda convencional

SOBRE COSTO VIVIENDA CON SISTEMAS	
ALTERNATIVOS PAMPLONA	\$ 2.538.037,04
COSTO DE UN AÑO DE ACUEDUCTO	\$ 540.000,00
AÑOS DE PAGO	\$ 4,70

Y si cumple de acuerdo con la precipitación y la utilización de las aguas grises tratadas a suplir con las necesidades básicas de tres personas en la misma vivienda.

Tabla 33. Comparación de precipitación

PRECIPITACION LETICIA	266,66 mm/ m2			
PRECIPITACION PAMPLONA	122,5 mm/m2			

Fuente: Elaboración propia

Tabla 34. Análisis de la captación de los dos lugares

CAPTACION DE AGUA LLUVIAS MES LETICIA M3	23
CAPTACION DE GRISES M3	4,909
TOTAL	27,909
CAPTACION DE AGUA LLUVIAS MES PAMPLONA M3	10,6
CAPTACION DE GRISES M3	4,909
TOTAL	15,509

CONSUMO DE AGUA CON APARATOS PERLIZADORES \$ 10.468,80

Fuente: Elaboración propia

Consumo con uso de perlizadores y aplicación de racionamiento de agua por ministerio de vivienda de acuerdo al clima frio es de 11m3 lo que equivale a 11000 litros y el estrato 1 y 2. Es viable.

Según el análisis económico depende del lugar donde lo implantemos el sistema es viable económicamente, en cuanto al ambiente, tratamiento del agua y a salud cumple con los requerimientos.

3.19.2 Análisis instalaciones eléctricas y utilización panel solar

Tabla 35. Precio instalaciones convencionales

PRECIO INSTLACIONES ELECTRICAS CONVENCIONAL	VALOR		
INSTALACIONES ELECTRICAS	\$	1.325.297	
VALOR	\$	1.325.297	

Fuente: Elaboración propia

Tabla 36. Precio Con Panel Solar

PRECIOS CON EL SISTEMA DE PANEL	VALOR
INSTALACIONES ELECTRICAS	\$ 1.325.297
SUMINSTRO DE PANEL SOLAR	\$ 8.600.000
VALOR	\$ 9.925.297

Fuente: Elaboración propia

Tabla 37. Diferencia de precios

DIFERENCIA ENTRE INSTALACONES ELECTRICAS	VALOR	
PRECIO NSTLACIONES ELECTRICAS CONVENCIONAL	\$	1.325.297
PRECIOS CON EL SISTEMA DE PANEL	\$	9.925.297
DFERENCIA	\$	8.600.000

Fuente: Elaboración propia

Tabla 38. Tiempo A Pagar El Sistema

SOBRE COSTO VIVIENDA CON SISTEMAS ALTERNATIVOS LETICIA	\$ 8.600.000,00
COSTO DE UN AÑO DE ELETRICIDAD	\$ 1.936.764,00
AÑOS DE PAGO	4,440396455

Se puede determinar que el sistema de panel solar es viable ya que a mediano plazo, se puede cumplir con el pago y a largo ya el sistema no genera ningún costo es de por vida.

3.20 Análisis instalación pozo séptico integral y pozo de absorción

Tabla 39. Presupuesto Y Comparación De Tratamiento De Aguas Servidas

SISTEMA POZO SEPTICO CON ABSORSION		
COSTO DE POZO SEPTICO	\$	2.868.288
COSTO DE FILTRACION ANAEROBICA	\$	244.330
TOTAL		
COSTO DE POZO SEPTICO	\$	2.478.636
COSTO DE FILTRACION ANAEROBICA	\$	244.330
COSTO DE TUBERIIA DE SANITARIA 4"	\$	145.321
TOTAL	\$	2.868.288
COMPARACION SISTEMAS	VALOR	
COSTO SISTEMA INTEGRADO	\$	2.409.537
COSTO CON POZO DE ABSORSION	\$	2.868.287,65
VALOR A PAGAR DE ALCANTARILLADO EN UN AÑO		
COSTO ALCANTARILLADO /MES	\$	9.636
COSTO AÑO	\$	115.632
TIEMPO DE PAGO DE SISTEMAS(AÑOS)	VALOR	
COSTO SISTEMA INTEGRADO	\$	21
COSTO CON POZO DE ABSORSION	\$	24,81

Fuente: Elaboración propia partir de

https://www.contratos.gov.co/consultas/detalleproceso.do?numconstancia=13-1-95093

En cuanto al tratamiento de aguas servidas para no invertir en una red alcantarillado hasta el lugar ,la instalación tanto de el pozo séptico integrado como el de pozo de absorción son una buena opción .porque hacen que los sistemas se utilicen de forma independiente a la vez que actúan de forma amable con el medio ambiente ya que en las dos instalaciones contribuyen al

medio ambiente e el primer caso con la infiltración y evaporación del agua y captación del agua por parte de las nubes como la absorción de murientes por la tierra lo mismo que el sistema independiente de absorción .

Tarifa Alcantarillado

Tabla 40. Tarifa alcantarillado

ALCANTARILLADO	 n Medición Suscriptores)	Cargo Fijo Suscriptores)	C	argo Básico (\$/m³)	Cor	Cargo mplementario (\$/m³)	Cai	go Suntuario (\$/m³)
ESTRATO 1	\$ 9.636,20	\$ 319,77	\$	484,77	\$	968,41	\$	968,41
ESTRATO 2	\$ 9.163,34	\$ 384,63	\$	581,50	\$	968,41	\$	968,41
ESTRATO 3	\$ 12.981,44	\$ 543,95	\$	823,89	\$	968,41	\$	968,41
ESTRATO 4	\$ 15.272,39	\$ 640,67	\$	968,41	\$	968,41	\$	968,41
ESTRATO 5	\$ 18.327,14	\$ 768,13	\$	1.163,00	\$	1.163,00	\$	1.163,00
ESTRATO 6	\$ 18.327,14	\$ 768,13	\$	1.163,00	\$	1.163,00	\$	1.163,00
OFICIAL	\$ 15.272,39	\$ 896,72	\$	968,41	\$	968,41	\$	968,41
COMERCIAL	\$ 20.617,64	\$ 640,67	\$	1.356,45	\$	1.356,45	\$	1.356,45

Fuente: Defile:///c:/users/hp/downloads/2.%20%20informacion%20de%20referencia%20ac%20y%20all.

Las tarifas en cuanto alcantarillado son muy bajas pero al implementar este tipo de sistemas de tratamiento de aguas lluvias se busca es evitar castos en llevar la red de alcantarillado hasta urbanización y por su parte si brindarle un aprovechamiento ambiental con la absorción de nutrientes por parte del suelo

3.21 Conclusiones técnicas

El sistema en la vivienda está adaptada al consumo establecido por el ministerio de vivienda para estrato 1 en clima cálido, por lo tanto utilizamos como consumo mensual 16000 litros, a partir de esto se estableció que con el uso de aparatos ahorradores el ahorro en la vivienda es de 34,56% de su promedio en el mes, lo que significa 165.930 litros /día, teniendo así 10469 litros mensuales.

La captación de aguas lluvias según los cálculos realizados de acuerdo a la precipitación , las condiciones de la vivienda es de 11307 litros en promedio mensual por tanto depósito de almacenamiento según el abastecimiento de cada mes es de 22,615m3 ,esta cantidad supera el consumo de agua de la vivienda en un 53,7% mensual si utilizamos los aparatos ahorradores y usamos como base de consumo lo establecido por el ministerio de vivienda .pero según el referente el deposito debe de ser de esta capacidad porque hay meses como julio y agosto donde la captación va hacer menor y lo que se pretende es contar con el líquido todo el tiempo.

En conclusión

- Aparatos ahorradores ----- 34,56% del consumo mensual básico
- Captación de aguas lluvias
- ✓ Con aparatos ahorradores-----se capta un 8% más del consumo de mensual
- ✓ Sin aparatos ahorradores se captaría el 73.44% del consumo básico
- Aguas grises
- ✓ Con aparatos ahorradores ------46.90% del consumo mensual
- ✓ Sin aparatos ahorradores ahorro del 10,34% consumo mensual básico
 Si no utilizamos los aparatos ahorradores el ahorro seria de un 83,78%
- Aguas servidas -----27% del consumo mensual básico

En conclusión, si implementamos los tres, sobrepasa el consumo en un 8%, y si no

Implementamos los aparatos ahorradores el ahorro será de 83,78%

El proceso de aguas lluvias se buscó que fuera practico, pero que a su vez el líquido captado tuviera un calidad óptima por eso se estableció el uso de un interceptor tipo colador como primer paso y posterior a su almacenamiento un filtro donde será tratada en su totalidad antes de llegar al tanque de almacenamiento elevado que va a distribuir a los puntos hidráulicos de la vivienda, además este sistema posee dos puntos de control ,el primero funciona para cuando la se realiza mantenimiento al depósito y estamos utilizando las aguas grises para que no se mezclen y la segunda para evitar la entrada de esta gua a puntos como lavaplatos y duchas ya que por algunos usuarios puede ser considera no apta para estos usos.

El depósito se determinó que fuera flexible, porque es práctico en cuanto a trasporte e instalación y a su vez es económico, este al estar cubierto por una lámina permitirá realizar el mantenimiento y revisión pero a su vez permitirá la circulación dentro del lugar donde está establecido.

Para el filtro y el sistema solar se estableció un cuarto de máquinas en donde se genera un control de todos los sistemas además de brindar una protección a los aparatos pero a su vez a los usuarios ya que estos aparatos trabajan con electricidad.

El filtro bomba que se utilizó porque nos ofrece un filtraje en poco tiempo del agua a utilizar y además porque permite bombear al tanque elevado. Por lo tanto tendremos que instalar un solo aparato y cumple con las necesidades de filtraje y potencia de bomba para subir al tanque elevado. Porque según los cálculos y el referente utilizado se establecía una bomba para cada sistema e igualmente en los filtros, y con este tipo de filtro bomba suplimos la necesidad porque bombea 60 litros por minutos y la vivienda para tres habitantes necesita solo 150 litros diarios.

La integración de los dos sistemas de tratamiento de aguas lluvias y grises, se estableció porque con el mismo filtro bomba suplimos la necesidad de filtraje del agua consumida por tres habitantes y a partir del sistema de tubería implementado a partir de los accesorios como la tee y las válvulas tendremos un control cuando estemos utilizando las aguas lluvias no se mezclen con las grises. Lo que nos ofrece ahorro de aparatos tubería y tanque elevado y asimismo tenemos los las dos formas de tratar el agua en uno.

El panel solar fue implementado por la necesidad de energía que la bomba exige por este motivo y observando que el panel solar era una forma de suplir esta necesidad de forma amable con el medio ambiente y que además podíamos integrar la red eléctrica de la casa se estableció instalar .otro motivo fue porque en el mercado nos ofrecían este sistema de paneles que ofrecía todos sus accesorios , dentro de sus costos incluía su transporte y la instalación es muy fácil el mismo usuario lo puede realizar.

Si tenemos en cuenta que en urbanización todas viviendas utilizaran los paneles solares para suplir la necesidad de energía, vemos que el espacio exterior queda sin alumbrado público, la idea es implementar postes con alumbrado que posean un panel solar de 40w que capte la energía que necesite con esto tendríamos en su totalidad una urbanización con total ahorro de energía eléctrica.

Las aguas servidas son las que no tiene reutilización dentro de la casa por esta razón se estableció dos opciones de aprovecharlas, una mediante la absorción a partir de un proceso de filtraje anaeróbico trata y brinda al suelo los nutrientes; otra es mediante el proceso de infiltración donde a partir de un pozo séptico se filtra estas aguas y son reunidas para que en este caso en el lote que está dispuesto al lado se dé el proceso de infiltración donde el suelo capta sus nutriente y las nubes a partir de la evaporación que da por el calentamiento del sol sean absorbidas y vuelvan a su proceso de precipitación.

Conclusiones

La urbanización manguare surge como una solución de brindarle vivienda a un grupo de familias que están desplazas y que se encuentran en zona de alto riesgo, teniendo en cuenta esta situación vemos que concuerda con el contexto histórico de la vivienda dentro de la ciudad su población ha migrado a la ciudad por problemáticas sociales en este caso lo de la situación de los que fueron desplazados de Brasil y los que están en zona de riesgo que también como menciona la historia sufren al adaptarse al espacio sin mirar su condiciones.

El municipio a partir de los programas de vivienda de interés social busca faurece a 504 familias, en donde con la primer fase pretende beneficiar 210 familias, con una unidad habitacional que cumple con las condiciones básicas

En cuanto a servicios públicos vemos que es muy viable la utilización de este tipo de instalaciones alternativas en primer lugar las hidrosanitarias porque basado en las condiciones ambientales de Leticia la precipitación en el lugar permite una abundante captación de agua lluvia .y al observar la problemática de contaminación y tratamiento de agua tanto lluvias por no tener un sistema de evacuación de aguas lluvias y las servidas por no tener un tratamiento adecuado se pretende aprovechar ,tratarla con los dos sistemas a utilizar uno con la captación de agua lluvias ,otra las aguas grises y complementándolos con los aparatos ahorradores. En cuanto a las aguas servidas se busca evitar también la contaminación de las principales fuentes de agua como las quebradas que llegan al rio amazonas principal fuente hídrica con el sistema puede ser el de absorción que funcionaria de forma independiente o el de campo de infiltración en la cual se aprovecharía de forma directa la absorción de nutrientes por las sustancias orgánicas que poseen estas aguas y a su vez por la absorción al evaporarse

Además de esto al contar con temperaturas altas la absorción de energía permite en los paneles solares supliría la necesidad y permitiría un ahorro económico a sus usuarios, porque en Leticia al obtener la energía de Brasil es más costo y estas familias son de bajos, la idea también es tomar este sistema y dotar el espacio público dentro de la urbanización en luminarias solares con el fin de dotar de mobiliario amable con la naturaleza y que le brinde seguridad.

Como anteriormente mencionamos el factor económico de los usuarios se ve beneficiado si tenemos en cuenta los análisis económicos realizados en cerca de 19 años(a largo plazo) pagaría con lo que pagamos el recibo del agua ,si lo viéramos desde el corto y mediano plazo no sería tan viable por la abundancia de agua y la tarifa tan baja que pagan mensualmente pero es que hay que tener en cuenta esta agua va estar tratada y evitaríamos el paso de la red de acueducto por el sector .así mismo pasaría con las instalaciones de panel solar evitaremos llevar la red principal del municipio porque estaría implementado desde las unidades hasta el espacio público con las luminarias solares y evitaría costos si lo tenemos en cuenta desde los análisis económicos con el pago que sé que se realiza mensualmente del consumo pagaríamos en 4 años.

Este sistema según comparaciones realizadas pueden adaptarse a cualquier lugar depende del factor ambiental y económico será viable a corto, mediano y largo plazo. En Leticia su funcionamiento sería aceptable a largo plazo desde lo económico en cuanto instalaciones hidrosanitarias ,las instalaciones a partir de paneles solares a mediano ;a nivel ambiental serian perfectas en primer lugar porque se aprovecharían los factores ambientales de clima por las precipitaciones permitiendo un abastecimiento superior con un 8% más del consumo básico estipulado por el ministerio de vivienda ,permitiendo el almacenamiento para épocas de bajas precipitaciones y físico al fortalecer las zonas verdes de nutriente al tratar las aguas servidas .y en segundo lugar porque evitaremos contaminación tanto visual o como de malos olores .la

urbanización manguare bajo estos sistemas se convertiría en un centro habitacional que estaría independiente a la utilización de servicios públicos seria sostenible a largo plazo tanto ambiental como económicamente. Y además entraría dentro del presupuesto de vivienda de interés social.

Anexos

Planchas

- Análisis contexto ciudad 01
- Análisis contexto ciudad 02
- Análisis contexto ciudad 03
- Análisis contexto urbanización manguare 04
- Desarrollo de instalaciones alternativas- aparatos ahorradores 05
- Desarrollo de instalaciones alternativas –aguas lluvias 06
- Desarrollo de instalaciones alternativas-aguas grises 07
- Desarrollo de instalaciones alternativas aguas servidas 08
- Desarrollo de instalaciones alternativa-panel 09
- Desarrollo de instalaciones alternativas –todo el sistema 10
- Análisis de ahorro y económico 11

Planimetrías

- Plano urbanización manguares 01
- Planos vivienda convencional 02
- Plano vivienda instalaciones alternativas 03
- Planos vivienda instalaciones alternativas hidrosanitarias –plantas 04
- Planos vivienda instalaciones alternativas hidrosanitarias –cortes 05
- Planos vivienda instalaciones alternativas hidrosanitarias –panel 06
- Planos vivienda instalaciones alternativas hidrosanitarias –detalles 07

PRESUPUESTOS

- Presupuesto vivienda convencional
- Presupuesto vivienda instalaciones alternativas

Bibliografía

- Deffis .Caso. A.La casa ecológica autosuficiente: Para climas cálido y tropical., (1992).Editorial
 Concepto. México. D.F
- Guía de diseño para captación de agua de lluvia. Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente Organización Panamericana de la Salud (2001) Lima. Perú.
- Lema Gonzalo GEA-UR.del estudio realizado por el arquitecto (2005)
- Programa Específico para el Desarrollo Habitacional Sustentable ante el Cambio Climático, (2008) .1a
 edición, CONAVI. .México.
- Van Lengen Johan. Manual del arquitecto descalzo.(2013). Editorial pax México,(pág. 581 679)

Infografía

- http://www.ovidiocala-sas.com/sitio/ [Recuperado en línea 26/11/2015 a las 6:20]
- https://es.wikipedia.org/wiki/Santander_(Colombia)[Recuperado en línea 26/11/2015 a las 6:20]
- http://www.unipamplona.edu.co/unipamplona/portalIG/home_115/recursos/general/04062015/arq
 uitectura.jsp [Recuperado en línea 26/11/2015 a las 7:130]
- http://www.cap.org.pe/cap/index.php/institucion/reglamentos/reglamento-del-campo-profesional-del-arquitecto.html [Recuperado en línea 26/11/2015 a las 12:34]
- http://datateca.unad.edu.co/contenidos/102803/MODULO_ACADEMICO/leccin_37_costos_y_p
 resupuesto_de_obra.html [Recuperado en línea 26/11/2015 a las11:20]
- https://www.minambiente.gov.co/index.php/component/content/article?id=1449:plantilla-gestion-integral-del-recurso-hidrico-34[Recuperado en línea 22/11/2015 a las11:40]
- http://acmor.org.mx/cuamweb/reportescongreso/2011/Prototipo/006purificacion.pdf[Recuperado en línea 23/11/2015 a las04:34
- http://sostenibleperdona.blogspot.com.co/p/que-es-sostenibilidad.html[Recuperado en línea 10 /03/2016 a las11:20]

- http://www.revistas.unal.edu.co/index.php/bitacora/article/view/28011/html_54[Recuperado.20/0 4/2016 /2016 a las10:23]
- http://www.revistas.unal.edu.co/index.php/bitacora/article/view/28011/html_54[Recuperado.23/0 4/2016 /2016 a las11:20]
- http://infraestructuramazonas.blogspot.com.co/2012/10/vias-de-acceso-amazonaseticia.html[Recuperado.23/04/2016 /2016 a las11:20]
- FichaDANEhttp://www.dane.gov.co/files/censo2005/perfiles/amazonas/leticia.pdf[Recuperado.1 2/05/2016 /2016 a las06:18]
- http://www.leticia-amazonas.gov.co/apc-aa-files/33366639393863386234333861356137/plan-de-desarrollo-municipio-de-leticia-lpc.pdf[Recuperado.22/05/2016 /2016 a las09:34]
- :http://blog.is-arquitectura.es/2011/11/24/aqua2use-gwdd-filtro-para-reciclar-aguas-grises/#prettyPhoto[Recuperado.18/05/2016 /2016 a las07:13]
- http://www.escotel.com/luminaria_solar_para_alumbrado_publico_LD40W.html[Recuperado.22/ 05/2016 /2016 a las03:15]
- : http://www.tuboschulavista.com/productos.html [Recuperado.22/05/2016 /2016 a las03:18]
- http://www.totagua.com/productos/depuradoras-viviendas/28-fosas-septicas.html
 [Recuperado.27/05/2016 /2016 a las03:23]
- http://erenovable.com/paneles-solares-listos-para-instalar-uno-mismo/ [Recuperado.27/05/2016
 /2016 a las03:23]
- http://sustenta.life/producto/sistema-de-tratamiento-de-aguas-grises-aqua2use/
 [Recuperado.29/05/2016 /2016 a las03:23]